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Summary. — The possible extension of the notion of generalized coherent
state to the case of infinite-dimensional affine Lie algebras is discussed with
special attention to the resulting topological structure of the echerent states
manifold, and to its connection with the structure of the algebra. The
velevance for the solution of nonlinear dynamical systems equations of
motion is briefly reviewed.
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PACS 03.65 — Quantum theory; quantum mechanics.

|

The generalized coherent states associated with an arbitrary Lie group G (")
constitute an overcomplete set of quantum states, labelled by a point In a
Kihlerian manifold . # homogeneous under the action of G.

(¥) Paper presented at the meeting «Feynman’s Quantum Mechanies 40 years after its
proposal», Naples, June 16-18, 1988
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Typically . # is the homogeneous factor space quotient of G by the stability
subgroup K leaving some vector | ) in the Hilbert space of states 9 fixed.

If G is a connected, simply connected nilpotent Lie group, its representations
can all be obtained by Kirillov's eoadjoint orbit method (*), and . # can be
identified with the symplectic manifold constituted by an orbit of the coadjoint
representation.

In fact, if g* is the space dual to the Lie algebra g of G, namely the space of
linear functionals on g, then G—which aets in q by the adjoint representation
Ad (¢), geG—acts in g* by the coadjoint representation Ad*(g), and a* is
foliated into orbits under such an action.

It was shown by Kirillov that any homogeneous symplectic manifold
homogeneous with regpect to the action of G is locally isomorphic with an orbit of
the coadjoint representation of ; moreover, it derives from the Borel-Weil-Bott
theory that these orbits are, for compact semi-simple Lie groups, in one-to-one
correspondence with nonequivalent unitary representations of the group itself.

Let us further recall that generalized coherent states are defined by

(1) (&)= 160 =="(@) T(9) o) ,

where T(g), g € G, are the holomorphie representations of the complexification of
@, and =(g) is a holomorphic character for all ¢’s in the coset labelled by the point
e G/IK~ 4/ and that .4 is locally isomorphic to €" for some integer N =1,

On the other hand, if G is the dynamical group of a physical system, whose
space of states is 97, then the time evolution of a state initially represented by a
point £y € . # is a path entirely embedded in . # (more precisely, ¢ needs not to
be strictly a dynamical group; what is required is that the system Hamiltonian H
be coherence preserving (*) for the coherent states of G).

The quantum evolution path in .4 is defined by the Feynman propagator

@ (el vy = (lexp| ~4 - )8] I,
which can be written in the path integral form
) (el ey = [ Dlenlexp b}smm}

with the action functional given by

¢

;i i
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Since ./ is symplectie, a set of local charts of canonical coordinates for the
orbit can be constructed, 2:={¢|i=1...., N}, and the Lagrangian L defined by
the above equation reads

Lot

(5) L=5ih 3 {58, ~ 40)In(Z|8) = (Ll H |G Ys

where F(2,):=4In{(Z|¢) is the Kihler potential.

b(z, 7) = (| H|¢) ean then be viewed as the Hamiltonian generating a classical
Lagrangian flow on a phase space which is .# itself, equivalent to the guantum
dynamics in the following sense: the quantum time evolution described by the
propagator { £t"| £t coincides with the classical flow induced by b on .4
(stationary-phase approximation of the path-integral in the functional integral
representation of the propagator leads in fact to the Euler-Lagrange equations
for the representative point of the coherent state z(t) generated by §(Z, 2).
Notice that, in general, §(Z, D) is a nonlinear funetional and the coherent state
representative, which corresponds to the holomorphic seetion of the line bundle
associated with the complexified prineipal fibre bundle K— G— GIK— .2/ by
the character = induced by some element g,e g, can be viewed as (a class of)
solutions to the equations of motion for the nonlinear classical dynamical system
such that explgo] lw) determines at which point of each fibre of the fibre bundle
over (/K induced by the Lie subalgebra associated with K the state representa-
tive should be taken (°).

The whole scheme can be extended to the case of infinite-dimensional Lie
algebras in different ways. We shall briefly discuss here the extension which can
be most naturally surmised from the dynamical picture described above, for the
case—particularly interesting in terms of physical applications—of affine Lie
algebras.

Indeed, just in view of its geometrical and dynamical meaning, the group G
can be thought of as the semi-direct product of an Abelian subgroup . ¢
(translations) by a diffeomorphism group L

(6) G=.4@D,

Since D operates faithfully on ., ¢ 1s a maximal Abelian subgroup of &, and
the following extension exists:

(7) E)— A4 5G5D—]

(where we denoted the group composition in 0 and .7 as addition, that in D and 1
as multiplication).

() G. D’ARIANO and M. RASETTI: Phys. Lett. A, 107, 291 (1985).
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The exactness of the sequence E implies that the monomorphism » maps .
isomorphically onto a normal subgroup of G, and that s induces an isomorphism
Gix.A~D of the corresponding quotient group. A thorough analysis of the
cohomology that £ induces(®) leads to the construction of a group of of
automorphisms of . # which can be embedded as subgroup into . /'is such that
any other subgroup J’', generating . 4 as a real vector space isomorphic to B*,
iz isomorphic to S and indeed conjugate to it in the affine group A(ZN).

We are thus led to affine Lie algebras as the natural candidates on which to
perform the desired generalization.

There are several constructions available of the affine algebras. The central
extension of a loop algebra (") is the simplest and we review it, even though it
vields only the direct (or untwisted) algebras.

The loop algebra construction starts with a finite-dimensional simple Lie
algebra q, generalizes it to its loop algebra Lg and then adjoins to Lg a central
element C: the result is an affine algebra §. A basis for Lg is obtained by
multiplying each basis element of g by #*, fe C an indeterminate and » any
integer. Thus Lg is an infinite-dimensional algebra with elements "X, X € g.
Direct affine Lie algebras are Lie algebras of the form §:=Lg® CC, where CC
is a one-dimensional space whose elements commute with any other element of
the affine algebra. The multiplication in Lg () is redefined in § as

(8) [ A V= R V] e XY 6l
where (*|*) is some nonzero multiple of the Killing form on g:
(9) EX,Y)=tr(ad(X)ad(Y)).

If we restricted our interest only to the adjoint representation, C would be
trivial, since (/%) = 0 for any «, where %, denotes the co-root corresponding to C.
However, for the highest-weight representations, which typically are physically
more interesting (the state of highest weight is, ¢.g., the state of lowest energy),
the value of C is a positive integer. Notice that the adjoint representation is not a
highest-weight representation.

The root-space decomposition of the affine algebra § is essentially the same as
that of Lgq: in fact, they are exactly the same for nonzero affine roots, whereas
the multiplicity of « = 0 is increased by one because of C. If g = (;}Zc)ﬂ q*1is the root-

space decomposition of g (finite-dimensional), then the corresponding decom-

() V. PENNA and M. RASETTI in preparation.
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(y V. G. Kac: Infinite Dimensionol Lie Algebras (Cambridge University Press,
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position of Lq is
(10) Lg= @ & g%

Thus a root 2 of the loop algebra consists of a pair, f#=(n,2). One can
consistently make &= (1, 0) correspond to €' if (*|*) is extended in such a way
that (¢|%)=0. Then (*|*) 1s positive definite on the dual h" of the Cartan
subalgebra [ <1 &, and one has (a+ né| &+ nd) = (ala) for all we.

The reason for looking at loop algebras, even though they do not lead to all
affine algebras, is that they allow an easy solution to the problem of identifying
all diagonalizable operators implied by the structure of the affine algebra ().

Since (4]4) =0, there exists no linear combination of the elements h: of the
Cartan subalgebra that measures the value of # in (10), even though » is an
additive number in the adjoint representation. This has to be fixed by enlarging
the subalgebra with an additional operator L, such that—denating by 7, the
corresponding co-root—(2| )= — 1.

The explicit realization of L, on Lg is — ¢ d/dt, so that L,(t" X) = — n(t" X). In
other words, L, is a derivation of Lg, and extends in a unique way to a derivation
of § by requiring that [L;,C1=0. L, belongs to the algebra V, with basis
L,=— " d/dt and eommutation relations

(11) Wes Bl = e =0 ey [l (B = = X

In the central extension of the loop algebra also V, acquires a central extension,
which is the Virasoro algebra (*). Virasoro and Heinsenberg algebras are the
structural algebras induced by the Poisson bracket and the Hamiltonian
functionals for the KdV and modified KdV symplectic structures ().

The extended affine Cartan subalgebra is then finally defined as

(12) i=h@DCCDCL,,
and the extended affine algebra as

(13) d=gq®CL.

Its multiplication rule reads

(14) ["X+aCH+ 0Ly, 1"Y+cC +dlLy|=
R I-Xr Y] = 'Tn'ewz-h¢.ﬂ-(X | Y_J' C—nbt*"Y + mdt" X s

) 1. B. FRENKEL and V. G. Kac: Invent. Math., 62, 23 (1980).
)y P. GODDARD and D. OLive: Tnf. J. Mod. Phys. A, 1, 303 (1986).

} B. L. FEIGIN and D. B. FUKS: Funct. Anal. Appl., 16, 114 (1982).
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whereas, written in terms of the Cartan decomposition, the commutation
relations mvolving the extended Cartan subalgebra are

(15) I_h'ij 'EJ"H.5'+.«] = (£| 'i?) Cng+as [LU L] eu%-l—:] = — Neugia

As already mentioned, a more general construction of the affine algebras is that
based on a Cartan matrix.
The Cartan matrix A of a simple Lie algebra of rank d is an integral d x d
matrix satisfying the following conditions:
i) A'.l'.i = 2 :
i) A;=0 for i+#j;
m) if A;=0, then 4;=0 (zeros appear symmetrically in A);
iv) there exists a nonsingular diagonal matrix D such that DA is a
svmmetric matrix;
v) A cannot be brought to block-diagonal form by rearranging rows and
columns.
The symmetrizability condition iv) is related to the property tha't, due the
duality, one can consistently choose, for all Kac-Moody algebras,
2,

(16) % )

i (-Iq; C{q')

and define D in such a way that (DA); = (¢;|4,). Then conditions i) to v) are
enough to get

(o; | ;)

L

(1 7) A:j_; = (aq-

Jxv-') = 7 ]
: (a7 | 2y)
from which ensues the well-known interpretation of the Cartan matrix as scalar
products in b*.

A Lie algebra g{A) can be constructed from a Cartan matrix 4 and a set of
(d+1) algebras su(Z2) with commutation relations

(18) [}E"f_} -.‘3-.-;] = 28'." 1 [hi!‘ﬁ] =t 2.}“5 ] Ic”ﬁl i h!

(where h; is normalized in such a way that bosonic representations have even
integer weights and fermionic representations have odd integer weights), by the
method of generators and relations. The relations that generate g(A) are

”{1 b k.ll = 0 E) I h‘a’g ﬂ_;,‘ I = A;,l"." e‘_;l' 3

(19)
Uz'i .f,.] = A}Uﬂ 7 [pt 'f;] R af_." hi i
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The presentation of the Kac-Moody Lie algebra is completed by the Serre
relations

(20) (ade)'~""g;=0, (adf)of;=0.

This econstruction extends to any Cartan matrix and yields all Kae-Moody
algebras in the same way. If DA is positive semi-definite (which, due to the
axioms i) to v), allows only one zero eigenvalue of DA) the corresponding algebra
is affine. Also the twisted affine algebras, which could not be obtained by the
loop algebra method, do follow from this construction.

Let ¢* denote the dual of the Cartan subalgebra extended by L,. The
standard definitions of module for the finite-dimensional case (where a
- representation is a sel of square matrices corresponding in a one-to-one fashion
to the operators in the Lie algebra, and a module is a set of column matrices on
which the representation matrices act, and—by Weyl theory—there exist
representations for which a basis of the module consists of vectors labelled in the
weight lattice @, such that the highest-weight subspace has dimension one, and
the highest weight completely specifies the representation) can be straight-
forwardly extended o the infinite-dimensional case. Just the same, a highest-
weight module M(A) is characterized by a highest-weight vector v, with

i) v' is a weight vector for M(1) with weight A in the extended lattice
in e*;
ii) v+ is annihilated by all raising operators e,, o« > 0;

iii) M(A) is generated by successive applications of the lowering operators
¢,,2<0 on v,

For the case of affine su(2), the weight » is characterized by its components
A(h:) = (| %) and the highest weight A has nonnegative integer components
Alh) >0, 1=0,1. Let us assume A(%y) = 1 and A(k;) = 0: then A carries the weight
(1, 0). The value of A(Lp) has no effect on the representation structure, however,
if one selects A(Ly) =0, then

(21) MO)Y=Alhg+ ) =(A |z +A[2)=U]|H=1.

Since (x| 2): = «(C) =0 for all affine roots, it follows that A is actually linearly
independent of the roots. Moreover, A(C)= A(C).

Thus 2(C) is constant on an irreducible representation. A(C) is called the level
of A and the above choice A =(1,0) has level 1.

The correspondence &;— h;,i=10,1,...,d, between f* and f) must now be
extended to ¢* and €. Since L, is linearly independent of the A, a linearly
independent vector A\, has to be added to &*: a consistent choiee is (1,{2) =1 and
(Ag|ew) =0, 1=0,1,....d, {e} denoting a basis for the root lattice. The scalar
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— 70) 1= A4(C), because if one further defines Ap by

product is symmetric only if (2
.-"!lﬂ(hf} = 5‘1"“, ? = 0, 1, o d, then

(22) (z; | £ 10) i (ﬂ"lu‘ ii) =dig.

Returning now to the general problem of constructing generalized coherent
states, we observe the following. The algebra q has a triangular decomposition

(23) ! a=n_-PHDn,,

where 2, (n_) is the subalgebra generated by the ¢, with «>0(<0). Once the
highest-weight vector has been selected, the exponentiation of the subalgebra
b=n.,® ) gives the Borel subgroup B, which ig the minimal parabolic subgroup
of . We can then rephrase our definition above saying that a g-module M over C
is a highest-weight module with highest weight A € §% if there exists a nonzero
element v*eM such that n_(v") = 0; bl =2 and U )@ = M, U
denoting the universal enveloping algebra.

This generalizes the role that K had in the conventional generalized coherent
states.

We want now to introduce a completion of U(g), that we denote Uelq),
allowing us to define a set of invariant functions separating the orbits of the Weyl
group associated with . The latter would manifestly provide the desired
generalization of the notion of coherent states.

The root lattice @ has a natural decomposition @ =0Q. ® Q_, where g, =
=2 2%, Z% denoting the set of nonnegative intergers, and 4 = {x¢ b*|

o -+~ 0, g+ {0}} is the set of roots of q. One calls 4, :=4 n @, the set of positive
roots. We denote by A. the set of the same elements, in which every positive root
appears with its multiplicity dim q~.

For8eQ, let &, be the set of maps k:4_— Z: x> k. such that =3 k,az,

: el
and set = | “,. Moreover, put |kl =3 £,.
BegL -

For each x4, it is now possible to choose a basis {f9} of g7, and fix
(arbitrarily) an order for the unions of these bases, that we denote
{Filk=1,2,...}. For ke &, write

(24) e — ]I Ff'a ;

P

It is known () that for k, m € Pelements of the form F® gy F) where U 18
an element of the basis of the symmetric algebra S(f) and : is the involutive

(") V. G. Kac: Laplace Operators of Infinite-Dimensional Lic Algebras and Thela
Functions, MIT preprint (1987).
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automorphism of U(g) determined by ile) =fi; «(f)=e; tly=1,, constitute a
basis for U(g). We define Up(g) by assuming that elements of Up(g) are
expresgions of the form

(25) ge= 3 FOdy 0 F)

ke P |I.i'|‘-5— | | = ;

where ¢ is a given constant. With this definition the multiplication in U/, (q) is
directly obtained by simple extension of that in

(26) up(a):=Ulq) @ Fir e,

where F is the algebra of complex-valued functions on b* (more precisely on b
minus a suitable union of affine hyperplanes where the g-module M(A) contains a
submodule isomorphie to M(1 —nx)) and . the two-sided ideal which generates
the canonical embedding of § into ¥, This makes 7 #(h) an associative algebra.
Let & be the category of g(4)-modules M which are B diagonalizable (i.e.
factorizable in the form W = U M;; the action of U{g) on a module M from the
category & extends to the action of the completion algebra Ur(g) by the
property 4(v') = L(x)v” ford e F and v* e M, In particular, if A lies in §* minus the
singular affine hyperplanes mentioned above, then [/;(q) acts on M(A).
It was shown by Kac(*) that, for any given function $ e, there exists a
unique element
@0 Lu= 3 3 PO, ()

el Rome QEI.}

in the centre I of the algebra I:Tp(g}. Otherwise stated, the map u: Zr— F,
referred to as Harish-Chandra homomorphism, defined by _fi—4, is an
isomorphism.

Define now the operation in the group of automorphisms of the root space

(28) ?';‘0,:'3::]3_(}9|&§_)m-;, <":0, 1,...,[1]',

where 8 is a real positive root, a fundamental reflection. The group W of
fundamental reflections, generated by the 7, i=0,....d, is the Weyl group
associated with q(q). The w eight system of a highest-weight module is the union
of infinitely many Weyl group orbits of weights, each itself infinite. A convenient.
representative of an orbit is the weight in the fundamental chamber

(29) Ii={eb*| (@) =0,i=0,1,...,d) .

The set T'=Wol" is a solid convex cone in §*, called the Tits cone. One
complexifies it by setting Teo= { *}. We denote by % the
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interior of T'¢ in metric topology and consider the set of elements in the centre of
Ur(q):

(30) Z:={7reZp

£, holomorphie on 9 }.

The elements of Z are called Laplace operators for g.

If ¢ is an element of §* such that (¢|z)=1, i=0,...,d, and » a map on
funections f over h¥*, defined by (v of)(A) = f(2 — ¢); then the algebra of funections
(5 0x)(Z) contains all the functions defined over 4 which are holomorphic and W-
invariant on .%. Among such functions the theta series

(31) Q0= 3 exp[Ealm],

feeWoh;

where £ is a real number, k; € § is such that V(x| %) is a nonnegative integer and
2 € b* is such that V(3|%,) is a nonnegative integer, converge (*) to holomorphic
functions over 97 which are well defined if the series is extended by 0 at H* > 9:
the theta funetions of a.

6,,.:(2) is invariant under the action of W and separate the orbits of W;
W= W ® (125 Q).

Thus the generalization proposed extends the notion, known for conventional
(Glauber) coherent states, of coherent states as theta-functions (™). The
remaining step is of course the construction of further generalized states
squeezing the latter by the action of the local group of diffeomorphisms D of . %,
in a way similar to what happens in the case of standard squeezed states ("),

Work is In progress along these lines.
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® RIASSUNTO

Si discute la possibile estensione del concetto di stato coerente generalizzato al easo di
algebre di Lie a infinite dimensioni, con particolare riferimento alla struttura topologica di
stati multipli coerenti che ne deriva. E pure discussa 'importanza di cio per le soluzioni
delle eguazioni di moto di sistemi dinamici non lineari.
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Korepenrusie cocroanus u Geckoneano-Mepusie amedpsr Jdu: [epemexruna.

Pestome (). — OOcyxmaercs BO3MOKIHOE paciMpeHHe 0B0BMENHOrO KOIEPCHTHOIO
COCTOSMIMA Ha clyqad GECKOHEUHO-MEPHBIX apuHEBIX anredp Jlu. Ocofoe BEUMaHKe
OOPALIAETCS HA TOTMOTOIHYECKYK) CTPYKTYPY MHOKECTRA KOTE€PEUTHBIX COCTOSHHE W HA €T
CBA3L €O CTPYKTYPOH anreOphl. AHANMIMPYETCS DCLICHWE YPABHEHMA TBVMKCHMA IS
HCAMHEHHLIX THHAMHYCCKHX CHCTEM.

(&) [Hepesedeno pedaruuel.



