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ABSTRACT: The photon number-amplification and number-duplication mechanisms are
analyzed in the ideal case. The search for unitary evolutions leads to consider also a numbez-
deamplification mechanism, the symmetry between amplification and deamplification being
broken by the integer-valued nature of the number operator. Both transformations—
amplification and duplication—need an auxiliary field which, in the case of amplification,
turns out to be amplified in the inverse way. Input-output energy conservation is accounted
for using a classical pump or through frequency-conversion of the fields. Ignoring one of the
fields is equivalent to consider the amplifier as an open system involving entropy production,
The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

1. INTRODUCTION

Squeezing and amplification are two intimately related concepts. A scaling of the quantum
fluctuations (AO?) — G*(A0?), independently on the state of the field, corresponds to the
amplification of the fluctuating observable O — GO. Such kind of ideal quantum amplification
rescales all the moments of O simultaneously, leaving the signal-to-noise ratio (SNR) unchanged
when detecting O. ;

Ideal quantum amplifiers are key-devices in quantum optical applications, where, depending on
the particular circumstances, one would possibly change the levels of both signal and fluctuations
without degrading the SNR. For example, in local-area network (LAN) communications, strongly
subpoissonian fields with limited average number of photons are needed to exploit the ultimate
channel capacity of the field (which is constrained in the total power and the bandwidth). On
the other hand, a large signal is preferred just before the detection stage, in order to minimize all
the subsequent sources of disturbance. In both cases an ideal photon number-amplifier (0 = )
would allow to change signal and fluctuations as desired, leading to significant improvements of
the network performance.

Another point which should be considered in any quantum amplification process is the role
played by the Heisenberg principle in defining the ideal behaviour of the amplifier. In fact, the
amplification of the observable O affects the statistics of the observables which do not commute

with O. For a couple of conjugated variables (01,0;), analogous to the momentum and the
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position of a particle, the quantum fluctuations are constrained by the uncertainty relation
o < T s =
(AO(A0Y > 1(04,05), (1)

according to which, when the O; fluctuations are rescaled as (AG?) — G*(AOQ?), the
corresponding O; fluctuations become G~2{AQ32) or larger. An ideal O; amplifier, namely
an amplifier performing at best, should preserve the minimum uncertainty product and, as a

consequence, it should simultaneously attain the two opposite amplifications
O} e Gol 3 éz =t G_l(jz - (2)

Depending on the conjugated pair (0, Ozj one has different kind of amplifiers and related different
kind of squeezing. - For example, when the conjugated variables are two quadrature of a field
mode (&;,8;)-—a; + id; = a being the annihilation operator—the rescaling (2) defines the phase
sensitive linear amplifier (PSA). The ideal PSA (essentially a parametric amplifier) preserves the
homodyne SNR= (a)/(/{Aa}) and produces the squeezing in a quadrature of the field. In this

case the transformation (2) is realized by the Yuen’s! unitary evolution Utell = Ha + ua.i‘, with
p=(G+GY)/2andv=(G-G1)/2,U representing the usual squeezing operator.

The photon number-amplifier (PNA) is another example of ideal amplifier, which would
transform ideally 7 into Gn, preserving the direct detection SNR and the number-phase
uncertainty product. The corresponding kind of squeezing is the number-phase squeezing® (or
amplitude squeezing), in which the quantum noise is shared between the number # and the
phase ®. This kind of amplifier is a relatively new concept and is probably not simple to realize
concretely: it has been proposed by Yuen®~®, who also suggested physically viable approximate
schemes based on resonance fluorescence. PNA's would be particularly useful in direct-detection
receiver and transceiver in a LAN environment, where, as already mentioned, number states are
preferred to coherent or squeezed states, in order to achieve the ultimate channel capacity of the
field. Furthermore, a PNA (but also a PSA) can be used to realize a lossless optical tap, which,
in 8 LAN would enable a very large number of users to obtain the same performance as the first
user.® :

In this paper the number-phase amplification mechanism is analyzed in detail, in order to
find physical schemes for an ideal PNA. It is shown that, due to the peculiar role of the two
conjugated variables (7, ®) in the Fock representation, the requirement of a unitary transformation
leads to consider a second field in addition to the amplified one, the two fields being inversely
amplified by the transformation. Input-output energy conservation can be accounted for either
by adding a suited classical pump or by locking the frequencies of the two fields, attaining
simultaneously number-amplification and frequency-conversion. The obvious constraint of integer
gain G (preserving the integer-valued nature of #) must be relaxed, to consider the deamplification
case: as a consequence, the abstract amplifying transformation |n) — |Gn) is replaced by
In) = |[Gn] + no), [] denoting the integer part of ¢, and ng being a constant as a function
of n and depending on the input state of the other field. The general Schrodinger evolution of
the two fields is

Ug=ln,m) = |[Gn] + G (G7'm) , [67'm] + G (Gn) ) , (3)
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() = z — [z] denoting the fractional part of = and the gain G being restricted to be either
integer or the inverse of an integer. Eq.(3) can be attained by means of a unitary transformation
involving a classical pump operating at the frequency = G7'w, — wp, w, and w, being the
frequencies of the G-amplified and G-deamplified fields respectively. In the case of simultaneous
amplification/frequency-conversion one has the resonance condition wy = G lw,, and the two
fields are intertwined in (3) in order to preserve the total input energy E = (n + G 'm)w,.

In Sect.2 I derive the transformation (3) and the related Hamiltonian, Apart from the eventual
classical pump, the ideal PNA in the present framework is & four-port nonlinear device (see Fig.1).
However, it can be regarded as a two port device by fixing one input port state (for example,

B T T ——— |[Gn] +G(G'm))
PNA

[[67m] + G~ (Gn))

(pump)
Figure 1: Scheme of the ideal PNA.

using the vacuum) or by totally ignoring one field. In the last case the PNA should be regarded as
an open quantum system which changes the entropy of the input state of the field: the particular
case of coherent inputs will be examined in this respect.

In Sect.3 another device analogous to the PNA is analyzed, namely the ideal photon number-
duplicator (PND). Instead of amplifying the number of photons, the ideal PND produces two
copies of the same input state for eigenstates of the number operator. Such a device would be
extremely useful in LAN applications, because it provides a convenient realization of the quantum
nondemolition measurement of the photon number, beside itself realizing lossless optical taps
superior to the amplifier tap® (both applications make possible sharing of information in a LAN).
Arguments related to unitarity—similar to those used for the ideal PNA—lead to the need of a
third auxiliary field, whereas input-output energy conservation can be taken into account either
by means of a classical pump or through frequency-conversion, in a way completely analogous to
the case of the ideal PNA,

In the last section I make some preliminary comparisons between the Hamiltonians of the
ideal devices and those of realistic systems, focusing attention on the gain-2 amplifier, in some
respects very similar to the duplicating device.

2. IDEAL PHOTON NUMBER-AMPLIFIER

2.1 The unitary transformation
In the Heisenberg picture the ideal PNA corresponds to a multiplication of the number operator
i by the amplification factor ¢

A — Gh (4)



The requirement of an ideal—i.e. minimum-uncertainty preserving—behaviour reflects on the
Heisenberg transformations for the phase operator @, which should be the inverse of {(4), namely

d—— G 4. (5)

For highly excited states (i.e. states approximately orthogonal to the vacuum [0)) and for small
phase uncertainties (A®?) « 1 the following simple definition for the phase can be adopted”

~

Eﬂ: = e:F"& ’ i (6)

-

E. denoting the shift operators E_ = (ala + 1)2q, B, = (E'_)t (Eiln) = n £ 1}). Eq.(6)
shows how the integer-valued nature of # reflects on the phase operator &: the amplification (5)
can simply be attained for G-! = ¢ integer, raising the shift operators to the power r, whereas,
for the number operator, preservation of its integer-valued nature requires G itself to be integer.
For noninteger @, the transformation (4) can be substituted with the following

n— [G7A] (7)

which coincides with (4) for integer G. For the moment, I focus attention on the deamplification
case (G~! = r integer), the integer-G case being naturally contained in the following framework.

Denoting by S 1(;; ' the Heisenberg transformation corresponding to Eqs.(7) and (5), for integer
G~ = r one has

Si(Be) = (By) (8)
(E+)" now being represented on the Fock space as follows:
(Bi)in) = n£r). (9)

From Eqs.(8) and (9) it turns out that the Sg) acting on a generic operator O has the general
form

re1 . ” ; o
85(0) = S (8Mtosy G = & 3 Ind(nr + 2|, (10)
A=0 n=7_

and the phase factors, being totally ineffective in the action (10), will be dropped in the following,.
One can check that the Heisenberg transformation (8) attains the number-amplification (7

S$A(R) = /e, (11)

and, formally, .s};’ achieves the phase amplification (5) according to Eq.(6). The transformation
(8) is not unitary and, as a consequence, there is no Hamiltonian producing it. The operators
5{” in the definition of the map (10) satisfy the following relations

) |

Y SIs0 =1, (12)
A=0

S0 = 6, (13)
S50 =80, C . 4
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