ABalRas BAK, |FIANEY -0 Rl P v T e Tr el oy, S bl o s e by o i S et s S CF I S S S s, DN i S e e M iy

@© World Scientific Publishing Company

NUMBER-PHASE SQUEEZED STATES AND
PHOTON FRACTIONING

G. M. D’ARIANO
Dipartimento di Fisica ‘Alessandro Volia', Universita di Powia,
via Bassi £, 1-27100 Pawia, Haly

Received 12 January 1992

The number-phase squeezing mechanisms related to the muliiphoton and photon-
fractioning procedures are analyzed. The main ingredients in these approaches are non-
linesar multimode realizations of group-theoretical states and norunitary subdynamics of
the field modes. The states which are squeezed in the number of photons are suited to
optical communications in local area networks; the states squeezed in the phase of the
field optimize high-sensitive interferometry.
Corresponding to the different kinds of squeezing and to the pertaining group-
" theoretical states one has different types of ampliflying devices with the same dynamical
group of the states. In particular, two recently proposed devices — the photon-number
amplifier (PNA) and the photon-number duplicator (PND) - attain both the multi-
photon and photon-fractioning transformations. The PNA amplifies the field without
degrading the direct-detection signal-to-noise ratio and thus can be used to produce
number-squeezed states; the PND provides two copies of the same input number-state
and, therefore, can connect Lwo-mode states with one-mode states. Both the PNA and
FND allow the realization of virtually lossless optical taps, which are essential in design-
ing highly transparent local area networks. The PND can also be used in series with a
conventional phase-insensitive amplifier to produce phase-squcezed states.

1. Introduction

The statistical description of optical systems is ultimately a quantum-mechanical
one: it is specified by the quantum state of the field and the quantum measurement
performed on it. In all existing optical app]icalior;s the available quantum states
are coherent states (CS) or random-phase mixtures of CS: these are obtained from
conventional laser sources and light-emitting diodes. The detection schemes are
either the direct detection or the homodyne and heterodyne detections: they corre-
spond to the quantum measurement of the number of photons 7t = ala, single field
quadrature @, and both field quadratures (@g,Qpgr/2), respectively! (the quadra-
ture of the field at the locked-in phase ¢ is defined as g = (e'?a+ e "?al)/2). In
these conventional systems a quantum noise at optical wavelengths is quantitatively
equivalent to black-body fluctuations of thousands of kelvin degrees: this leads to
a serious need for control over quantum statistics when designing highly-sensitive
or very-transparent optical devices, as in all such critical siluations encountered in
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interferometric gravitational-waves detection® or in quantum-optical communica-
tions and computers.®

Since the early 1970°s considerable effort has been spent on the problem of reduc-
ing the quantum noise of the CS. In a pictorial way, this quantum noise reduction
18 commonly referred to as ‘squeezing the state’ (extensive reviews are given in
Refs. 4-6).

There are diflerent kinds of squeezing, depending on the application and on the
detection scheme. Reduction of quantum noise in the detected observable O; af-
fects the statistics of any noncommuting observable O, according to the Heisenberg
uncertainty principle

o~

(A0T)(A03) > £(03)? (1.1)

1
4
where [0, 0;] = i04 and AOQ = O — (0). The technique of squeezing needs to
maintaining the detected field in a minimum-uncertainty state, while simultaneously
reducing (AO?) and increasing (AOZ2) by the same factor. The latter is generally
written in terms of the squeezing parameter p as follows

(AD3 ;) — eF2#(AO2,) . (12)

Highly-sensitive interferometry and optical communications are the two major
classes of quantum-optical applications. Interferometric detection essentially is
equivalent to the measurement of a field phase-shift, which in turn is obtained
through homodyne or heterodyne detection. Optical communications, on the other
hand, are usually performed in the direct-detection mode, but also homodyne or
heterodyne schemes have been recently suggested.

Depending on the detection mode, one can use different kinds of squeezing to
improve sensitivily and signal-to-noise ratio (SNR). Quadrature-squeezed states
(QSS), for example, are suited to homodyning when they are squeezed in the de-
tected quadrature a; and noisy in the conjugated one Agtx/2- In the same fashion
the phase-squeezed states (PSS) — which exhibit improved statistics in the phase
and wide distributions in the photon number — optimize interferometry, whereas
the number-squeezed states (NSS) — which are squeezed in the number and spread

in the phase — improve optical communications. It is worth noticing that the phase
of the field actually does nol correspond to a self-adjoint operator, and the evalu-
ation of the pertinent statistics is addressed in the proper framework of quantum
estimation theory.”

Originally the study of the squeezed states arose in the context of quantum
communications and led to the investigation of two-photon coherent states®® — the
aforementioned QS5. Once the possible applications had been recognized, attention
was focused on the problem of characterizing the optimum quantum measurements
for various performance criteria and fixed quantum states:'° this led to explore also
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Both the QSS and NSS can lead to great improvements in oplical communi-
cations, both enhancing the SNR at fixed power and attaining a better channel
efficiency. In particular, nearly-number states make the channel noise-free in the
ideal limit, and, at the same time, provide a suitable physical way of coding in-
formation. Originally it was emphasized that these states would also attain the
ultimate channel capacity of the field (namely the channel capacity constrained
only by power and bandwidth and not by any modulation restriction): however,
this ultimate value does not differ significantly from that attainable through CS.'

One of the major limitations of squeezed states in optical communications is
represented by the losses in the network, as they gradually destroy any kind of
squeezing. One should distinguish between two kinds of environments, depending
on the location of the relevant losses in the network: in the local area network
(LAN) environment the relevant losses are located at the transceivers; in the long
haul communications the main losses are due to the fibers. In the LAN environ-
ment number-states would make the method of state-duplication practicable for
attaining virtually lossless transceivers (optical taps), without the need of amplify-
ing the power down the line.® The choice of number-states is dictated by the fact,
that state-duplication is possible only for orthogonal states,!'” whereas neither the
CS nor the QSS are orthogonal. Thus a NNS-operating LAN can be made more
transparent for a larger number of users than a CS-operating one. In the long haul
communications, on the other hand, the fibers’ losses gradually destroy squeezing
down the line, making the QSS and NSS less attractive. In this case one can choose
between two alternative solutions: the first is to use soliton pulses which are contin-
uously amplified by a pump light simultaneously transmitted through the fiber;'®
the second is to create special fibers with distributive amplification gain which
matches the kind of squeezing of the states carrying information:'® this notion of
squeezing-matching amplifier will be reconsidered after in more detail.

The phase-squeezed states (PSS) complete the panorama of different types of
squeezing. In recent years improvements of the optimized squeezed-state interfer-
ometry have been suggested'® which utilize special kinds of PSS instead of the
originally proposed QSS?°. The possibility of further enhancing interferometric
sensitivity is very attractive, in view of possible applications to gravitational-wave
antennas® and laser gg.u-osacopes;?2 however, no viable physical method of preducing
PSS has been proposed yet. In this paper a possible scheme for obtaining some
particular PSS is illustrated which is based on number state-duplication.

In order to design a dynamical model attaining the squeezing transformation
(1.2), the evolution of all the moments of the conjugated variables must be spec-
ified. The simplest moment transformation generalizing (1.2) is the homogeneous
rescaling of the probability distributions

(OF5) — e¥77(0F,) . (1.3)
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Equation (1.3) represents an idealized case of squeezing which corresponds to the
operator-scaling in the Heisenberg picture

012 — €0y, . (1.4)

In the form of Eq. (1.4) the squeezing transformation is viewed as a kind of ideal
gquantum amplification which preserves the SNR of both 0O, and O, and leaves
ithe uncertainty product unchanged. One should notice that the transformation
(1.4) also affects the signal (l'j‘l} itsell: as a consequence, a squeezed state which
carries a detectable signal is produced by either deamplifying a high-signal CS or
deamplifying the zero-signal CS — namely squeezing the vacuum — and then coding
the signal on the output state.

The above modeling strictly holds true when a pair of self-adjoint operators is
concerned, the simplest situation being that of e-number commutator [01 ; Og] = e
In such case the evolutions (1.4) are unitary and are attained by the Hamiltonian

H = k{élég -+ égél) d (15}

which, thercfore, models the quantum amplifier which matches the squeezing of
Oy and Os. The squeezing parameter is continuous and linearly increases with
time. The case of quadrature-squeezing fits exactly into the present framework:
the corresponding amplifier is the socalled phase-sensilive amplifier (PSA), which
ideally rescales the quadratures a, and @z /2.

The case of the number-phase pair, extensively analyzed in this paper, 1§ more
involved than the previous one, due to a variety of reasons. The first issue to em-
phasize is that the number operator does not have a conjugated selfadjoint operator,
whiereas classically it corresponds to the amplitude of the field and is conjugated to
the phase. As already mentioned, the phase measurement can be analyzed in the
framework of quantum estimation theory,” where the statistics are represented by
positive-operator measures (POM) on the Hilbert space, extending the conventional
description by selfadjoint operators: in this approach, the scaling transformation
(1.4) is considered as acting on such POM. The second issue is related to the integer-
valued nature of 1, which breaks the amplification/deamplification symmetry and
allows exact amplification only for integer gains. The transformation

n — Gn (1.6)

for integer G 1s not unitary, but only isometric: a unitary transformation can be con-
structed upon enlarging the Hilbert space and introducing an additional idler mode,
similar to that involved in the conventional phase-insensitive amplifiers (PIA). The
transformation (1.6) is thus recovered by tracing outl the idler degrees of freedom,
leading to a nonunitary dynamical map of the form of the completely positive maps
(CP maps) of statistical mechanics.?®?* The ‘inverse’ transformation of (1.6) turns
out to be the approximated scaling

A — [GA) . (1.7)
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Both (1.6) and (1.7) are CP maps of the same unitary evolution on the enlarged
Hilbert space, and both attain the required amplification of the phase POM.

The ideal amplifier which matches the number-phase squeezing, attaining the
transformations (1.6, 1.7), is the socalled photon-number amplifier (PNA), a novel
device recently proposed by Yuen.!%2%~27 Although the PNA is well suited to pro-
duce NSS at the output, it is not the proper device to attain PSS. In fact, due
to the 2m-periodicity the probability rescaling leaves the peak values unchanged,
namely there is no improvement of phase sensitivity. A more effective scheme for
achieving highly peaked phase distributions is proposed in Sec. 6.1 of this paper: it
uses an ideal pholon-number duplicator (PND) in series with a conventional PIA.
The PND%25=27 is a device analogous to a gain-two PNA which, instead of ampli-
fying the number of photons, provides two copies of the same input number-state,
thus connecting two-mode with one-mode states. The PIA-PND series is effective
in building PSS, because these states have very flat number distributions similar to
those of the twin beams which are obtamed at the output of a PIA with vacuum
mputs.

Apart from the production of the different kinds of squeezed states, the squeezing-
matching amplifier is a reference ideal device in many actual applications. For
example, as already mentioned, the PSA and the PNA are key devices to obtain
virtually lossless optical taps (in the homodyne and direct-detection modes respec-
tively), whereas the PND itself can be used to attain taps superior to the PNA taps
in avoiding the need for amplification down the line.

The intimate relationship between ideal amplifiers and squeezed states lies in
their respeclive dynamical algebras, amplification and squeezing being essentially
the Heisenberg and the Schrodinger picture of the same evolution. The former is
the point of view of Refs. 28-31, where the dynamical symmetries of the PIA, PSA
and beam splitter (BS) are analyzed in detail (the BS is also a useful schematization
for linear losses); the dynamical groups are SU(1,1) for the amplifier and SU(2)
for the loss. On the olther hand, regarding the second point of view, several studies
on the squeezing properties of group-theoretical states (GTS) have been performed
in Refs. 32-37. The origin of this set of papers — which are partly reviewed in
the present one — was the puzzling paper®® by Fisher, Nieto and Sandberg. In
it the authors, trying to generalize the customary two-photon squeezed states to
multiphoton states by the simplest possible ansatz, run into unexpected difliculties
connected with the non-analyticity of the vacnum. Even though such difficulties
could be partly overcome from the computational point of view (Refs. 39, 40, the
problem remains a deep one. A non-naive way out of it was found in Refs. 32-37
on the basis of the observation that the conventional two-photon squeezed states
are GTS of SU/(1,1), whereas naive multiphoton generalizations leads to infinite-
dimensional algebras whose G'I'S cannot be defined in the usual sense.

The two main tools realizing the above program are the Brandi-Greenberg"
multiphoton creators and annihilators, and the Holstein-Primakoff*? realizations of
Lie algebras. The new set of multiphoton squeezed states thus constructed has
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several interesting features: besides naturally matching the dynamical algebras of
the various amplilying devices, they achieve better number-phase sensitivity than
the conventional squeezed states. Finally they lead to the notion, discussed in this
paper with detail, of photon fractioning, which is the prototype CP map of the
number deamplification (1.7).

The photon [ractioning procedure was originally introduced in Ref. 43 in the
form of mverse of the multiphoton transformation. In such a paper the fractional-
photon modes were defined in terms of expectation values, claiming that, despite
such modes do not really exist, they could describe physical experiments involving
integral numbers of photons. In Ref. 44 physical mixed states were constructed
which exhibit exactly the same probability distribution of the fractional modes.
Once the number-phase squeezing features of these novel fractional-states had been
recognized in Ref, 45, the fractioning CP map was derived in Refs. 46, 47. Finally
in Refs. 48, 49 the multiboson and fractional boson transformations were related to
the ideal photon number amplification.

In this paper the above concepts are reviewed in a new unifying framework based
on a new class of nonlinear multimode realizations of Lie algebras and on the afore-
mentioned CP-maps technique. The abstract algebraic transformations are revisited
i terms of quantum amplification, showing the way of obtamning the GTS at the
output of ideal amplifiers. New numerical results and analytical evaluations of the
GTS phase-number statistics are presented in the context of quantum estimation
theory. It is shown that the SU(1,1) states are suited Lo describe phase-squeezing,
leading to a novel scheme for enhancing the phase-sensitivity of the quantum states.
On the other hand, it 1s shown how the multiphoton and photon-fractioning proce-
dures constitute the natural idealizations of the number-amplification mechanisms,
and how the latter could be approximated by a real device.

The paper is organized as follows. In Sec. 2, after a short review of the

32

Dirac’s®®5! and Susskind-Glogower®® customary approaches, the general lines of

the quantum estimation theory™®? of the phase are recalled.

In Sec. 3 the CS and QSS are reviewed and the construction of the GTS is given.
The novel Lie algebra realization is presented which leads to general multimode
GTS. The one-mode and two-mode cases are analyzed in detail as regards their
phase-number features, The multiboson and fractional-boson states are illustrated
in the concluding subsections, with a general analysis of the properties of these
states.

Section 4 15 an overview on the customary quantum amplifiers and linear losses,
with a brief illustration of the notion of squeezing-matching amplifier applied to the
achievernent, of lossless optical taps. It i1s shown how the two-mode GTS can be
obtained at the output of the quantum linear device.

Section b reviews the main results presented in Refs. 48, 49, studying the photon
number-amplification mechanism in the ideal case. It 15 shown how the search for
unitary evolutions leads to consider the idler mode, and how the multiphoton and
fractional photon states of Secs. 3.6-3.7 can be recovered at the cutput of the
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amplifier. In the last subsection the Hamiltonians of the ideal device is derived and
compared with those of realistic systems.

Tn Sec. 6 the photon-number duphicator (PN D) is analyzed, reviewing the main
results of Ref. 49, The duplicating CP map is derived, along with its unitary
extension and the corresponding Hamiltonian. In the last subsection I illustrate
how the PND can be used in series with a PIA to obtain the PSS of Sec. 3.4.

The Appendices report some asymptotic evaluations involving nonstandard tech-

nigues.

2. The Optical Phase

In the classical theory of light waves the complex amplitude is usually written as a
product of a real amplitude and a phase factor. The single-mode (single-polarized)
electric field is written in the form

E(t) = Fp exp (—iwt + ih -r+idg) , (2.1)

h and w being the wave vector and the angular frequency of the mode. The
quantum-mechanical field corresponding to (2.1) is

B(t) = 'i(!‘ku/‘z.:f.nV)lﬁa exp(—iwt +ih-r) (2.2)

where a is the annihilator of the mode. The operator analogue of the phase-
amplitude factorization of Eq. (2.1) corresponds to rewrite the Bose operator a
as the product of amplitude A and phase ¢'® operators

a = A exp(i®) , (2.3)

Eq. (2.3) with A = (a'a + 1)Y? was the original definition of the phase operator
according 1o Dirac,*® who presupposed the canonical commutation relations

[n, @] = i (2.4)

in agreement with the classical Poisson brackets. However, the von Neumann
uniqueness theorem (of the irreducible representations of the canonical commutation
relations) implies that the commutation (2.4) cannot be realized: more precisely,
it can be proved that the polar decomposition (2.3) cannot be obtained with A
and & both self-adjoint operators.'52 The last assertions pose the problem for the
quantum representation of the phase.

Recently, Pegg and Barnett®®® constructed a phase operator on a finite dimen-
sional space and showed that it obeys a certain new commutation relation with
the number operator. According to their approach the correct statistical prediction
is given only after the limit process making the dimension infinity, although they
failed to find the operator after the limit process. On the other hand, another ap-
proach has been established in quantum estimation theory,”®® a framework where
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the most general optimization problems of quantum measurements can be ana-
lyzed. The statistics of measurements is represented by positive-operator-valued
measures (POM) on a Hilbert space which extends the conventional description by
self-adjoint operators. In this approach, the optimum POM for the estimation of
the phase was found by Helstrom®® and a mathematically rigorous development of
this approach is given by Holevo.®® Ozawa®’ has shown that the statistics of the
phase obtained by Pegg and Barnett coincide with those represented by the opti-
mum POM, whereas the limit of their exponential phase operator coincides with
that of Susskind-Glogower.*?

Here in the following, after a short review of the Dirac’s and Susskind-Glogower's
approaches (more often adopted in the literature), T recall the main lines of the
quantum estimation theory of the phase, adopting the general framework of Ref. 7.

2.1. Phase operators

The Dirac phase operator $p is defined through the relation

gt = oFito (2.5)
where ¢ are the shift operators
e = (aati M2, et= al(aat)=12 (2.6)
The phase ®p is not self-adjoint, because ¢+ are not unitary, as shown by
etem =1-[0)0], (2.7)
even though
i (2.8)

Instead of using ®p, a standard compromise in the literature is to work with the
self-adjoint Susskind-Glogower®® (SG) sine and cosine operators § and é

f=

Si=r==lE" —&

1
. n_l_
21 )

e Tl

—2—(«3 8T ) (2.9)
Notice that, despite the defining relations (2.5) and (2.9), § and ¢ cannot corre-
spond to actual sine and cosine functions of ®p, because they neither commute nor
provide correct n-linear functions (for example: §® # sin” ®p). However, as the

commmiator

[&ﬂ::—§WHW (2.10)

effectively vanishes for states with a negligible vacuum component, § and ¢ give an
approximate description of the optical phase in the high-energy limit. In this case
¢* are approximately unitary and dp can be treated as self-adjoint. For states
with small phase uncertainties (A®p) < 1 and zero average (®p) = 0 the sine and
cosine operators can be approximated as

§~®p, é~1. (2.11)
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Accordingly, one has the effective commutation relation
[n,®p] ~ [A,8] = ie~1i, (2.12)
which corresponds to the Heisenberg relation
s 1
(An?)(A83) 2 7 (2.13)

In conclusion, the Dirac approach can be usefully adopted in the high-energy limit,
where the phase operator & can be considered effectively self-adjoint and conju-
gated with the number operator.

The possibility to assign a ‘phase’ ¢ to a quantum state 1s related to the existence
of simultancous eigenstates of the phase operators (2.9). There are indeed certain
special eigenstates of £~ which satisfy the above requirement. The following states

=Y &), <1, (2.14)
=0

are eigenstates of ¢~ and lead to the expectation values

() = [¢|sing , (&) =[(|cosg, ¢ =arg((),

: 2.15
(AR) = (M) = L1 =[] i

From (2.14-2.15) it follows that, in the limit || = 1, the non-normalizable states™

[ 5

181:{?}} = Z fjin¢|ﬂ} (2.16)

=0

are simultaneous eigenstates of § and &, with eigenvalues sin ¢ and cos ¢, respec-
tively: in this sense they correspond to a definite ‘phase” ¢. In the next subsection
we will see that the states (2.16) also provide the optimum POM for the quantum
estimation of the phase.

2.2. Quantum esiimation of the phase

A phase shift ¢g of the form given in Eq. (2.1) is described by the Heisenberg free

evolution of the field
Ulall = ae'® | (2.17)

where
et bt (2.18)

Physically, ¢ is related to a change in the optical path-length. The quantumn state
of the field undergoes the Schrodinger evolution

|19'f))0u1. = M’uﬁw’)in . (2.19)
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The problem of measuring ¢q is now posed in the following abstract terms:!?

make an estimate of the value ¢y of the phase shift ¢ by means of an
appropriate quantum measurement on the a mode, and knowing the
mput state |i);,.

As the phase shift ¢ does not correspond to any self-adjoint operator, the problem
is addressed in the more general framework of quantum estimation theory.”

Quantum estimation theory seeks the best strategy for estimating the value 2z,
of a parameter @ of the density operator p, in a quantum-mechanical system. The
observational strategies for estimating zy are expressed as positive operalor-valued
measures or probability-operator measures (POM) on the parameter space =. A
POM is a nonnegative-definite self-adjoint operator d)'{’(r) associated with each
point z € Z, providing the resolution of the identity

f_ﬂ?(m) = (2.20)

Whatever instrument is used (or calculation is performed) in a strategy, the result-
ing estimate x is a random variable. The conditional probability that z lies in a
particular region A C = when the true value is zq, is written in the following way

P(r € Alzg) = Tr [ﬁrngX(x)] : (2.21)

From Eq. (2.21) one sees that POM’s generalize the customary projector-valued
measures associated to the quantum observables. The POM’s on the state space
H include not only the observables on M, but also measurements that are not
observables on . On the other hand, there is no conflict with the assertion that
only observables can be measured, as the Naimark theorem assures that every POM
can be extended {o a projection-valued measure on a larger Hilbert space®” {which
represents the original system interacting with an appropriate apparatus). For
nonobservable POM’s Eq.(2.21) provides the self-adjoint operators

X :j;rd)?(r) ; (2.22)

and, more generally,

fx = [ f@)ax(a), (2.23)
where the notation fy in Eq. (2.23) is_used to account for the inequality
fx # [(X) . (2.24)
The expectation values are evaluated in the usual way
(Fxy="Tr [pfx] | (2.25)

p being the density matrix of the state.
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Once the observational strategies are represented as POM’s, the following step
is to find the eptimum POM corresponding to the best strategy for estimating
the parameter z. This is done using the mazimum-likelihood (ML) performance
criterion. The ML estimate zpp, of = 1s the value which maximize the likelihood of
gebting the observed datum

emr(z) = arg max p(zly) . (2.26)
e

The conditional probability density p(x|y) is defined according to Eq. (2.21) as
plaly)de = e[, dX(2)] (2.27)
Restricting attention to POM’s satisfying
IML =T, (2.28)

the estimate is optimized over the POM’s by maximizing the peak likelihood p(z|z),
or, equivalently, by minimizing the reciprocal peak likelihood (RPL) éz

5z = 1/p(z|z) . (2.29)

For a uniform distribution éz 1s the width of the probability density, whereas for a
Gaussian distribution it is proportional to the rms error.

In the case of the phase-shift estimation the parameter £ = ¢ can be confined to
a 2m-interval, say, [or example, —7 < ¢ < w. The class of POM’s dfi'(qﬂ} is provided
by the sell-adjoint resolutions ol the identity

/w db(¢) = 1 (2.30)

on the Fock space of the single boson mode a. The conditional probability density
for obtaining a phase value ¢ when the ‘true value’ is ¢y reads

p(8]60)dd = out (|dD()|¥)ous | (2.31)

where |0)q depends on ¢ through the relation (2.19). For a general input state
of the form

[B)in = Y [ale™[n) (2.32)

the optimum POM is%?338

» S |
— |t 4 A i
de(d) = [, ¥} (e, vl (2.33)
where %
6, 9) = 3 eintHixnn) (2.34)

n=>0
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As the probability density in (2.31) does not depend on the phases y,, one can
assume that all the x,, are zero, without loss of generality. The state (2.34) rewrites

sitnply as follows

le®?, Y = |e'_¢') = Z em""bln) : (2.35)
n=0

and coincides with the SG state in Eq. (2.16). The optimum POM
: e el
do(¢) = |e"®)(e'?| —
(4) = le4) (4|22 (236)
provides operator functions of ¢ which agree with the following SG operators

s / edd(¢), r>0,

-

; g (2.37)
S‘E/ sin(¢)d® () EE/ cos(¢)dd(p) .

~+ %

The RPL 8¢ corresponding to the POM (2.36) is given by

b = 2m [i anll 1 (2.38)

n=i

and will be adopted as a pertinent definition of the phase uncertainty in the spirit
of the quantum estimation theory.

3. Generalized Coherent States

In this section a large class of generalized coherent states is reviewed in a unified
framework which generalizes both the customary CS® and QSS® in a fashion suited
to describe the different kinds of quantum amplification. The construction uses
a nonlinear multimode realization of Lie algebras and leads to a rich variety of
coherent states, including, as particular cases, the two-mode stales of Refs. 59-62
along with the one-mode states of Refs. 33, 35-37. 42.

Originally, the present group-theoretical construction was motivated by the dif-
ficulties which arise when one tries to generalize the two-photon squeezed states to
multiphoton states.®® Similarly in the case of the customary CS — which are ob-
tained by displacing the vacuum with a unitary exponential of the annihilation and
creation operators @ and a’ — the QSS are obtained by ‘squeezing’ the vacuum with
an exponential of a® and (a')?. However, the simplest, possible generalizing ansatz
— namely using k-degree polynomials of ¢ and al instead of linear or quadratic
forms — runs into the problem of the nonanalyticity of the vacuum vector.3 On
the other hand, k-photon group-theoretical constructions are suggested by the ob-
servation that the nsual CS and QSS both are group-theoretical states (GTS), the
former of the Weyl-Heisenberg (W H) group, whereas the latter of the two-photon
realization of the SU(1, 1) group.
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After shortly reviewing the CS and QSS and recalling the construction of the
GTS, 1 present the multiboson realizations of Lie algebras, focusing attention on
the simplest cases: wh, su(2), su(1,1). The one-mode and two-mode realizations
are analyzed in detail: the former corresponds to the multiboson Holstein-Primakoff
states introduced in Ref. 33, whereas the latter coincides, in the bilinear case, with
the Schwinger-like states analyzed, for example, in Refs. 61. The main nonclassical
features of these states are synthetically reviewed, with particular emphasis on the
phase-number squeezing properfies interesting for applications. Schemes for pro-
duction of the states will be given in the successive sections. The notion of photon
fractioning, which naturally arises from the multiboson construction as an inverse
transformation, is given in the concluding subsection. Contrary to the previous
ones, the fractional states are no longer pure states, and hence are written in terms
of densily matrices. In Sec. 5 it will be shown how these states can be obtained at
the output of an ideal phase-number amplifier.

3.1. Cohereni and squeezed states

Originally, coherent states (CS) of radiation were introduced in quantum optics by
Glauber® in order to describe the high-order coherence of laser light. Full optical
coherence corresponds to factorization of all normal-ordered Green functions of
the electric field and is obtained when the radiation state is an eigenstate of the
positive-Trequency component of the field. For a single mode field corresponding to
annihilation operator a, a CS |a) satisfies the eigenvalue equation

ala) = ala) , (3.1)

where a is a complex number. A normalized solution |a) of Eq. (3.1), corresponding
to a fixed choice of the overall phase factor, can be obtained by ‘displacing’ the

vacuum |0} as follows

o) = D(a)[0) (3.2)

via the unitary displacement operator
D(e) = exp(aal —@a) . (3.3)

It is worth noticing that the operators D(rx) for varying o generate the W H group,
with composition law D(a)D(8) = exp(iIm(@f))D(a + 8). The corresponding Lie
algebra is the usual one spanned by a, al, and the identity 1, where [a,al] = 1.
In this fashion the set of coherent states can be regarded as the group orbit of the
vacuum vector |[0) under the action of the WII group: the natural generalization
of this construction to different groups (and/or vacuum vectors) will lead to the
definition of G'I'S.

The number representation of the state |o) can be obtained after normal ordering
the operator D(a) through the BCH (Backer-Campbell-HausdorfT) formula given
in Table 1.



Table 1. Defining commutations, UIR and BCI formulas for the relevant lowest dimensional Lie

algebras.

wh | =ul 2} | su(1,1)
Commutation [a a'] =1 [j+, ) =iz {I;i'+, K== —2K?3
relations (53, i) = 2% [K? k¥ = 4R
i 1 { k1= : Al —1) =
Casimir (3132 +1 (j"'_]‘ + J=it) ‘ (K42 — -;L, (I;f""}‘\'“ + K™ I‘(+}
0Ln - 0 <m<?2) l 0 m

Representation |

J? |m; 1) = (m = j)|m; 5)

R [m; k) = (m 4 &)|m; &)

{vt+]|a11n)= I
W+ 1 |

(41,513 [my 4 =
(m 4 1)(27 — m})

{m+ 1, 57T |my sy =
Wim 4 D){m 4 2x)

kB (‘5“1 _E“) = exp (¢JT —2J7) = : exp (¢R+t —FR—) =
l "—‘ﬂt‘"-ﬁq'}l':lac"'?“ ab T BB (T SR T LARY (R~
BCH
c=4 | €= 3 tan |€| | C:l—g-ltanhﬁi
= In(1 4 %) | 8 =1n(1 — [¢|?)
t e o’
T 2 ¥ .
o = e Blalene[p) = pm Bl 57 o) 3.4
n=0 Tl- ( J

Equation (3.4) corresponds to a Poisson distribution of the number of photons,
having the following average value and fluctuations

(n) = (An%) = |o|*

(3.5)

For the quadrature component ay of the radiation mode one has the averages

(ae'® + we ?) | (Aa) = : s (3.6)

B2 —

ag = (ag) =

Equation (3.6) shows that the quadrature fluctuations do not depend on the phase
¢, and, as a consequence, |a) is a minimum uncertainty state for any couple of
quadratures a4 and agy,/5. The construction (3.2) assures that coherent states
have the same Gaussian probability distribution of the vacuum, but with mean
value displaced to {ay) = ay.

The QS5 (usnally referred to as simply ‘squeezed states’) are minimum uncer-
For a couple of
quadratures one can have (&ai) < 1/4 and correspondingly (&ai) > 1/4, accord-
ing to the Heisenberg uncertainty relation (1.1). In order to change the probability

tainty states with ¢-dependent quadrature fluctuations (.{lai).

distribution of ay at fixed mean value oy one considers states of the form

o, ) = D(@)Ig) . {lalg) = (3.7)
The customary squeezed states of Yuen? correspond to choosing
. 1 ' :
€)= S(00) = exp |5 (¢a = T) | 10, (3.9
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where the squeezing operator S(() provides the linear transformation of the field
SH(O)aS(¢) = pa + val | p=coshp, v=e¥sinhp, (=pe¥, (3.9)

and therefore, leads again to Gaussian distribution for a4, but now with fluctuations

(Aaj) = :ll- [sinh 2p cos (2¢ — ) + cosh 2p] . (3.10)

The maximum ratio between the two quadrature fluctuations is obtained for ¢ =
/2 + km: therefore, without loss of generality, one can choose ¥ = ¢ = 0. The
quadrature fluctuations relative to their coherent value {&ai)mh = 1/4 are mea-
sured by the squeezing factor Sy

S¢ = 4{Aal) . (3.11)
With the previous choice of phases one has
o =P,  Sa—eh (3.12)

The number distribution of the squeezed state |o,¢) = D(a)S(¢)|0) is not Pois-
sonian in general. Here the relevant parameter measuring the ‘squeezing’ of the
number distribution is the Fano factor

(A7)
()«
which is a unit for the Poisson distribution. F is related to the second-order degree

of coherence ;}fgj({]} = (: #? :)/(n)?, namely the intensity autocorrelation function

g®)(t) for t = 0

=

(3.13)

g@(0) =14 (R)"H(F - 1) . (3.14)

For subpoissonian distributions onc has F < 1 and correspondingly g(*(0) < 1
(antibunching), whereas in the superpoissonian case (¥ > 1) one has g'(0) > 1
(bunching). The squeezed states may be either sub or superpoissonian, depending
on the squeezing parameter ¢

2wl + pa+ vl

Fi=— - N |
al? + [P (342)
The minimum achievable number-fluctuations are
(AR?)in = 2733(0) 42 | (3.16)
0

which are obtained for real o at ¢ = w, after minimizing with respect to o.”
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3.2. Group-theoretical states

Fisher, Nieto and Sandberg®® proposed generalizations of the squeezing operator
S(¢) in the form

Lrys

() = exp (¢at* — Ca* + ) (3.17)

for k > 2 and hy denoting a polynomial in @ and a! with powers up to k—1. However,
it turns out that the resulting squeezed vacuum S;(¢)|0) cannot be treated in general
by analytic methods. For example, the Taylor expansion of the vacuum expectation
value (0]5%(¢)|0) has zero radius of convergence (see also Ref. 64), whereas numerical
comnputations can be performed only resorting to Padé approximants.®® Only very
special cases of operators of the form (3.17) can be analytically handled, as, for
example, when Sy is the exponential of a Hamilionian which is a power of a bilinear
function of @ and af 4"

The appearance of the formal analytic divergencies induced by the operator
(3.17) can be casily understood trying to compute its action on the vacuum. Doing
that requires dealing with the BCH factorization of Si(¢) in the form

$4(¢) = exp [F(¢)a™] exp(s) | (3.18)

where f(() 1s some suitable function of ¢ and 6 is an operator which stabilizes the
vacuum and produces only a normalizalion factor. Adopting this method one needs
to compute iterated commutators of the form

[¢},@?™] = plala)e!=™ |, (Horm > 1), (3.19)

where p(z) is a polynomial function. For k > 2 this procedure never ends, producing
an infinite dimensional boson algebra, which accounts for the formal analytic diver-
gencies. On the contrary, for £ = 2 — as for the customary Yuen squeezed states
— a finile dimensional Lie algebra is obtained, and the factorization (3.18) can be
explicitly written. More precisely, the QSS are the generalized group-theoretical
states (GLS) of SU(1,1) according to the general definition for an arbitrary Lie
group given by Perclomov®® and Rasetti.’” As already shown, the same consider-
ations hold true for the customary CS themselves which are the GTS of the WH
group. The last observation suggests that GTS are good candidates for non-naive
generalizations of squeezed stales. In the following the general definition is briefly
recalled.

The set of GTS for a Lie group G is obtained using a UIR (unitary irreducible
representation) of the group and acting on the lowest weight vector (LWYV) |v) of the
representation space by the whole group: the manifold of G'I'S corresponds to the
factor space (G/H, H being the subgroup of & leaving |v) invariant (up to a phase
factor). The GTS |s) are thus labelled by the points s € G/ I which correspond to
left cosets of (¢ with respect to .

According to the above definition [ recall the construction of the GTS for the
SU(2) and SU(L,1) stmple groups, and the WH solvable group: according to the
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Levi theorem these are essentially the simplest building blocks of every Lie group,
and the main squeezing properties for higher rank GTS can be already recovered in

{hese low-rank cases %%

In Table 1 the defining commutation relations and the pertaining UIR are re-
ported. Resorting to the above defimition, the GTS are written in the form

|&;0)c = exp (fR"' —ER_) |0; @) , (3.20)

where € is a complex number, o labels the UIR (namely, it is related to the Casimir
eigenvalue), [0;0) is the LWV of the UIR and ft* represents the raising operator
of the Lie algebra of G: RY = al for G = WH, Rt = J* for G = SU(2) and
B+ = [+ for G = SU(1,1). Using the BCI formulas in Table 1 the states (3.20)
are rewritten in the more convenient way

o0
Ci0)e = N2 exp(CRT)0 ) = N YA Y enl"mser) . (3.21)
=0
Here N, (¢) is a normalization factor and the relation ¢ = ((€) between the labels
in BEq.(3.20) and (3.21) is given in Table 1. Upon specializing the states (3.21) to
the UIR in Table 1, one obtains

|Cyw s = exp (—%KIE) Zﬂﬁh’l) )

4 ps 1
Gidbsuen = 141677 52 () i (3:22)

n=>0}

sl il AT - 2-""+' n—1 W ] e
|f‘ah)SU{i,L}—(l“LC] ) Z - (" K
n=_0

In the following subsections the abstract states (3.22) will be translated into
physical photon states, using multiboson realizations of the Lie algebras.

3.3. Multiboson realizations of Lie algebras

The following boson realization of Lie algebras generalizes to an arbitrary number
of modes the one-mode construction of Refs. 33, 35-37 and the two-mode ones
of Refs. 59-62. The method here is illustrated for the Lie algebras in Table 1,
even though, as it will be evident, it could be straightforwardly extended to other
higher-rank algebras as well.

The starting point is the construction of the raising operator R* of the Lie
algebra in terms of the boson shift operators éfjt and the number operators 1 for
each boson mode /

éf‘|n,,1...._n.¢,‘,.) e s e e
gl ORI | RS B 1 (3.23)

'J'_'u|ﬂ-1,...,ﬂ{,...) = ng|n|,...,m,,..) =



Here [n1,...,m1,...) denotes the tensor product |n1)®...®|n) @...: as customan
in quantum optics, the tensor product notation is implicit, writing for example

0102 ...0;...,instead ol 6, ® 62 @ .. . ® O ® .... Also the following conventions wi
be adopted
D k>0, G
ek = I k=0, (al) = 1 k=0, (3.24
(e k<0, a*l k<0,

With the above notation, the realization of the raising operator Rt is written it

the form X
R = \/Fka(ﬁ};l_lef' . (3.25)
=1

In Eq. (3.25) the raising operator depends on the vector k = (ky,...k;,...) and o
the label o of the representation. The prefactor \/Fj () (written under squan
root for later convenience) depends on the vector n = (fy,...7y,...) of numbe
operators, whereas the functional form of Fj_(n) is related to the particular Li
algebra pertaining RT. One should notice that the realization (3.25) is completely
general once a diagonal representation on the number eigenstates is chosen for th
commutators [Rt, R~]. The monomial

& =<k (3.26)

=

creates k = > 1. k; < oo photons and represents the shift operator on the repre
sentation space of the UIR

éfn) = n+k) . (3.27)
In Eq. (3.27) the vector notation is extended to the Fock space, upon denoting

Y i
A LWV |v) for the UIR is annihilated by = {EE)T, namely

From Eq. (3.27) it follows that the components v of v are constrained by the
inequalities

v > i - 3.29)
v > 0, !rgirl{m k<0, (3.29)

where LT denotes the sets of indices
Lt = {{lkp >0}, L™ ={llk <0}. (3.30)

Once the LWV [v) has been fixed the basis of the UIR is obtained through iterated

action of the raising operator éi on the vacuum

(éi)“h') = |v+nk) . (3.31)
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|

|
[ Infinite-dimensional representations, as the UIR of the wh and su(1,1) algebras,
' Tequire k; being nonnegative (the case of nonpositive k; can be conveniently recov-
- ered using the involution corresponding to Rt — .’%‘}. If some k; is negative the
| representation has finite dimension d

| d =1+ min{[v;/k]} , (3.32)
| 1eL~
| where [z] denotes the integer part of z. Also the vanishing of the prefactor vV F),(n)
in Eq. (3.25) for some values of n may restrict the dimension d of the representa-
fion space, as it happens in some realizations of su(2) which will be shown in the
following.
The shift operators (’lic commute with the following operators

'&1".1 =1 ksﬁ'r Y krﬁ: 3 {33‘3)

,13 = [ﬁsfk_,] =n,—k, [ﬁsfk,] y (3.34)

where (z) = z — [2] denotes the fractional part of (As = 0 for k, = +1 and, by
convention, also for £, = 0). The constant. operators ¢,, and 5‘, are not related to the
Casimir of the UIR: on the other hand, fixing a functional dependence o = o({érs},
{)n,}} is equivalent fo select a particular family of UIR’s.

The function Fy_(n) can be obtained using the UIR’s in Table 1. For ihe wh
algebra one can drop the label ¢ and write the equation

(vt (n+ Dklaf v + nk) = {/Fy (v + (n+ 1)k) = v F1 . (3.35)
The solution of Tq. (3.35) is
Fie(m) = min {[m/k]) . (3.36)
The function (3.36) can also be identified with the ‘number’ operator aLak
ay ay = min {[n;/k]} (3.37)
which satisfics the additional commutations
[a] ag, ap] = —ay , [aLak,aL] =al , (3.38)
and 1s represented as follows
a{cak [v + nk) = n|v + nk) . (3.39)

Notice that the present realization provides a faithful representation of wh only
vhen k; are nonnegative: otherwise one has a ‘truncated’ representation on a space



with finite dimension d given by Eq. (3.32). In such case aj and air{ are no longe
genuine boson operators. In fact, one has

aj [v+(d— k) =0, (3.40)
and, as a consequence,
oy, af Jlv + (d— k) = (d — 1)]v + (d — D)k) # |v + (d = D)k) . (3.41)

However, the truncated bosons are conveniently used in the finite-dimensional rep-
resentations of SU/(2). Using the lollowing identity written in the notation (3.24)

71

@ = |

sign{k)
] ef (3.42)

the operator air{ Is rewrilten i terms of the creators a;r
ST i I
N * i AR vk i
a; = 4 min{[n;/k e a ! 5.43
k IEL+{[ 1/ ki) l:]_:_[l 7, ] E( ) ( J

In the case of the su(1,1) algebra the UIR in Table 1 provides the equation
Fl..(v+(n+1)k) = (n+1)(n + 2x) , (3.44)
which has the solution
Fi,.(n) = af ay[al ay + 26 — 1] . (3.45)

Equations (3.25) and (3.43) allow to rewrite the raising operator in terms of the
particle operators ap and ai_rc, namely

) : /2t
I\l'; = (ukak + 2k —1)Y ay - (3.46)
The diagonal element f;'!'?’{ﬁ is generated under commutations. One obtains

f\]‘ih = air{a.k o (3.47)

Notice that, similarly to the case of wh, all the k; must be non-negative in order to
gel a faithful representation of su(1,1).
The su(2) realizations are obtained in a way completely analogous to those of
su(1,1). In this case one has
’—’— Y ) A S t |f2 T
ka =(25+1 a.ka.k} a -

% . (3.48)
Jf:j = aLak — 7.



Number-phase Squeezed States and Photon Fraclioning 1311

Here k; are no longer restricted to non-negative values, the only requirement being
the following compatibility condition between k and the dimension d = 2j + 1 of

the UIR.
25 < min ([u/ki} (3.49)

In Table 2 the above Lie algebra constructions are summarized. One can see that
the cases of Su(2) and Su(1,1) algebras generalize the Holstein-Primakoff** proce-
dure. In addition, the present realization contains as particular cases all the boson
realizations which appeared in the literature: these are reported in Table 3.

Tuble 2. Summary of the general of multiboson-multimode realizations.

Algebra Realization k |v)
. ign(eay *
fis ( t S Ak ) o ¢ Ak =0
|28 = ﬂ._ﬂk Ha:l Tigl nf:l(ﬂfj L5 i
wh k k [ 1 ] : ] k>0 E}E&{w —k}<0
apap = :é}ill{[ﬂ-rfk;]} 5
4 s\ 1f2
Kt = (ﬂT ap + 2k —1 al vy,
su(l, 1) L= ak _k ' ) k k12 0 rnirl{w —kl<0
f{k‘ =a; o +& el
” 1/2 >0,
o [y st iy B t { )
su(2) ki (? e “k“k_) %k peg | puluskg=0,
Hp = ot —1 27 < min {[v/ki]}

3.4. One-mode statles

The one-mode states are obtained by substituting in Eq. (3.21) the raising operators
Rt (= aEH,J{E}j,HJﬂn) and the corresponding LWV given in Table 3 for k =

(k,0,0,...). Such states have been extensively analyzed in Refs. 33-37, where the

squeczing properties of the & = 1,2 cases are studied. Here I focus attention only
on the one-boson (k = 1) case: the transformation to multiboson (k > 1) states will

be analyzed later in Sec. 3.6.
For k= 1 the LWV of the representation coincides with the vacuum for all Lie

algebras. Therefore, one has the states

T

| yw s = exp (—%Klz) i E——Jﬂ) ;

e 1) i

. IE.?' 94 1/2
]C;j).c.-u(z):(1+]Ci‘})"’Z(J) ¢y (3.50)

T
n=>0

e 1/2
¢ Kswa = (1= 1K) Zﬁ( s ) ¢"ln)



Table 3

- Multiboson-multimode realizations in the hiterature.

|

Relerence Realization k |v)
Holstein-Primakofl S o 12
su(2) == e 0)
Refs. 33,35--37,42 i
Holstein-Primakofl o n1f2
su(1,1) K =(2x—1+a)""al tiigion ., 10)
Refs, 33,35-37,42 hp=indis
Kairiel-Hummer 10 e alp!
wit “(1,1) i :;max{ﬂ*arhfb] (1 Tigatl I'N-: ""f)
Refs. 48,49,60 af, 121y = min{a'a, b1b) =
Schwinger J’E{ -131 =alb 10, V)
su(2) J{I —ni = s(ala — bb) (1,-1,0,... 2.'_N
Refs. 59,61,62 2 e =
Schwinger Iz’(ﬁ,ui = alb! IN, M
fsu{f.,i.} ‘r{?l,lj.: = %(a1a+bib+l} 100 D8 s Qk—iN‘— .i'?vﬂ-l-]
Refs. 59,61,62 %k = |ata — btb| + 1
Brandi-Greenberg t _ J[AfElGA=k) L2 11k
multiboson wh = { i } ) 2 P I
Refs. 33-37 41 alyyag) = /4] P<ALE—1
Haolstein-Primakotf
2j+1— /2
mulliboson su(2) k}*’ ( =5 a(k]' )" u (k,0,0,... A
Refs. 33-37 .41 I = alpyagy — 0<A<k—1
Hslstein-Primakoll 1 12 .t
R
multiboson su(1, 1) (“" i : a(ﬂa{kﬂ () (£,0,0,... I
Refs. 3337 41 Ky = afgyag + WEH ki
two-hoson su(1,1) {3) fﬂ” (2.0.0 \ Mi’] {
Refs. 0,34 h?‘g]‘—z(aﬂ‘i' ];2) oy U U, L 'ix:_'l;l
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where 0 < [¢| € oo for WH and SU(2), whereas 0 < [el dsfor SU(L L) 1n
Table 4 the average number (n) and the Fano factor I of the states (3.50) are
reported. One can see that they are related to the parameters I¢], 7, and & by
simple algebraic relations. It follows that the three set of states can be related
through a suitable analytical continuation: the SU(1,1) states correspond to the
SU(2) states for j = —x < 0 and [¢] — —|¢|, whereas the W H states are obtained
in the limit § — %oc for constant 2|j“CI§U(2),SU{1,1) = [¢|% 5, namely for constant
average number of photons (f) = ng. When allowed to have negative values j can
be rewritten in terms of the physical variables ng and I as follows

(3.51)

The SU(2) states (j > 0) corresponds to F < 1, 5U(1,1) (7 <0)to FF <1, and
the WIT limiting case (j — o) to F' — 1. Using the analytic continuations for the

e

and the asymptolic expansion

bhinomial coeflicients

(3.52)

lim
x— - oo

(i) = 24 0™, (3.53)

nl

ihe three sets of states in Eqs. (3.50) can be rewritten as a function of the three
parameters ng, F' and ¢ = arg(¢) in the following unified way

T

g b g Wy
|ﬂ.“; j"ﬂ"l ﬂl) i J,:' 2{1=F) Z ( 1-?‘_].};‘ (35—1)
n=0

) (F-1=1)"eM%n) ,

where the sum is over a finite range of n values for vanishing binomial coeflicients,

namely for integer ng/(1 — ) = 25 > 0.

Table 4. Parameters of the number distributions of the one-mode states.

W H ST(2) | SU(1,1)
A 1l (2_-,')1!2 (2ﬁ+11—1)1!2
L Tl

NP | e (-d?) | (1e1?)” Ci ik
(A) I¢f? 2112/ (14 1¢%) | 2wl¢/ (1= 1¢17)
F 1 (14+1c?) | EeE ™
Range of || O-00 0-pa i 0-1
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The analytic form of the states (3.54) is particularly suited to analyze various
probability distributions for different observables as a function of the parameters of
the number distribution ny = (i) and F = (Ar?)/(n). The number distribution
ol the set of states (3.54) ranges from the binomial distributions in the subpoisso-
nian case to negative-binomial distributions in the opposite superpoissonian case.
Lxamples of such distributions are depicted in Fig. 1.

e n' T T L] T q T T T L} T

5 T T T T T e T =" T o - ¥ -

£ r-o1|° F= 05 F= L0

8 181 18L -

=1 (=] (=3

o i 1 L 1 o

T L L T R B e

> T T T - \J T T | T ] o T T o T T T

n ' "Fe20|° : : F= 60 F = 100
BE]F {8l {8L o
- Vi - | =1 (=1

= g

o =}
0 G 10 16 ®O 26 a0 O & 10 15 20 25 30 O -] 10 16 20 2/ 30

[ig. 1. Number distributions for (i) = 10 and various Fano factors.

Corresponding to the increasing number fluctuations one has a phase narrowing,
namely the states (3.54) behave like phase-number minimum-uncertainty states.
This is qualitatively evident from the (-function representations in Fig. 2, where
the quasiprobability
1 X

{z15l2) (3.55)

o

Qz) =

is given as a [unction of z for various values of ¥ and for fixed ng. For small F < 1
one can see that the quasiprobability expands in the phase (tangential) direction
and is squeezed in the number (radial) direction. The opposite behaviour results
for increasing F' > 1, where the @-function expands in the radial direction and is
squeezed in the tangential one. (The squeezing of the Q-function actually is not
apparent in Fig. 2: this is an artifact of the particular two-dimensional represen-
tation, where the level curves linearly range from the minimum to the maximum
value of the funclion, instead of enclosing linearly increasing probability areas.)
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Fig. 2. @-functions of the states for (7t} = 10 and various Fano faclors.

A quantitative analysis of the phase squeezing of the states (3.54) can be per-
formed by plotting the phase probability distribution

P($)dé = Tr [ﬁd&-(fﬁ)] : (3.56)
gsing the optimum POM ffﬁ?{o‘j in Eq. (2.36). In Fig. 3 the probability P(¢) is
plotted as a function of ¢ for various values of F and fixed ng. The narrowing of
the distribution is evident for increasing F'. The oscillatory behaviour as a function
of ¢ (which could not be inferred from the plots of the @-function in Fig. 2) shows
that a decreasing F' in the states (3.54) does not correspond to exact squeezing
of the phase distribution: the latter can only be obtained through the photon-
fractioning procedure, as it will be shown in Sec. 3.6. In Fig. 4 the RPL b¢ of
[q. (2.29) is plotted versus the number fluctuations &n for fixed ng. On varying ng
one obtains points which lie very near to the same curve, The log-log plot shows
that 6¢ is almost inversely proportional to 6n, the largest deviations from this
functional dependence being in the region of very small én, where 6¢ saturates to
its highest value 27, The asymptotic behaviours of 6¢ as a function of én for some
limiting [7 values are evaluated in Appendix A.2. The product of uncertainties in
the neighbour of F' =1 1s

=
dndd >~ (=
w13

(F — 1 ,ng = const, > 0) , (3.57)
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Fig. 3. Phase probability distributions of the states for (i) = 10 and various Fano factors.
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in agreement with the value obtained in Ref. 19. The value of the uncertainty prod-
uct in Eq. (3.57) is almost twice the one expected in agreement with the conventional
Heisenberg inequality. One should notice, however, that for the number-phase pair
the uncertamty product could even be lower than 1/2 when approaching the number
eigenstates for I' — 0. In such case one obtains the saturating behaviour (derived
in Appendix A.2)

d¢p >~ 2n(1 —26n), (F — 0 ,ng=const.>0), (3.58)

which leads to vanishing uncertainty products.
An other interesting hmiting case for the phase distribution is that for #/ — +o00
at constant ng. The asymptotic behaviour of é¢ is derived in Appendix A .2

S = n0_1+”“”n (#* — 400 ,ng = const. > 0) (3.59)

and now leads to infinite uncertainty products. Here a more detailed analysis of
the I' — 400 limiting case is in order, to analyze some different phase-narrowing
mechanisms. More generally one can consider the case ol non-constant average

number np related to F' through the power-law
ng =ckv . (3.60)

Different. families of limiting states are obtained from lEq. (3.54), depending on the
values of . For v > 1 one obtains highly excited states which are very similar to
coherent states, but slightly distorted in a way corresponding to superpoissonian
distributions. In this case the effect due to large average numbers ng dominates
that due to increasing F'. For v = 1 highly excited SU(1,1) states are obtained
corresponding to Bargmann index & = ¢/2. In particular for ¢ = 1 the following
slates are obtained

|7 Pl mpe s f-1/2 Z (l - F_l,)n'!? ein“r’|n} : (3.61)
n=>0
which for infinite F' give exactly the SG states (2.16). For the states (3.61) the
phase probability distribution can be analytically evaluated. One obtains
/e 3

DAy = e e e o _ -l

P(¢) = o (1 21— F-lcos(p—¢p)+1 - F )
-1 9
2r &sin® [2(¢p — ¥)] + F-2

12

(3.62)

which approaches a delta-like distribution in the limit of infinite /. Equation (3.62)
leads to the following RPL

b ~xF=mng! (F =np— +o0), (3.63)
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and to the uncertainty product

Spbn ~ m . (3.64)

In the present limiting case a perfectly sharp probability distribution is obtained at
the cost of infinite average number ng. This leads us to consider in more detail the
case of constant ng (» = 0), which gives the RPL in Eq. (3.59). The corresponding
asymplotic states are evaluated in Appendix A.2

np v (1 F_l)n” in
10) +1/*FEZ o= Yiny| . (368)
=1

In ‘Table 5 the phase performances of the various asymptotic states are sumimarized.
P I ¥

|no; F39) =Fgoo I

For comparison the truncated phase states and the optimum states of Ref. 19 are
reported. The truncated phase states read as follows

21‘10
W)= Bnop 1) 207 Z ™ |n) (3.66)/
whereas the optimum states, which minimize §¢ at fixed ng," have the form
\/ﬁ
>

Fy e U'

] 6 -LG i
) = 22 S el M e (3.61)

The states (3.61) and (3.66) have the same limiting phase-distribution for infinite F
and, therefore, they exhibit the same asymptotic 6¢ for large nip. The states (3.6,
3.66) have a peak likelihood which is  times that of the states (3.65); however, there
is no 1mpmwmeui in the power-law dependence of 8¢ versus the average number
8¢ ~ ny', which should be compared with the optimal behaviour (12/7{')71“ of
the states (3.67). The similar ‘long-range’ number distributions P(n) ~n™% of the
states (3.65, 3.67) lead to analogous phase probability distributions. The latter ar
compared in Fig. b for the same values of ny and F. One can see that the two
distributions are both heavy-tailed and exhibit a sharp peak around the averag
value. Near the average value the tails decrease {aster for the states (3.65), but ar
higher near the boundaries ¢ = 4. For small average numbers ny the states (3.65)
show a RPL slightly improved with respect to that of (3.67): this should not be
surprising, as the states (3.67) actually are optimal states only for large ng. Further
considerations of these particular probability distributions can be found in Refs. 19
70.

I end this subsection with some numerical results regarding the squeezing prop
ertics of the one-mode states. In Ref. 33 the behaviour of the squeezing parametel
for the states (3.50) versus j, & is reported: here the relationship between squeezing
and phase-nurmber distribution is considered in more detail.



MNumber-phase Sgueezed States and Photon Fractioning 1319

Table 5. Reciprocal peak likelihood &4 and uncertainly product a high average photon number ng
for the various asymptotic states considered in the text (GTS: group theoretical states).

States Feh l dpdin | See Eq.
Coherent states (r/2n0) 2 | (x/2)'/? | (3.57)
GTS| F — 0, np =const. 27 0 (3.58)
F — o0, ng = F e B (3.61) (3.62) (3.63) (3.64)
F — co, ng =const. Ty oo (3.59) (3.65)
Truncated phase states rng - w3 | (3.66) (Ref. 19)
Optivm states (lﬂfw)ﬂa?' ‘ o0 | {3.67) (Ref. 19)
g = e — S
i Tl o P Rl + ; - 4.060
i | i ot main T gl | Fais
4 = 0.871 8¢ = 0233 &4 = 0.160
2 el 418L i
=) % o
o 1 i 1 a o 1 = - 1
~1 05 0 0.5 L g1 ~0.5 o 0.5 1.-1 —05 0 0.6 1
4] T T T T T iy T Y T X
- y ; : I-| L - L) : - 4. 050
LA T Ldet k) ¥ "ol 904 1) ¥ = 334360
8¢ = 0772 8¢ = D.251 44 = 0.185
38l 18} 1€} 1
g i -
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] L k 1 i b i o 1 i d | f=] 1 I J. i
-1 -0.5 ] 0.5 L =L -0.6 1] 0.6 1=k 0.5 a 0.5 1
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Fig. 5. Comparison between the phase distributions of the oplimum states and SL7(1,1) states.

In I'ig. 6 the squeezing parameters Sy and S,y are plotted as a function of F/
for fixed {n) = ng. The curves representing Sg/y show a minimum for F' < 1
which becomes lower and moves towards higher F' for increasing ng. Sgyy in-
creases monotonically for increasing 7 > 1. The behaviour of S is complemen-
lary to that of S, s, the quadrature @, , being squeezed in the superpoissonian
range and unsqueezed for ' < 1. The main features of the above plots can be
qualitatively understood looking at the behaviour of the @-function (3.55) on the
complex plane z, where the real axis corresponds to {ag) and the imaginary one to
(ar/2). A moderate number-squeezing also corresponds to ag-squeezing, whereas for
higher number-squeezing the @-function begins to spread in the horizontal direction,
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resulting in an increased Sp. Similar arguments can be invoked in order to connei
the phase-squeezing of the ()-function and the squeezing of the other quadratur

I‘:‘I-ﬂ.'j?.

3.5. Two-mode stales

The construction in Sec. 3.3 leads to a rich variety of two-mode states, dependin
on the choice of the vector k in the raising operator (3.25) and of the LWV of th
representation. Iere attention is focused only on the one-boson states (Jk| < I

with LWV
[v) = |0, N} . (3.68

The effect of multiboson (Jk;| > 1) transformation will be considered in Sec. 3.6.

The Schwinger-like realizations correspond to angular momentum j = N/2 fa
SU(2) and to Bargmann index & = (N+41)/2 for SU(1, 1); the W H case is recoverei
as a limt for mfinite j or k. Using Eq. (3.21) and the realizations in Table 2, th
two-mode states can be written as follows

1 Sl e
IC; N)w i = exp (—§|C|3) ¥ In, N +n) ,

n!

4] i
: _ G 2 = .
G 3: Vs ) soeay = (L4 [C]F) 2 Z ( J) C"ln, N £n) , (3.69)
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00 1/2
r K 2 e —1 Ly
1683 Mswraa,ny = (1= K1) §;( i ) CPln, N +m) .
n=0

Notice that there are two possible set of states for SU(2) (here denoted by |C; 7; N;
+)su(2)), depending on the choice of the possible vectors k = (1,+1). Depending
on k the surpositions (3.69) satisfy the conservation rules

logata=N, k=(1,%1). (3.70)

For the two-mode states the quantum statistics are desecribed by the joint-
probability distributions of two observables. On the other hand, whenever only
one mode is considered one uses the marginal distributions and averages

P.(0) = Te(18)(01 @ D)5l Fa(0) = Te[(1 ® [0)(01)7] , (3.71)
(6 =[Oy, (6)=T(100). (3.72)
The conservation rules (3.70) imply that the marginal probabilities can be rewritten
in the form
Pt) = S lea 202 . Po(8) =3 lenPIOIN £0)*, k= (1,£1), (3.73)
n=0 n=0

where ¢, denote the expansion coefficients in Egs. (3.69). The main consequence of
Egs. (3.73) is that, as long as marginal probabilities are concerned, the pure states
(3.69) are equivalent to the following mixed states

pa= Y lealln)nl . =3 lenllnt NYn£ N (3T4)
n=I[ n=0

From Eq. (3.74) it follows that the following averages vanish
e =1 (3.75)
and, therefore, one has -
8., =142{ela), S, =1+2(0), (3.76)

namely there is no squeezing and the squeezing parameter is isotropic. Also from
© Eq. (3.74) if [ollows that the marginal number distributions are identical to those
" of the corresponding one-mode states.

Regarding the phase of the field Eq. (3.74) lead to constant marginal probability
distributions. The conservation laws (3.70) imply the following algebraic rules for
the phase joint-probability distributions P2

PA(gy,d8) = Plgatdr) , k=(1,£1), (3.77)

where P(z) = PUY(x) denotes the corresponding one-mode distribution.
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I now turn attention to the cross-correlation properties of the present two-mode
GTS. They are given by the (normalized) correlation functions®? G(2)

(aT bl ba)

G

(3.78)

Using the expansions (3.69) one obtains

¢ r41 2
il el (WH) ,

NF|CE

2 — N+]—+(2R_N)|C|2
- N+(2e—N)CE
N+1+(N£2j)|¢]?
L NHNE25)KP

(SU(1,1)) , (3.79)

(SU(2)) .

For k = (1,1) one has G'%) > 1 for any value of N and (, reflecting the tendency for
the two modes to be created or annihilated simultaneously. The opposite behaviour
happens for the SU(2) states at k = (1,—1), which turns out to be never cross
correlated. High correlation functions can be obtained for N = 0 and small ¢ for
k = (1,1). The ‘classical’ limits N — co or { — oo lead to G{?) = 1, correspond-
mg to the fact that the photons in the different modes are created or annihilated
independently.

3.6. Muliiboson states

In the previous subsections I considered only one-boson states, namely states gen
erated from the vacuum through the action of a raising operator I:?+6 which creates
no more than one boson for each mode (|&| < 1). In this subsection I analyz
the effects on the quantum statistics due to the simultaneous creation of k > |
bosons for the same field mode . For simplicity I restrict attention only to the
one-mode states. In Sec. 4 T will show how these states can be generated using an
ideal photen-number amplifier.

The transformation M) from the one-boson to the k-boson states is the fol
lowing (k > 1) i

Jw{kj(lﬂ’“}) o= |¢:>(LJ . |[|f)} == Z C”|'.l'1} ; I‘[f))(l} = ch !kn) " (38[}]
n=>0 n=>0

It 1s eqmivalent to rewriting the boson realization of the Lie algebra of the state by
substituting a and o with the corresponding k-boson operators (k) and ‘ng) givel

in Table 3. This can be readily shown upon writing the transformation S%*) of ;
general operator O 1 the number representation

fee) k—1 oo
O= > Ownln)(m| — 8O =>" Y Onmlnk +N){mk+2]. (381)

nrm=0 A=0nm=10
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One can check the following transformations
: (/K] (a—k) ) i
S(k) (ﬂ.T) = ([gk) = { '/ Al (ﬂr)k , S_(k‘}(ﬂ‘] =apy = [S(k} ((11)] ;

s® (O(a,ah)) = O (aeyrafyy) - (3.82)

where @l’\a, al) represents the functional dependence of O on the particle operators
¢ and af. Two examples of multiboson realizations are given in Table 3 — the k-
boson Holstein-Primakoff su(2) and su(1,1): the corresponding states are analyzed
in Ref. 33.

The effect of the transformation M) on the number distribution is the rescaling

() = laptimyl = { POG/E O 20 (3:83)

0 otherwise .
Correspondingly the mth moment is multiplied by the factor k™ namely
(™ Yy = B (3.84)

Both the average number and the Fano factor are amplified by k.

The effect of the multiboson transformation (3.90) on the phase distribution is
e inverse of that on the number distribution. Using the POM in Eq. (2.36) one
obtains ;

P (@)de = |Uc)('=a‘x‘|fs"l">|3;—:rr = piy(ké)do . (3.85)
For functions f(¢) which are periodic of 27 /k, Ioq. (3.85) yields the relations between
averages
(fo)wy = {g8)y » 9(8) = f(¢/k) . (3.86)
Notice that Eq. (3.85) leads to a RPL 8¢ which is constant as a function of k.

From Eqs. (3.85-3.86) one concludes that the mullib3.oson transformation M)
smultancously amplifies the number and deamplifies the phase by the same factor k.
This is shown in Fig. 7, where the distributions of a coherent state are compared with
ihose of the k = 4 transformed state. The combined effect on the number-phase dis-
fributions is qualitatively recovered in the @-function representation: in the phase
space the multiboson transformation cotresponds to a symmetrical splitting of the
quantum distribution into k identical replicas, with enhanced number-fluctuations
and teduced phase-uncertainties (the quantum distribution becores longer in the
radial direction and narrower in the tangential one). The origin of the symmetrical
splitting of the Q-function becomes evident upon rewriting the k-photon state as a
superposition of one-photon states

k=1 oo
W)y =% ) Wy, Wi = Z cpnyere T M E ) (3.87)
A=0 =0

The phase factors in Eq. (3.87) are responsible for the splitting in the phase space,
whereas the fractional labels of the coefficients ep, /¢ produce the spreading in the
radial direction.
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Fig. 7. The effect of the multibeson transformation (3.80) on the coherent state |}, for &k = 4 and
e = 2. The one-oson and multiboson distributions Q(z), p(n) and p(¢) are compared.

As regards the squeezing properties of the multiphoton states, a simple check
shows that squeezing is possible only for k < 2. More generally, one can define 2m-th
order squeczing S;”” as the ratios of the 2m-th moments of a, over the corresponding
value for the vacuum : then, 2m-th order squeezing is possible only for £ < 2m.*
Numerical results for the probability distribution of ay and the squeezing Sg"“ as
a function of the average number are reported in Rel. 34 for the two-photon Wi
GTS, in Ref. 33 for the two-photon Holstein-Primakoff G'T'S, whereas in Ref. 35 the
behaviour of the minimum squeezing Sim is analyzed for various k-photon GTS as
a funetion of {An?). The numerical evaluations lead to universal scaling laws of the
form

S me (ARSI (3.88)

where the exponent y5(m) ranges between 0 and 1.

3.7. Fractional states

In Sec. 3.6 the transformation Sy in Eq. (3.82) was defined for positive integer k
only. One can notice that Syy(al) = a!, and, with a little algebra,

Sty 0 Seay (@) = Seieny (al) (3.89)

From Eq. (3.89) it follows that one may, at least formally, extend the semigroup
of nonlinear transformations (3.82) to the Abelian group {&(;) rational k£ > 0}, by
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defining the inverse transformation Si_i'; as follows
S{;; o Sy (a') = o' = 8 (a') . (3.90)
One can therelore equate S[_d = S(1/¥), whence
S@J} o Stay = Sthyk) = S(ry (3.91)

where r = h/k is a positive rational number. Tt is this extension of the multiboson
transformation which leads to the notion of fractional pholons mtroduced in Ref. 43.

The above formal structure is equivalent to considering the action of A-boson
operators on k-photon states, producing matrix elernents of the form

u nl! | ¥
(b (alyy) (agu)* Vi) = (I‘cm [fz]]'[[]:':]_ 'u]!) bugsion=n) » 1T =r=b/k.
(3.92)
When u = v the expectation (3.92) always has nonzero values for m = n. When
u# v, the expression (3.92) vanishes unless (h/k)(u — v) 1s an integer.
Note that expression (3.92) depends on k and k only through their ratio: {=! =
r= h/k. Here 7 is the positive rational fraction of the fractional transformation ;.
One may equate expression (3.92) formally to an expectation involving fractional

photons . ,
(k] (alyy) (agy)? ) = (ml (aly) " (ar)* 1) - (3.93)

Thus the claim of Ref. 43 is not that such fractional photon modes really exist, but
that physical experiments involving integral numbers of photons can be interpreted
as behaving in such fractional mode.

In Ref. 44 physical quantum states are constructed which exhibit the probabihty
Jistributions of fractional photon states. More precisely, the physmal states have
probability distributions for the usual one-photon observables 0= O“) which are
identical to the [ractional probabilities p¢)(O) for any observable O(h) = O(a(hj, ﬂfh)j
of the form (3.82). The definition of the probability distribution for fractional pho-
ton states is based on the construction of a complete set of simultaneous eigenvectors
of O(h) and the ‘Casimir’ operator

Ij(h} = aTt‘I = huEh}u’I{h} ' (394)

which commutes with all the h-boson operatars. The cigenkets of (j(h} are written
in terms of the eigenkets |O) of the operator 0= é(l) as [ollows

Oml0, My = 010, Xy, D)0, Mwy = MO, Ny

10, Myny = L th + A {10 . (3.95)
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Then, the probability distribution for Ef)(h} in the & boson state [1) () reads

-1

P(1y(0) Z!(m(ﬂ Myl - (3.96)

For example, the ‘number operator’ J“Cf(h): ”’Eh)“(h} has the probability distribution®

fi—1 [o5s]
Py (V) = S (N, MDY = D Emibpem), v Oy, N Sem) o1y (3.97)
A=0 I,m=0

Now I require that the observables () deseribing the physical ayattm are functions
of the usnal particle operators a and al — instead of ag;) and a(h) looking fora

quantum state p“ ) with probability distributions

pw(0) = Tr [|0){(0]) (3.98)

identical to the fractional probabilities (3.97) for all observables .4145 The attempl
to construct such a state leads to reconsider the distribution p;(0) in the form

py(0) = i Z (TR + N {|OY(Om) (mhb + Al )

o0 h—1
= > ({jo)o [Z Imy(mh + Al) ey - o (VIR + 0| 1) . (3.99)
iym=0 A=}

Equation (3.99) shows clearly that py(0) is reproduced by the O-probability
distribution of the following mixed state

i Z O O], (3.100)

where o
Wy = ST 9l m) 980, = ' (mh 4+ M) (3.101)
m=0

and ¢, are arbitrary phases. One can easily check that the density matrix p( ) i

Y
correctly normalized
oo r—1
a0 = NS L P =RE=1. (3.102)
m=0x=0

In the above framework, the ‘inverse’ of the multiboson transformation M) s
given by

MUB () (p]) = p3) = Zw»“*’“) ST (3.103)
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One should notice, however, that MU/5) o ME) = 1 whereas M*) o A(1/E) =<l
in Sec. 5.4 1 will show that invertible transformations can be defined upon enlarging
the underlying Hilbert space H and introducing an auxiliary boson mode.

The transformation M@/¥) iy Eq. (3.103) is referred to as fractional-photon
transformation or simply photon fractioning, as opposed to the multiphoton trans-
formation of Eq. (3.80). The effects of the photon fractioning on the quantum
statistics of the state are essentially the inverse of those of the multiboson transfor-
mation, as one would expect. In particular, the number distribution is transformed

as follows

p(ry(n) = Tr [ ) (nl ] Z pay(nk + ) (3.104)
and produces the moments

(™) ey = (/R - (3:105)

Tor highly excited states Fq. (3.105) approximates the inverse of the multiboson
scaling (3.84), namely

(fl'“){-”k) o per (ﬁ.m> } (<ﬁ.) > E‘] ! (3]06]

The transformed phase-distribution 1s evaluated through the following steps

k—1 fos]
pumlelde = TT[PWHd‘i‘(fﬁJ Z Z 8 Bt kg DR =R e
).,u 0nm=0
i ¢‘ — = - i(n—m)k™ " (¢+42mr) =
= TZ Z_: Calim€ 3 (31“()
which lead to the relation
k=1
pak)(9)de = Zp(l)(k_lrfl + 2k XN)d(k 1 6) (3.108)
A=0

and give the following averages for any ?7r~lpcriorjic function f(¢)

o) = (Ga) ,  9(d) = Fko) (3.109)

where the definition (2.23) has been used. In Ref. 71 the above phase properties of
the photon fractioning are revisited in the Pegg-Barnett formalism.*4

In Fig. 8 the distribution of a coherent state are compared with those of the
corresponding fractional state for k£ = 10. The simultaneous number-narrowing and
phase-broadening are apparent also in the Q-representation, which exhibits reduced
radial fluctuations and is spread out in the tangential direction (for numerical and
asymptotical evaluations of Q(z) for large k and (1) see Ref. 45). On the other
hand, as regards the customary quadrature squeezing, the photon fractioning attains
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squeezing for all k > 1, the squeezing going asymptotically to zero as Sp ~ k=1 for
large k and (7).**

The multiphoton and photon-fractioning transformations, which in the present
section have been derived only in an algebraic framework, will be reconsidered
in Sec. b, showing that they deseribe the ideal photon-number amplification of

radiation.

4, Linear Amplification and Loss: An Overview

In this section T briefly recall the quantum description of linecar amplifiers and
losses. 1 show that the two-mode SU(1,1) states of Sec. 3.5 can be generaled
using a phase-insensitive amplifier (PIA), whereas the two-mode SU(2) states are
obtained at the output of a beam splitter (BS). In this schernatic approach a number
eigenstate is needed al an input of the devices, and actually — apart from the case
of the vacuum — nearly-number states are very difficult to produce experimentally.
Hence, to be complete, the present scheme needs also a device which can produces
nearly-number states: as we will see in Sec. 5 this could be provided by an ideal
photon-number amplifier (PNA) operating as a high-gain deamplifier on a highly-
excited coherent input. On the other hand, an interesting case where only vacuum
inputs are needed is that of a particular set of SU(1, 1) states attained at the output
of a PIA. Such states (sometimes referred to as twin beams) will be used in Sec. 6.2
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at the input of a photon-number duplicator (PND) in order to produce Susskind-
Glogower states. In an analogous way the two-mode states attained through a PIA
could be converted into the corresponding one-mode states by means of an ideal
PND.

Tn See. 4.4, after recollecting the noise-figures of the lincar devices — which
depend in general on the mput noise of the measured observable — I recall the
Yuen's proposal*®2%=27 of improving the noise-figures of the optical taps by means
of quantum ideal amplifiers. In the homodyne-detection mode one needs an ideal
phase-sensitive amplifier (PSA), essentially a PTA where the two modes — the
amplified mode and the idler — degenerate on the same mode. For a vacuum input
the PSA produces a two-photon GTS of SU(1,1), namely the customary ‘squeezed
vacuurn’. In the direct-detection mode one needs an ideal PNA: the optical taps
improved through ideal amplification can be made essentially lossless, making the
ideal amplifiers key-devices for applications to local area networks (LAN).

4.1, Phase insensitive amplification: two-mode SU(1,1) states

(lassically, an ideal linear amplifier is represented by the relation between averages
(4) = GM*{a) , (4.1)

where @ and A are the input and output field modes, and G > 1 is the amplification
gain. Relation (4.1) is independent of any other feature of the amplifier (apart
from () and contains no randomness in principle. Quantum mechanics introduces
unavoidable added noise intrinsic in the amplification mechanism. In fact, relation
(4.1) cannot be quantized in the form

A=GY2q, (4.2)
since that would viclate the boson commutations
(A, AY] = [a,61] =1 (4.3)

To preserve linearity and commutations one must add a neise operator b with
() = 0 and satisfying the commutations [b, b'] = 1 and [a,b] = [a,b!] = O (the
corresponding field mode is usually referred to as idler mode). In this fashion the
quantum version of the transformation (4.1) can be written in either one of the

alternative ways

A=ma+ nb (4.4)
A= pa+uvhl, (4.5)

where preservation of the commutation relation (4.3) implies the constraints
P+ nff=1, (4.6)

=P =1. (4.7)
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Here the quantities corresponding to the gain G in Eq. (4.1) are |m|* < 1 and |yf* ¢
1. Therefore, only the transformation (4.5) strictly describes a linear amplification
by a gain GG = |u|* > 1, whereas the transformation (4.4) is more appropriate fora
linear loss p = |m|* < 1. In the following 1 analyze the case of the linear amplifisr,
and I postpone to the next subsection the study of the linear loss. .

The coefficients u,r are complex number, accounting also for a phase chang
in the field evolution. The present amplifier is also called phase insensitive am-
plifier (PIA) because the gain G does not depend on the phase of the homodyne
detected electric field, namely |(A4)]> = Gl{ay)|*. Corresponding to the second
input mode b another output mode B must be considered. Upon a suitable choig
of the B phase the commutations [A, B] = [4, BY] = 0 lead to the input-outpu
linear transformations |

A a e N
(BT) :N<m) Js s (; E) iR 4

The introduction of the idler mode b implies a representation of the guantum il
plifier as a four-port device (Fig. 9), in contrast with fthe classical two-port repre:
sentation (4.1). If the port b is unused, then its mode is considered in the vacuum:
state and, therefore, it becomes responsible of added noise.

PIA

Fig. 9. Scheme of phase insensitive amplifier as a four-port device,

From the algebraic point of view, Eq. (4.8) corresponds to a SU(1,1) transfor
mation. It can be written in the form of unitary evolution of the field as [ollows

a - ."a - :
N(M) = N (M)N : (4.9]

Fixing for simplicity the phase of the output A in order to have a real coefficient
the unitary operator N simply reads

N = exp (Ealdl — :,__Eba) : S ~_atanh

v

173
“‘ ; (4.10)

The operator (4.10) is a two-mode realization of a SU(1, 1) group element (see Table
3). As a consequence, the PIA realizes the two-mode SU(1,1) states in Eq. (3.69).
More precisely, for an input state of the form

[¥)in = |0, N) , (4.11)
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one obtains the output state

: 2Nk =2 2k +n—1 HE T %
|1P'}'uut = IC;.'G::N)SU(I,l} = (l—|f| ] Z T ¢ ]n, N+ﬂ'} Bl m '
e (4.12)

Jn practice the state (4.12) can be actually realized at least for N = 0, namely when
the two inpul states are both vacuum. The states with N > 0 require a number
gigenstate at one input port, which, as already mentioned, could be provided by
strongly deamplifying a highly excited coherent state through a PNA. The states
(4.12) for N = 0 are the so-called ‘twin beams’ which will be used in Sec. 6.2 to
produce Susskind-Glogower states.

As regards the Hamiltonian of the PIA, one should notice that the argument
of the exponential in Eq. (4.10) is proportional to the interaction Hamiltonian of
the device in the Dirac picture. It follows that the interaction Hamiltonian in the
Schrodinger picture should depend parametrically on time in the form

Fp = k (alble= i 4 pei®—0) (4.13)

where 0 = w, + wy, kit = |£] and ¢ = arg(£). The parametric dependence on i can
be attained using a third pumping mode ¢ at frequency €2, which can be considered
dlassical as long as it is in a highly excited coherent state. Such approximation is
usually referred to as paramelric approrimation (equivalently, one says that ‘the
pump is classical and undepleted’).

From the above considerations one concludes that in the parametric approxima-
tion a PTA can be attained through a three-wave mixing medium, with Hamiltonian

Hy=x%(a'ble+ cfba) | R L (4.14)
or, equivalently, through a degenerate four-wave mixing, namely
Iy = f (_(;-.becz + (CT)Bbﬂ) : N =, G, (4.15)

We will see that the above description of the PIA — where idler and pump modes
are introduced to account for unitarity and energy conservation — is general for all
kinds of quantum amplifiers, including the ideal PNA and PND, the only exception
heing the PSA, where the idler and the amplified modes are degenerate.

4.2, Beam splitter/frequency converter: two-mode SU(2) states

The transformation (4.4) corresponding to a linear loss can be treated in a way
completely analogous to the PIA. Upon introducing a second output mode B, one
obtains the lincar transformation

AN a ol e 5
(B) _M(b)1 M = (_ﬁ ?ﬁ) , |ml*+Inl"=1, (4.16)

#
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Egs. (4.16) describe the Heisenberg evolution of the e.m. field at a beam splitte
(BS) with transmission coefficient n = |m|?. Eq. (4.16) is a SU(2) transformation
The corresponding unitary evolution reads

M (:) =t (:)M , (4.17)

and for real m the unitary operator M has the form

M = exp (fatb - Ebra) ; Ei= -|£| arctan

n
The operator (4.10) belongs to the two-mode Schwinger realization of the SU(Y
group given in Table 3; as a consequence, the BS realizes the two-mode SU(2) stale

in Eq. (3.69). Tor an input of the form (4.11) one obtains the output

(4.18)

'ﬂ"l

23 )
- 2y 27 .
[¥)out = 165N =) suy = L+ ¢ (p) Clo,N—p), (419
p=0
where -
T (4.201

IBilE '|
Regarding the possibility to realize the input state (4.11), the same argument
discussed for the case of the PIA hold.

As 1n a BS the frequencies of the two input modes are the same, no pump mode
needed. Tor diflerent frequencies w, # wy the above framework is suited to describ
a frequency converter (FC). In this case the same three- or four-wave-mixing medi
used for the PIA can be adopted. It follows that also the FC — as a particula
kind of amplifier — needs a pump for energy conservation, whereas the idler mod:
1s that at the converted frequency. Finally, regarding the production of two-mods
SU(2) states, the F'C works exactly as a BS, the only difference being that in the
latter case the two modes have the same frequency (but different wavevectors o
polarization).

4.3. Phase sensilive amplification: SU(1,1) two-photon states

The phase-sensitive amplifier is a device which ideally would affect the following
transformations for a couple of quadratures

Ao =G Pay . Adr o =G W ay (4.21)
namely the gain is ‘sensitive’ to the phase of the selected quadrature. Tt is readily
seen that Eq. (4.21) corresponds to the following transformation of the field

A = pa+va' (4.22)
where

;L:l(le-l-G“l"’z) ; V:?(GIM—G_U?) ; (4.23)

FN
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The transformation (4.22) has the same form of (3.9). As opposite to the defining
Heisenberg evolutions of the PTA and BS/FC which are not unitary, Eq. (4.22) can
be unitarily attained without the need for an auxiliary idler mode. One has

A=Ulall | U = exp {—:ll- InG [(ar)g ek aze’:i’] } 3 (4.24)

Trom Eq. (4.24) it follows that (in the parametric approximation) the ideal PSA can
be attained through degenerate three- or four-wave mixing, tuning the frequency of
the pump mode at 2 = 2wg or 2 = wq respectively.

Regarding the output states, Eq. (4.22) implies that the PSA transforms an
input CS into an output QSS (3.7) as follows
v

(4.25)

Iy —= lali¢y o ol =opgEi, C= e *&gtanh

In particular, using a vacuum input one obtains an output ‘squeezed vacuum’ (3.8),
namely a SU(1,1) state corresponding to the two-photon A = 0 realization in
Table 3.

44. Noise figures: the preamplified optlical iap

The noise operator b in the quantum description of both the PIA and the BS/FC
degrades the SNR from the mput a to the output A. Qualitatively the SNR degra-
dation is described by the noise figure of the device

4 N R g in
N0y = 2B (4.26)
SNR(O)OLIt
where the SNR depends on the observable O which is actually detected
s
SNR(O) = E-}—— : (4.27)
(A0?)

The cases of interest are O = n (direct detection) and O = a4 (homodyne detection),
with b in the vacuum state. (Actually the heterodyne detection, which corresponds
1o the measurement of both the quadratures of the field, has an intrinsic added noise
of3dB due to the joint measurement of two noncommuting observables. 1% ™) Using
ihe transformation (4.5) one obtains the following noise figures for the PIA

G-—1 G—1

G5, M@ =14 T (@hin> 1. (4.28)

J'\ur(fiqb) =1+

Both the squeezing Sy and the Fano factor I' are evaluated at the input (the simple
form for the direct detection noise figure is obtained in the limit of large input
powers). For the BS/FC the noise figures are

l—n¢ 1—mn

sy 26
e N(n) + o7 (4.29)
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For coherent input states (corresponding to Sy = F = 1) 3dB noise-figures ar
obtained for both a high-gain PTA and a 50-50 BS. As suggested hy Yuen,6:25-27 tj
noise figures (4.28-4.29) can he improved by means of a suitable pre-amplification
The method is simply to enhance the input squeezing S¢ or the Fano factor Fi
in Eqs. (4.28-4.29) without adding substantial preamplification noise. This wouli
be achieved using a high-gain preamplifier with unit noise figure A (O) for the
observable of interest. For example, in the homodyne detection mode the ided
preamplifier would be a high-gain d -amplifier having unit noise figure N(ay): thi
amplifier coincides with the PSA analyzed in Sec. 4.3. In the same fashion, it
the direct-detection mode the ideal amplifier would be a high-gain photon-numbe
amplifier (PNA), which, by definition, has a unit noise figure A(#).

The above method for improving the noise figures can be used to reduce lossesin
optical taps, enabling a very large number of users to obtain the same performang
as the first one.?” The idea is simply to use quasi-ideal (namely nearly-unit noise.
figure) amplifiers as tap preamplifiers. The tap can be actually schematized as a BS_!
(see Fig. 10) where the input information is coded on the a mode, the user taps fron
the B mode, and the 4 mode carries the information for the other users (the b mod:
18 unused and 1s responsible for the loss of the tap). Thus, using phase-sensitiv
preamplification would improve the tap in the homodyne detection mode, wherea
photon-number preamplification would be suited to the direct-detection mode. I
LAN environments, where nearly-number states and direct-detection optimize the
network transparency, the PNA would provide the required low-loss tap. However,
the present scheme requires to amplify the signal at every user-node down the ling
this problem can be overcome only using PND taps, as it will be shown in Sec. 6,

Y
L

Fig. 10. Scheme of beam splitter.

5. Phase-Number Amplification

In this section the photon number-amplification mechanism is analyzed in the ided
case, Teviewing some main results in Refs. 48, 49. It is shown that the search fo
unitary evolutions leads to consider also a number-deamplification mechanism, ant
the symmetry between amplification and deamplification is broken by the integer



Number-phase Squeezed States and Photon Fractioning 1335

valued nature of the number operator. As for the case of the PIA the construction
of a unitary evolution leads to consider an auxiliary idler mode of the field, which
furns out here to be amplified in the inverse way. We will also see that the two
outputs of the ideal photon-number amplifier reproduce the multiphoton and frac-
tional photon states of Secs. 3.6 and 3.7. Moreover, ignoring one of the two ficld
modes 1s equivalent to consider the amplifier as an open system, and this will lead
to entropy production.

In the last subsection I give the Hamiltonians of the ideal device, comparing 1t
with those of realistic systems. 1 will show that the amplification is driven by a
peculiar dependence of the polarizability on the phase of the field in the frequency
range of the amplified mode.

51, The ideal amplifier

[n order to attain the ideal noise-figure A(n) = 1, the photon number-amplifier
should effect the state transformation

|n} — |Gn) | (5.1)

for an integer G > 1, thus preserving the direct detection signal-to-noise ratio: the
evolution (5.1) is noting but the G-boson transformation M) in Eq. (3.80).

In & way analogous to the phase-sensitive amplification — where two conju-
gated quadrature components of the electric field are inversely amplified — an ideal
PNA should inversely amplify the number and the phase. In this fashion the state
transformation (5.1), involving only number eigenstates, becomes too restrictive.
Therefore, as a definition of the number amplification, I adopt the Heisenberg evo-

lution

i — G, (5.2)
whereas Lhe state of the field is described in general by a density matrix g. Another
point which 1 consider is the possibility of deamplifying 7, namely of amplifying n
by a noninteger gain (+ < 1. The integer-valued nature of n breaks the symmetry
hetween amplification and deamplification, as it forbids exact deamplification. The
transformation (5.2) can be generalized to the following one

n — [Gn] , (5.3)

which is defined for real gains (G. The transformation (5.3) coincides with (5.2) for
integer . In Sec. 5.3 1 will show that only the cases G = inleger and G = nverse
of inleger lead to unitary evolutions, the second case corresponding to using the
amplifier in the output-input reversed direction.

Asregards the phase amplification one should write an Heisenberg evolution for a
smtable phase operator. An exact phase amplification — inverse of the amplification
(5.2) — can be defined using the SG operators é* as follows

e e (5.4)
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In the high-energy limit Eq. (5.4) corresponds to the amplification of the Dira
operator

Equation (5.4) shows how the integer-valued nature of # reflects on the phase oper
ators é*: the amplification (5.4) can simply be attained for G~1 = integer, raisin.
the shift operators to the integer power r, whereas, for the number operator, preser-i
vation of its integer-valued nature requires G itself to be an mteger. Despite this
fact, we will see Lthat the phase amplification (5.4) leads to the correct amplificatiop
of the optimum POM (2.36) for both cases ¢ = integer and G~ = r = integer. ’]"he%:
second case can be readily proven after recognizing that the transformation (5.4)
for G=! = r integer corresponds to the algebra transformation S in Eq. (3.82))
namely !

(&5)" = 80(et) (5.0]

Evaluations similar to those in Eq. (3.107) yield
5 r—1 N\ |
SU)(dd(g)) = D{T’fh— Y 4 9rpT1N) i
A=0 '[

which leads to the exact scaling for 27-periodic functions
Si(fe) =50, 9(8) = I(rd). (5]

On the other hand, in Sec. 5.5 T will define a map Sﬁ”j which attains the deam
plification of the phase
Sy’ (d%(4)) = dd(rg) , (53]

leading to the scaling of the 2w /r-periodic functions
Sp"(fa) =de , g(¢)=F(¢/r) . (5.10)

Both the maps S}:} and SH"""} will be obtained by means of a unitary transformation
on an enlarged two-mode system.

5.2. CP maps

One of the major difficulties encountered in the quantum mechanical treatment o
the number amplification is related to the nonunitarity of the transformations (5.1-
5.3). This can he simply understood hy considering that {|Gn)} span only a prope
subspace of the Tock space H (which is spanned by {|n}}). As suggested in Rel. 2
and as already seen in the case of the PIA, a way to overcome this problem is
consider an auxiliary degree of freedom — the analogous of the idler mode for {he
PIA — and construct a unitary operator on an enlarged Hilbert space H @ H', H.
being infinite dimensional. Tere I recall the construction of the unitary operatol
presented is in Refs. 48, 49.
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The first step is to recognize that the transformations (5.2) and (5.3) are unit-
preserving normal complelely positive maps (shortly CP maps).***! CP maps are
used to describe the subdynamics of the open quantum systems. A normal unit-
preserving CP map has the general form

T(6)=Y VIOV, (5.11)

-~ where

N e (5.12)

| The space of the CP maps is closed under: i) convex combination -, pi7;; ii)

composition T Ta; iii) tensor product 7y ® Tz; iv) partial trace: namely, if 7 1s CP
on'H; & Ho and gy is a density operator on Ha, then

T.(0) = Tra[pa T (O © 1)) (5.13)

s CP on 1. The last point means that if one has a unitary evolution in a closed
system and if subdynamics on a (open) subsystem can be defined — ie. partial
trace on the subsystem degrees of freedom — then these subdynamics are normal
mit-preserving CP maps. The Stinespring theorem™ ™ assures that every normal
mit-preserving CP map has a unitary extension, namely there exists a quantum
state and a unitary evolution such that the CP map is the partial trace on the
aibsystern degrees of [reedom. In some cases it is also possible to reconstruct
umitary evolutions on enlarged systems independently of the quantum state. This
s the case, for example, when V, satisfy the orthogonality relations

VoVl = 8. (5.14)

A, o -*_1 oy it
U=3 VaoWl, Wa=AVaB, (5.15)

Aand B being unitary operators on #H3, The CP map in Eq. (5.11) corresponds
1o the partial trace (5.13) where 7 is the unitary evolution given by the operator
(5.15). Tn the next subsection I show that this is exactly the case of the phase-
mmber amplification given by Eqgs. (5.3) and (5.4) for G~! = r integer: on the
sther hand, the transformations for integer G will be obtained later from the unitary

{ransformation.

5.3. The amplifying map

Hereafter T will distingnish between the Heisenberg and the Shrodinger-picture ver-
sions of a map & using the symbols Sy and Ss: the two are related through the
1dentity

Te(pSu(0)) = Tr(Ss()O) (5.16)

which states invariance of averages under the picture.
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In the previous subsection we have recognized that the map in Eq. (5.6) attaining
integer gain-r phase-amplification is equivalent to the r-photon transformation d
the algebra, hereafter denoted by Sﬁ:). From Eq. (3.81) it turns ont that the SEP—
acting on a generic operator O has the general form

n=0

r—1 3
SP0)= 3 (S050 S0 = 3 jupur+al, (6
A=0

and the phase factors, being totally ineffective in the action (5.17), will be droppel
in the following, The operators S;(:] in the definition of the map (5.17) satisly th

following relations
—1

Y (80) 80 =1, (5.8

by |

A=0
SISO = (5.19
shsn gl (.20

Equation (5.18) is analogous to the completeness relation (5.12) and assures tha
S};) is a normal unit-preserving CP map. Equation (5.19) corresponds to the o
thogonality relation (5.14) and thus allows one to recover a unitary evolution ona
enlarged quantum system. T postpone to the following subsections the constructio
of the corresponding unitary evolution and the related Hamiltonians, to contimy
the discussion on the properties of the map. i

Equation (5.20) leads to semigroup composition of the maps S};)

S o8t = gC) | (5.21)

: : {
which has already been given in Eq. (3.89). On the other hand, as a consequence df

the completeness and orthogonality relations (5.18) and (5.19), SJE;:' preserves the
operator products and the adjoint operation, thus transforming consistently the
whole operator algebra. The preservation of the operator product implies that th
transformation S;;} applied to a generic operator O = O(a, a!) (self-adjoint analyti
function of a and a') can simply be obtained substituting a and ol with a(r) and;
alyys L6 Si(0) = Oagry, al,y).

The completeness and orthogonality relations (5.18) and (5.19) are preserved by
similarity transformations

9 =y | (5.29)

V and W being unitary operators. However, the only sitmlarity transformations
which preserve the Heisenberg evolutions (5.3) and (5.4) are the permutations o
the A’s

FO_ps g0 (5.2

where P denotes the operator representing a permutation of the A’s, namely }5|nr+
A) = |nr + P(})).
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54, The unitary transformation

The unitary evolution corresponding to Sg;} can be constructed as indicated in
Eq. (5.15) by using two different photon modes in the amplification process. The
mitary operator is the following one acting on the Fock space of the composite

system W @ H

r—1
ihr=3 5'e AL (5.24)

A=0

Here fEElrJ are similar to 5'5:'} in the sense of Eq. (5.23). The semigroup property
| (3.20) reflects on the composition law for the operators Uy,

Uy Uy =p Utrs) » (5.25)

fhe symbol ~p denoting similarity under permutations (5.23).

Among all operators L'_f(r} the case of ﬁ’..{;.lrj = .@'&r), namely

r—1

b : S
=3 80 (57) (5.26)
A=0

is particularly interesting, because the second field mode undergoes the transposed
fransformation of Sﬂj. One should notice, however, that the action on the second
mode generally depends on the first input state pr. As a matter of fact, fact,
the action of ﬁ{i‘) on number eigenstates is not symmetric with respect to the two
modes, as a consequence of the broken symmetry between the amplification and

deamplification. One has
ﬂ-{rﬂﬂ’:m} = |[n/r], mr + (n/r}) (5.27)

aid the second mode undergoes an exact number-amplification only if the first field
s in a r-photon state — namely it contains only number of photons multiple of r
— in particular if it is in the vacuum state. Equation (5.27) may be rewritten in

the following more symmetrical form
{}{0—1}-1?’1,'”1) = |[Gn,] + G{G_lm:), [G“l'm.] + G_l(Gn> ) A (528)

which coincides with BEq. (5.27) for G~! = r integer, whercas, for (¢ integer, cor-
responds to the same equation, but with the roles of the two modes interchanged:
this is a consequence of the identity

f)r{TGJ = [:T(_Glj = {}(G—l) : (5.29)

Notice that Eq. (5.28) leads to integer-valued number of photons only if either G

or G~1 is an integer.



AT e dFLe AT e T TR

5.5. Multiphoton and ‘fractional pholon’ states: the amplification eniro
P P iy

The subdynamics of the two modes are obtained as marginal dynamics, name
upon evaluating the expectation of one-mode operators through partial tracing)
The subdynamics of the first photon mode correspond to § r) |'

(04,0100) = Tt [(31 ® 22)0 (01 © ] = Tes [m8 0]+ G

where the uncorrelated pair of states (p1 @ p2) represents the input of the amplifie.

As regards the subdynamics of the second photon mode, one has

r—1 ) |
(ﬁgr)ogr}(r)} = Tr [(,al ® ,c’i-g)U(Tr)(i ® ég)U[,,}] = Try (;‘52 Z(_V}’*]TOEVE"’) :
A=0
(5318
where 172 .
f”}gr) = ¢5 (SE}) = {Trl [p S(r] TS(T }} : (5.0
Therefore, the number-amplified mode undergoes the CP map
r—1
sstiai= > ([ 3') ol (5.3
A=l

|
which, due to the form of operataors V( )in Eq. (5.32), depends on the state g of i
other field (this is a consequence of the amplifying-deamplifying broken symmetyl
The case of p; equal to the vacuum state is particularly simple

|

and corresponds to the exact number-amplification
1 1""} e x r:
SE () = f(ri) - (531
On the other hand, as already announced, the map (5.33) for a general p; produce
the desired phase-deamplification. In fact, the optimum POM transforms as follon

~(1/r 2 do m- = i(n—m)
SHad@) == Y Y lealPe ™ p){pr + Mm)imlar + Al

e g=0 A=0

r—1 oo
do . ;
=Y laalg, 2 )l = dd(rg) (5.3
A=0 rg=0

and leads to the exact scaling (5.8) for 27 /r-periodic functions.
The subdynamics of the two modes in the Schrodinger picture can be evaluate!
through the identity (5.16). For the first mode one obtains

L ol EPT Sl alr i "
S = X8y (_55 ]) , (5.37
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ghereas, for the second mode, in the exact number-amplification case one has
s 4 I
1/ = o r
SOGI= TR (5.38)

Comparing Eq. (5.37) with Eq. (3.103) one can see that S_(gr) = MU/T) namely the
Stheédinger evolution of the first mode is the photon-fractioning transformation.
Analogously, by comparing Eq. (5.38) with Eq. (3.80) one finds that Sg.l"r) = M),
ie. the Schrodinger evolution of the second mode is the r-photon transforma-
tion, Therefore, the two modes undergoes inverse number-amplification: the exact
mmber-amplification is equivalent to the multiphoton transformation, whereas the
mumber deamplification corresponds to the photon fractioning. It follows that both
multiboson and fractional states can be produced at the output of the PNA.

Apart from the pump mode, the ideal PNA in the present framework is a four-
port nonlinear device, as schematically sketched in Fig. 11. In practical applications,
Jowever, it is useful io consider the PNA as a two-port device, focusing attention
| aily on the subdynamies of one field mode and actually ignoring the other one. This

deseription is equivalent to considering the PNA as an open quantum system, which
1o longer preserves both the energy and the entropy of the input field. However,
the amplification and the deamplification cases now become quite different, due to
the the broken-symmetry beiween the two. Despite that the exact amplification
(5.98) is not unitary (it is only an isometry), it preserves the Newmann-Shannon

entropy
S(p) = —Trp log f . (5.39)

The entropy conservation follows from the orthogonality conditions (5.19) which
imply that (ﬁ.{rj)T 1[;11(;“) — 1 (but f’ér:'{f’ér))f # 1). Thus, the physical picture of the
ahstract nurnber-amplification |n) — |rn) corresponds to an ideal PNA operating
with the auxiliary field in the vacuum (namely a PNA at zero temperature). As
long as the number-amplification is attained exactly, no entropy change of the field
0CCuTS.

On the other hand, the number-deamplification (5.37) corresponds to an iso-
metric evolution which no longer preserves the entropy (5.39). Here, the entropy
hange depends only on the gain G~' = r and on the input state of the deampli-
fied field (and not on the other field). It is worth noticing that the entropy during
deamplification can either increase or decrease as a function of r. As the photon
number-deamplification leads to the vacuum state for » = G~! — oo, the entropy
is asymptotically a decreasing function of r for large r. On the other hand, the
evolution (5.37) would in general transform a pure state into a mixed one (the only
state which are left pure being the number eigenstates and the r-photon states),
and thus leads to an increase of entropy in this case. Therefore, when a pure state
is number-deamplified, the entropy exhibits at least one maximum as a function of
the inverse gain 7. In Fig. 12 the Newmann-Shannon entropy (5.39) is plotted as



1342 G M. PDPAriano

B — x [[Gn] + G (G™'m))
PNA

[[G'm] + G7' {Gn))

(pump)
Fig. 11. Scheme of the ideal PNA.
e e e s | T
o L o

150

r=G1 r=G*

Fig. 12. Deamplification Newmann-Shannon entropy versus the inverse gain r = G~ for a cohe
ent state with (i) = 10 photons (figures on the left) and (A) = 100 photons.

a function of r, for two different input coherent states. One can see that for smil
average number of input photons the entropy has only one maximum, whereas fy
mtense input fields several maxima appear and local very low minima can ocell
(corresponding to almost pure states). As a rule, for coherent inputs the maxim|
are located approximately at r ~ |a|?/l, |o|* being the average number of mpu:
photons and [ = 1,2, . . : the maxima decrease for increasing [ and the entropy S
always smaller than log 2, which is the entropy of two pure states mixing,

5.6. The Hamilionian

I consider the operator {}{G_:) in Eq. (5.27) only for the case G~! = r integer, &
the mteger-¢& case f)’((—;) corresponds to the inverse operator ﬁ{Tg_l ) I denote by a

and B! the particle operators of the two modes, namely
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) e (at)” (fﬁ}
Inym) = 22 0,0) (5.40)

Comparing the transformation (5.28) with the action of the multiboson operator

f
HE,-)E”) = I[n/r]+ 1jn + 1), (5.41)

)

one can see that the ideal amplification (5.27) can be attained by interchanging
at with bgr} and then permuting a! with 4'. The operator permuting the a and b
modes has the form (apart from a sign)

V = exp [2 (a'b —b ﬂ)] (5.42)

As a consequence, the operator {j’(,) is given by
i i ; m
Utr) = €Xp [-ﬁ- (arb — Eﬂa)l exp [_E (agr)b - bt-::s{,.}” . (5.43)

The representation (5.27) of the operator E:T(,.} in Eq. (5.43) can be checked directly
wsing Eqs. (5.40) and (5.41). The product of exponentials in Eq. (5.43) corresponds
o the series of two four-port devices. The first exponential describes a parametric
IC from w, to wy, with classical pump at frequency ) = w,—wy. The second device
wrresponds to a phase-number amplifier which simultaneously converts frequencies,
having a classical pump at frequency §2 = rw, — ws. The corresponding interaction

Hamiltonian has the form
fiy = —ik (af, be™"* — blagye'™) (5.44)
and the interaction length L is given by
EL=m(2, (5.45)

Ebeing the gain coefficient per unit length.

The Hamiltonian (5.44) is complicated by the presence of the multiboson oper-
ators ag,.y. However, for high average number of photons {ala) 3> r the multiboson
operators behave asympiotically as follows

[ata/r (ala —r)! UE. ;
ﬂ_gﬂ{ e } (o)

= [ata;’r] T (ala — 7+ 1)-1'!2 -r%&g')at ~ kgjaf . (5.46)

where
B Ea

1”{@5] = przei(P-1)¢ (5.47)

and the notation of Eq. (2.23) is used. Taking into account also the pumping field
mode, the phase-number amplifier would require a medium with a x'?) susceptibility

and an interaction Hamiltonian of the form

Hy ~X&{albe +-hie: (5.48)
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¢ denoting the annihilator of the pump mode. Trom Eq. (5.48) it follows that!
order to attain phase-number amplification one should use a ¥ medium hayj
polarizability which depends on the phase of the field according to (5.47) in
limited frequency range containing w,. The amplifier gain r is involved only int
phase factor (5.47), whereas the interaction length has to be tuned at the compl
conversion value L = ir;’[?)\li"w}, I. being the average power flux of the (classi
undepleted) pump and A o< x2). For r = 1 the usual parametric frequency converte
is obtained, and the two exponentials in (5.43) cancel each other, leading to i
identity operator. For r > 1 the phase dependent coupling in Eq. (5.48) may alzi_
be regarded in terms of an intensity dependent coupling for a y("+1) medium (&
one can simply check using the polar decomposition of the particle operat-ors}.l'i
practice, for a constant coupling one can tune the interaction length as a functi
of the intensity, thus obtaining approximate number-amplification in the aversuj

]
yE
the usual degenerate four-wave mixing Hamiltonian (5.48) is considered ] -

values. For example, for r = 2 one has i‘cg) =2-%¢ét = (2ata)~}al. In this wayf
' "2 |
Hip=x (a ) he + h.c. (5.4

(k oc ¥, an approximate gain-2 number-amplification can be attained upf
choosing an interaction length L = u/[2x\/I,1;].7® Similar arguments hold for ani’
ogous ") amplifying media for r > 2, as in the resonance fluorescerce sche‘..'.- '
proposcd in Ref. 25. On the other hand, the analytic form of Hamiltonian (5.4
also may suggest that improvements in the ideal behaviour of the amplifier could “

attained through modulation of the nonlinear susceptibility at wavelengths submi
tiple of that carrying the amplified mode (see Eq. (5.47). Very intense, localized af
highly nonlinear susceptibilities could be obtained using quantum wells: this mh%,._
prefigure a quasi-ideal amplifier in the form of a heterostructure-designed devig
Work is in progress along these lines.

6. Number Duplication

As already mentioned, the photon-number duplicator (PND) is a device analogol
to a gain-two PNA which, instead of amplifying the number of photons, produs
two copies of the same input state for eigenstates of the number operator, St
a device would be extremely useful in LAN applications, because it provides
convenient realization of the quantum nondemolition measurement of the phots
number, beside itself realizing lossless optical taps superior to the amplifier tap.

‘The PND is the only state-duplicating device which can be realized in prineipl:
In fact, a general ‘cloning’ device producing multiple copies of a (generally nd
orthogonal) input set of states would violate unitarity®®:17 (thus, for example, 1t |
not possible to duplicate coherent states, as they are not orthogonal).

In the first subsection I give the duplicating CP map and construct a unitar
evolution and the corresponding PND Hamiltonian. Arguments related to unitari
— similar to those used for the ideal PNA — lead to the need of a third auxiliar
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field mode, thus representing the PND as a six-port device. Input-output energy
onservation are taken into account either by means of a classical pump or through
fiequency-conversion, in a way completely analogous to the case of the PNA.

In the last subsection I will show how a PND can be used in the reverse output-
ipul direction to obtain the one-mode states of Sec. 3.4. In particular this would
llow the production of the SG states starting from the SU(L, 1) two-mode states
{or fwin beams): the latter, in turn, are produced using a PIA with two vacuum
inputs, as already seen in Sec. 4.1.

6.1, The duplicating map and the Hamillonian
Tor the ideal PNA the unitary transformation was obtained starting from the am-
plifying CP map defined by the relation

Si(6%) = ()" . (6.1)
The case of the ideal PND can be obtained in striet analogy with Eq. (6.1) by means
of the duplicating CP map

S_H(éi) —eE @ét . (6.2)
The general transformation attaining the duplication of the shift operators (6.2)
hias the Torm

" m - - .

Sa(0)= Y 8108, (6.3)

A=—o0

where the nonunitary operators S (S;, :H & H — H) are given by

Sy = Z b nga|min{n, m}){m,n| , (6.4)

mn,m=0

and satisfy the orthogonality and completeness relations

g)l. AL - 6h_u:i 1 (65)
A=—o0

By adding a third photon mode we can write a unitary operator i (U:HQHRH —
HaM @ H) as [ollows

08
i= 3 Sed
A=—oo
[a] 20
A=—co ny na g na=0

B} fne423 Imin{ny, ma }y(min{na, ma}| @ [n2)(ni| ® [ma) (| . (6.7)
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The operator U is involutive (i.e. U2 = 1) and produces the intertwinning
Uetelel)i=I1ge ge*,
Uigéeteeti=ctoinl, (64

which corresponds to the Fock representation

m,ll+n—m) n>m,
ml—n+ml) n<m,.

Ull,m,n) = { (647

In particular, one has ﬁ|1’,n,n) = |n, L, 1), and for the actually interesting cased
the second and

[:T|n.,0,(}) = 10, 5,:h) I[bh.nJ

which 3s the required duplication. The scheme of the ideal PND is depicted
Fig. 13. In a way analogous fo the PNA, which intertwines the one-particle operafs®
al with the r-particle operator bgr}, the PND performs a change between the op

mode operator a! and the two-mode operator b}l 1 given in Table 3, namely

—1/2 !
'!’(TI,U = plel (rnax{btb, clte} + 1) i : (ﬁ.]lla
It follows that the Hamiltonian in the Dirac picture is

HP = ik (a'bg) — 8, 0) | {ﬁ.l&gé
with the same interaction length (5.45). Conservation of energy now requires ;L;
classical pump at frequency Q = w, —wy — w, — apart from the case of frequens
matching w, = wy + w,, which preserves the input energy E = w,! + wym +uwl
The device described in the present context is more precisely a PND followed by &
FC: in order to keep the frequency constant during the duplication one can chogy
wy = w, and put a parametric FC on the input mode a.

[if SRR R B

(pump)

Fig. 13. Scheme of the ideal PND.
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¥ Phase-squeezed states

The PND can be used to {ransform two-mode into one-mode states. In fact, a
particular case of the transformations (6.9) is the following

{710, n, N + n) = |n,0,N) . (6.13)

Bquation (6:13) implies that the PNA can transform the states for k = (1,1) in
fq. (3.69) into those given in Eq. (3.50). In practice, the only interesting case 18
fhat of the SU(1, 1) states for N = 0, as these can be realized (in the parametric
approximation ) using three- or four-wave mixing from input vacuum states. In this
\ iy one obtains the |(; 1/2) grr(1,1y states in Eq. (3.50) (k = (N+1)/2 = 1/2) which
approximate the SG states (2.16) asymptotically for { — L. Thus, schematically,
fe SG states can be obtained using a series made of a high-gain PTA and an ideal
PND. The former converts two input vacuum into a pair of twin beams (the N =0
fwomode SU(1, 1) states), whereas the latter converts the twin beams into a one-

‘mode SG state. This scheme is depicted in Fig. 14.

9= high — G PRD t==lll

PIA
e e

(pump) (pump)

twin beams

Fig. 14. ldeal scheme of generation of 5G slates.

The previous scheme is ideal, in that it requires a PND. However, one can get an
gproximate duplicating deviee using a conventional four-wave mixer. In such case
L turns out that a small downconversion of the twin beams is more effective than
i larger one in obtaining an improved-phase state. In fact, a large downconversion
yould produce undesirable multiple peaks in the phase probability distribution.™
[n practice, to obtain a state having a higher RPL than the customary squeezed
state (at the same average energy (7)) one could use a high-gain PIA in series with

a Jow-gain four-wave mixer.

7. Concluding Remarks

Tn this review article some number-phase squeezing mechanisms have been consid-
ored which can be partially handled by analytic methods. Tt has been shown that
the multiphoton and photon fractioning procedures are prolotype maps represent-
ing ideal photon amplification. All the amplifying maps analyzed in this paper are



unit preserving normal CP maps (see Table 6). This kind of nonunitary evolulions
is probably the most general class of amplifying maps and leads to a general de
scription of the quantum amplifier in terms of a three-mode (or six-port) devie
one mode is the amplified one, a second mode — the idler — restores unitarity d
the map, and the third mode — the pump — accounts for energy conservation. The
above description follows from the fact that every CP map has a unitary extensio
on a larger Hilbert space, where a unitary evolution provides the correct margini
probabilities upon suited choice of the idler-mode state.”” The photon fractionin
and the multiphoton maps have additional interesting properties: the former hs
unitary extension which is independent of the state of the idler mode, whereas the
latter preserves the Newmann-Shannon entropy.

Table 6. Summary of the amplifying maps: &c;{{’j] = Sumaer T:ﬂéVa O represents the amplifid
observable/FPOM.

Device (9] Vo f I Comments
PSA iy | explilnG(agagpnsz +he)] | {0} 0£GeR
PIA a Lﬂ%ﬁa—i"“‘“?(a'}“ ZH 1<GER
BS/FC | r—l_—G:,%riG“T“u“ 2t 1>GeR
PNA | ala, 2, 1Gni{n| {0} | 1<GeZ
|

®(-) Yon=o In){Gn + o] Ze 1<GEZ

PND gx Y=o |min{n,m}){m,n| Z | apnp(Et) = éX@e*

The CP-map description naturally connects the quantum amplification proces
to the quantum measurement process,”® where the unitary extension represents th
measured system interacting with an appropriate apparatus. At present a geners
theory of the quantum amplification is still lacking, and the above observation
seem to give new insight and suggest guidelines for future studies. :
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Appendices

A.1. Abbremations

BCH Backer-Campbell-Hausdorff (formula)
CFE Completely positive (map)
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FC Frequency converter
GTS Group theoretical states
LAN Local area network
LWV Lowest weight vector
ML Maximum likelihood
NSS Number-squeezed states
PIA Phase-insensitive amplifier
PNA Photon-number amplifier
i PND Photon-number duplicator
POM Probability operator-valued measure
PSA Phase-sensitive amplifier
PSS Phase-squeezed states
0SS Quadrature-squeezed states
RPL Reciprocal peak likelihood
SG Susskind-Glogower
SNR Signal-to-noise ratio
UIR Unitary irreducible representation
WH Weyl-Heisenberg (group)

L2, One-mode siales: phase-number asymptotic behaviours

lu this appendix the one-mode GTS (3.54) and their phase-number fluctuations are
waliated asymptotically in the following limiting cases: 1) {n) = ng, F — 0,1, oo;
i () = F — oo. Hereafter, the following notation is used for the quantum state

o3 5 ) = N=H2(E) 3 (P = 1™y = 3 dac™ i) . (AD)
n=0 n=0

| Turthermore, the case of zero 1 1s considered, as it aflects only the average phase.
i) =ng, £ — 0
T the order @(F), the asymptotic behaviour of the normalization factor of the

itates (3.54) is
N—ljz(F) " }‘1110{2 : (AB)

whereas the coefficients ¢, behave as follows

o) /2
ey ( ) i e (A.3)

I

from Eqs. (A.2, A.3) the asymplotic state is obtained (ng integer)

[no; F50) = no) + (noF)'?|ng = 1) + O(F) (e

having a sum of the coeflicients d,,

S ldal ~ 14 (noF)V? =1+ 6, (A.5)

n=0
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and corresponding to the peak likelihood é¢

o0

=
¢ = o ( |d, |] ~ 21(1 — 26n) .
0

=

L (ﬁ}:nn, F—1
The asymptotic normalization factor is (to the order O((1 — F)?))

120y ommef2 [1 PO _ g
N-Y2(F) ~e [1 o r)].

Using the following expansion for the binomial coefficients (x > 1)

()=l (6) e () +2()) + o)

one obtains the asymptotic behaviour

nf2
g 1 fn(n—1)
E S fhia s ARERA B Ul S

™ 'nl [ 2 ( 2nq i ( )
After multiplying by the normalization factor one has

nf2
ety L CLofael nins i) .
d, ~e [1 el

The sum of the coefficients d,, is
- 1
> lda] ~ Alno) [1 — (1= F}] ,
n=0

where the function A(z) is defined as

& ;B""’Q

Ax) =e"”‘zz ok

n=0
Using the Gaussian approximation for the Poisson distribution one has

00 i
Alz) ~ (2maz)~ 1" [ dye~ = = VA(2mz)M4 (A.131

which allows to rewrite (A.11) for large ng as

Z ldn| ~ V2(27n0)"/* [J -

n=0

The peak likelihcod §¢ reads

§p ~ \/gng”? [1 + %(1 = F)J ! (A.15)

- . (AL

e | —
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The number fluctuations én are approximated to the same order in (1 — F') in the
fillowing way

fn = FY2pll? o [ ——(1— )] , (A.16)

kading to the uncertainty product

Snb ~ \/g : (A.17)

In this case, the asymptotic states are obtained using the following approximation
for the binomial coefficients (z < 1)

(x+?1—1){ O ompl, (A.18)

n 1 n=

1) =ng, F — o0

Fquation (A.18) leads to the asymplotic state

- nj2
oY + \/EZ u ) |n)}, (A.19)

which has the following sum of coefficients

ST T e :
E}Hnl I [1+ S BTl = )‘3,112,1)], (A.20)

Ing; F;0) ~ F~ 3

| where the function ¢(z,s,v) is defined as follows"™
gﬁ(z,s,v):Z(_w+n)“’z“ : P e e (A.21)
n=10
Using the limit ;
Iiml(l —2)17%d(z,5,v) = (L —35) , (A.22)
&=t

[(z) being the usnal gamma-function, one has

(se] i)
R vy | OF B Teedi=1) & = 0 = 0
;' | el ani ) {\/mp—ﬁ'% ey, A

Equation (A.23) leads to the peak likelihood 8¢

2 ng < 1,
bh ~ {nal e (A.24)
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e (R)=F — o0

the normalization [actor behaves asymptotically as [ollows

NWHRY e B2 (A2

whereas the state coeflicients become

en = \/(Tf) (F-1 =1 ~ (1= P2 (A2)5

In Eq. (A.26) the following identity has been used

(—"’) = (=) (‘””_ 1) , (AZ]
n n

litn ('t-F) = (n) =] (A28
F—roa T T

The asymptotic state is obtained

which gives

o0

|F; F;0) ~ FH2Y (1= 02 ) (A

n=>0

For the state (A.29) it is possible to evaluate analytically the probability distribution
of the phase. Taking the scalar product between the state (A.29) and the SG stai

0

|e®) = Zemﬂﬂ) : (A.30)

n=0

one obtains the probability distribution

1 Tt e
P() = g lIFs Fi0) = 5 (1= 2V 1= Flcos(@) + 1= F1) (A3

which has the peak likelihood é¢

b~ 7F 1 = 'rrngl ; (A.32)
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