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Summary. — A gquantum, or operator-valued, wavelet is defined for a general
density operator g, in a basis generated by a general observable 6 by defining an
operator-valued dilation. The scale changing part of the dilation is shown to
eorrespond to the Yuen squeeze operator. The wavelet gives a family of
operator-valued coefficients which represent a given density operator in the
eigenbasis of 6, possibly a eomplete set of commuting observables. The wavelet is
given in both the Heisenberg and Schridinger pictures. Then an inwverse problem is
formulated which allows an unknown density operator to be calculated in terms of
the family of all wavelet operators. It is interesting that a limiting process is
required to obtain a unique inverse, when one exists. Then the Heisenberg-picture
dilation is applied to two known examples: the unitary process of phase sensitive
amplification and the irreversible process of number amplification.

PACS 4250.Dv — Nonclassical photon states (including antibunched, squeezed,
sub-Poigsonian).
PACS 03.65 - Quantum theory; quantum mechanics.

1. - Introduction.

Wavelets were created a decade ago by Morlet for geophysical exploration[1].
They were immediately applied to mathematical physies[2], to classical analysis
[3,4,5] and then to a variety of problems in signal processing and applied mathe-
maties [6]. Inverse problems[7] are well suited to wavelet analysis [6, 8, 9] but all of
the above works are c-number formulations. Here a quantum wavelet ig given, which
is tailored for quantum opties.

Many problems in quantum opties[10,11] are naturally formulated using
g-number coherent states[12, 13]. Because of the large number of degrees of freedom
and the coherence, the von Neumann approach using a complete set of commuting
observables is replaced by the overcomplete family of states (OFS) which are
continuous in a set of labels[12, 14]. An introduction with references and reprints of

(*) Permanent address: Dipartimento di Fisiea «Alessandro Volta», Universitd degli Studi di
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coherent states applied to problems including physies, chemistry and biology are
available in Klauder and Skagerstam[12]. By using the group theory of the dilation
group (but not the coherent states) Moses and Quesada|15] have computed the power
spectrum of the Mellin transform and have given the all-important resolutions of the
identity. Kaiser [16] recently gave an algebraic formulation of wavelets which showed
both the algebraic structure and the relation to complex structure. There is an
interesting relation between his work and the result presented here in the sense that
a limit is required. In ref.[16] the limit is the completion of 4 sequence of spaces W,
which approach L%(RY), an irreducible representation. Here a limit is required for the
inverse to be unique.

The organization of the paper is the following: sect. 2 will define coherent states,
squeezed states and wavelets and will present both c-number and g-number wavelet
transforms; sect. 3 will give an inversion formula for the density operator; sect. 4
will give two examples of the wavelet, one a unitary phase sensitive detection
and the other is the non-unitary number amplification. The conclusions are given in
sect. 5.

2. — Quantum optics and wavelels.
The coherent states are an OFS defined for each complex 2z as
(1) |z) = explzal — z*a] |0) D(2) |0),

where @, ¢' are the Bose creation and annihilation operators which satisfy the
CCR,

(2) [a, 6] =1,

|0} is the Fock vacuum and |2) is continuous in 2. For the real squeezing parameter y
the operator S(y) of Yuen[17] is given by

R
(3) S(y) = expl;@‘({ﬁt')d ~ a')} ’

The squeezed state is then given by
(4) 2, y) =Sy D) |0),

(more generally y is complex). The interpretation of S(y) follows from expressing
(¢, @”) in terms of the position and momentum operators (g, p) and calculating
that

(5) Sw|t]§-1w = eXp[_y],_q ;
D exp[ylp

From eq. (5) it is clear that phase space areas, including the uncertainty principle, are
preserved under squeezing. Several kinds of squeezed states have been produced in
the laboratory [18] so it is reasonable to hope that their precision will solve several
problems including gravity wave detection via optical interferometry and optical-
communication devices.
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A good starting point for wavelets is the usual Fourier optics of finite-energy
L*(R") signals which are invariant under translations of the origin [8]. The signals
f(t) ean be real- or complex-valued and have windowed Fourier transforms given
by

%

(6) Dywer(f; @, p) = j dzexp [ip -2 gx — q)f(x),

— o

where g(-) is a given, fixed windowing function which filters the signal £ The phase
space variables (¢, p) can either be continuous, (g, p)e R, or discrete, ¢ = oM,
p=pom (n, m)e Z*, with (gy, py) positive and fixed scales of coordinate and wave
number (or time and frequency). The uncertainty principle places some locality
restrictions upon the pair (g, p) but it is far from ideal if g(-) is non-Gaussian and in
that case other problems arise. One of the nice properties of wavelets is to improve
locality while preserving the uncertainty principle.

The direct and inverse problems in signal detection are the following pair: i) In the
direct problem f and g are given, the objective is to find @y ( [ q,p). i) In the
inverse problem Pwpr(f; ¢, p) and g are given and the objective is to find f Ha
solution f(x) exists to the inverse problem to eq. (6) some additional issues inelude
uniqueness, stability and numerical construction must be solved.

The wavelet transform analogous to (6) is given by

. ! 5 o B—h :
(7 W(f; a, b) = Py [ dnc;:(—a—)f(x),

— =

where ¥ is the complex conjugate of a «mother wavelet» which is admissible, dilation
invariant, mean zero and ¥ is the space (or time) variable. The addition of the
multiplicative scale change 1/a to the translation # —x —b is a key difference
between eqs. (6) and (7). Thus, in the sense defined in ref. [8] it could be stated that
Aslaken and Klauder [19] formulated and studied the first wavelet. The admissibility
condition on y for inversion is that

0 < ¢, < @,
where
I FLyl()]?
(8) ¢, =2z J dm|[—x]((£[— .
0+ 15

if F'[5] is the Fourier transform of . The resolution of the identity operator on L? also
follows from eq. (8). The Grossmann-Morlet inverse formula[2]

1 5 dﬂ' i x—b :
(9) Je) = — j 5 J'dba"ﬁ;{(jn——)WEf;a, b)
€, @ _J a
gives the inverse equation to eq. (7). Examples are given in refs.[1,7] and[9].

All of the objects in eqgs. (6)-(9) were ordinary functions in L2 Next, a
g-number version will be given where f is replaced by an arbitrary (pure or
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mixed) given density operator o and the scale change is shown to be implemented
by a Yuen squeezing operator[17].
Let 6 be an observable so that

(10) _ @6y = 0]6),

where the states |6) give the resolution of the unit operator 1 in terms of the measure
dp(6),

(11) 1= Jdp(9)|0)(ﬁ| .

The generating function of moments of the observable @ in the state whose density
operator is 7 is given by
(12) (exp[ia@1y:= Tr[exp[ia@]]

and can easily be shown to be the Fourier transform of the probability distribution
L35 0),

(13) {exp[ia@]) = Id,u(ﬁ) exp [iaf] L(p; 0),
where
(14) L(g, ) =Tr[|6)s]|z].

If y(0) is a window, then the filtered version of (13) becomes

(15) (explix61), = f du(0) exp [ix0] (8) L(5; 0).
Hence, a natural definition of a wavelet transform is
= 1 oo B=m )
(16) Wiein €)= -5 Jdﬁx(f})x( )-%’(p; 6),
£ &

which is, of eourse, still a c-number function as was eq. (7). Next, we will show that
the scale change of multiplication of 1 /& corresponds to the squeezing of the quantum
state, and therefore, also of the probability distribution. Consider the analytic
function of the operator @ defined as

a1n 7(6):= f du(0) 1(0) |6) 0 ,
with
(18) x(@) [6) = (9) |6).

Using (17) and (18) it follows that
(19) [ du 102 (5; 0) = Tr100) 61 = (26)).

The action of a Heisenberg-picture dilation on @, with the translation parameter v
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and the scale change parameter ¢, is given by
6 —

£

(20) g7 (6) =

In the most favourable cases of @ this transformation is unitary. There are, however,
other physically interesting cases for which this map has been shown not to be
unitary but rather is a completely positive (CP for short) map[20]. See ref.[21] for a
discussion of the role of CP maps in statistical mechanics. Examples will be given
later in sect. 4. If " is either unitary or if it is CP and preserves products of
observables, then it follows that

6

(21) DE(((0)) = (B (D) = x( :

£

In practice, a careful study of an observable is required to establish if it is unitary or,
if not, whether it is CP. The present study does not determine this, but this wavelet
will be shown to apply to both cases later in this paper. The previous equation allows
one to rewrite (16) as

. 1 6—n\._ 1 3

@) WEin 9= 5 Ter( ! H = R (DE(1O)) = (x,x(6)).
=

It is possible to write the transformation in (21) in the Schrédinger picture as D3,

where

(23) Tr[oM(O)F]1=Tr[6 45(3)].

In the Schrodinger picture, (22) becomes
(24) W(g; 7, o) = W'I‘r[y(l‘?J = W(z(enr )

which yields a «squeezed state» for every density operator . The choice of a scale e,
corresponds to the «highest wave number» mode in the observable @. Heuristically,
the limit of infinite wave number is required to obtain a unique inverse k — % or
¢—0 provided one exists. This is somewhat analogous to the limit required in
dequantization in ref.[22], although it is quite different in detail.

To properly apply eq. (23) or (24), the density operator ; would be mapped
according to an operator-valued dilation 44X or iﬂf’ composed with eigenfunctions
through the operator »(6). The trace then yle]dq an invariant (ie. independent of the
|#Ys) operator-valued wavelet in the Heisenberg or Schridinger time picture. The
operators are sampled at equally spaced points in # (or ¢) and at intervals of k/27 for j
taking pesitive integer values 0,1, 2, ....

3. — An operator-valued wavelet inversion formula.

The inverse problem to egs. (16) or (22) is to determine the density operator ¢ from
the family of all wavelet coefficients in the basis of |#)'s. This means that the wavelet

ol — M Nuovo Cimento B
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coefficients have been measured at all values of (x, ¢) in phase space. Of course, the
inversion cannot produce more information than the original system contained. Then,
the values of the parameters » and ¢ become variable in the inverse theory. This
involves an ¢ | 0 limit to obtain ¢ uniquely; in the case that it exists and is unique. By
using eq. (16), an operator-valued Grossmann-Morlet inversion formula will be
derived in this section. To indicate where the objects live, the reader is referred to
ref.[23] for the following facts.

Let % be the complex, separable Hilbert space of the system, let- $3(% ) denote
the set of all bounded operators on %, let 19 ) denote the finite-rank operators on
A, G(IH') denote the compact operators on  defined as

(25) G ) =F (A",

where v ig the closure in the uniform norm. Let the Hilbert-Sehmidt operators /(%)
be given by

(26) ()= {A|Tr(A*A) < w1},

where Tr(A*A) is the Hilbert-Schmidt norm of A. Then Emech[23] has shown that
the Hilbert-Schmidt operators are a two-sided ideal and form a Hilbert algebra with
inner produect (,) given by

(27) (A, B)=TrA*RB).

The trace-class operators on % are written as 7 (% ) and are defined as

(28) FIE)={3|Tr(E) < =}

Emech also has shown that

(29) FH )T ) ),

so that the generalized Grossmann-Morlet inversion formula will be proven in /(% ).
Fourier transforms, eg. F[&](w), are included in this family of operators and the
generalized Parseval’'s theorem preserves the Hilbert-Schmidt norm given in
eq. (26). The Fourier transform can either be chosen as the usual Euclidean inner
produets or can have the symplectic structure which was used by Daubechies and
Grossmann[22] in their study of path integrals and some of the associated integral

transforms. Schematically, the wavelet direct problem for quantum optics was given
in eq. (22) as an explicit expression for the map (in the eigenfunction |0)) as

(30) @D —-W,
whereas the inverse problem requires the map
(31) I W-op,
where W must be in the range of ¢ if a unique inverse is to exist. If W is not in

the range of &J, then at most some generalized inverse can exist and such objects
cannot be unique (see ref.[24]). If the g-number wavelet 5 has mean zero, the
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operator ¢,

1 F ", ; E
0+

7]

must satisfy the admissibility condition
(33) 0<|e,llys < o

in the Hilbert-Schmidt norm for the present.

The idea is that a fixed ¢ is sought from data including the wavelet coefficients at
all values of (1,<) with ;e R' and ee R, i.e. ¢ > 0. Since the Hilbert algebra is a
Hilbert space, the Riesz representation theorem on the Hilbert space will be used
with ¢ as an arbitrary test operator in the algebra.

3'L. Operator-valued Grossimann-Morlet inverse formula. — If X - 18 an admissible
wavelet in the sense of eq. (33), then

o0 | o
de

R o s e
(34) =@ [ S [ e n 0,

0+ s

in the inverse formula to eq. (22).
Proof. — By showing that for arbitrary P1y pz€ L(IC) it is possible to write

w0 + &
(35) (F»],pz)z(cx)_lj = fd-qco],x,,_,f)(xﬁ,a,pg),

0+ -

then by the Riesz representation theorem eq. (34) follows. The Fourier transforms in
the proof, which is to follow, can either be the ordinary Euclidean inner product or
the symplectic inner product used by Daubechies and Grossmann [22]. Taking the
right-hand side of eq. (85) and calculating:

< +w o + = + = + o
de o . - de j
J' _2' f dr.'(Flr :‘fr;,s)(;fa;,,—_; F-2): Jr ? I d?"}' f d(ul J d(u2°
1+ = o 0+ R — —o — o
o d + 4 o +
FLEDI* (@) FL7 . () FI7,]* () L5 ] (o) = f = j . J o f g
£

0
explin(w; — w)le Flx1(ew ) FIZ1* (cwg) FL11* (0,) FL5 2] (g) =

o

de ! i ;
j IFI71 ()2 f o FI5 P e PR Tl V= 6. (5 B

=
‘cl
— oo

2

i

=

0+

Equating the first expression to the last, one verifies eq. (35). Then the Riesz
representation theorem yields eq. (34). O
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Remarks. — 1) In order to ealculate a unique operator § from eq. (35), the limit
¢ — 0 (or, equivalently, the wave number %k —s %) is required for uniqueness.

2) The dequantization mentioned by Daubechies and Grossmann[22] in their
study of quantization also involves a limit for unigueness.

3) If ¢y is chosen with Hilbert-Sehmidt norm one, a wavelet representation of
the identity on /(%) ean be obtained from eq. (35) as

e el

(36) 1,=(c,) 'J‘ -
0+

e]*

+
J' d?;W('; n, SJ}?qe 1

e

where 1, f(x) is obtained by substituting f(x) into W(:;n,¢). The role of ¥ 18
clear.

4) The fact that the quantum wavelet given in eqs. (22) and (34) is very
different from Aslaken and Klander [19], Kaiser[25, 26, 16], Moses and Quesada| 15].
are evidence of the power and versatility of the coherent states and their continuous
representations [12,13]. One of ug (BDF) is investigating the connection of this work
to the work by Kaiser[16] because the Gel'fand-Neumark-Segal, GNS, represen-
tation on /’(%), as a *-algebra, is also based upon a eyelic vector.

5) It would be interesting to study nuclear magnetic resonance, NMR, and
magnetic-resonance imaging, MRI, using these ideas. This investigation is in
progress,

4. — Applications.

Two examples which can be treated using the wavelet transform (22) will be given
next. These include a unitary dilation (squeezing composed with translation) of one of
the quadratures of the electric field. The second is a dilation map of the particle
number operator, which is not unitary but rather a CP map.

Consider the quadrature of the electric field, which is defined in terms of a real

hase ¢ and the creation and destruction operators as
P &

(37) &= é(expli-;&-] a+expl—i¢la’).

The dilation map for &, is given by

(38) T

o

where .{jw Is a unitary operator which is the product of the squeezing operator § . and
the translation /A

(39) B,.=8.T,,

where

(40) S.i=exp = In lexp[2ig]lal — exp[ —2ig] (a")] |,
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and
(41) T, := exp[(exp[ig]la —exp[ —#3]a")].

These objects were first given by Yuen[17], and correspond to phase sensitive
amplification [27].

For a very different example, consider the case of number amplification, when the
operator @ is taken as the number operator % . The dilation of % can be written as the
composition of the translation map 7, and the scale change /.. The translation of the
number corresponds to a unit-preserving CP map. The form of a CP map is

(42) T@)=3 Viev,,
where
(43) S VPV =l

is the completeness relation. The map &, has the form of eq. (42),
(44) FR) =1+ =(E_ynE,L)",

where £ . denote the shift operators given by

(45) E. =(gtatl)y e, B, =(F ),

(46) E.|n)=|n%1).

The shift operator are not unitary although

(47) B, =4
because
(48) E.E_=1-|0)0].

As a consequence of (48), the translation map 7, does not preserve operator products
(namely 7, (ab) # 7 (a)- 7,(b)). However, the product is preserved on a subclass of
operators which annihilate the vacuum. In order to use the preceding development it
is neeessary to require that the map x(#) satisfy

(49) «(7) [0y =0.

Here n must be a positive integer in the number amplification process.

The squeezing of the number operator
(50} Jn)=¢en

must be restricted to sealing where ¢ is a positive integer. However, it is possible to
generalize this scaling to non-integer ¢ by using the largest integer contained in the
bracket as [en]. It can be shown[27] that (50) is obtained by the following CP
map:

(51) SRS = en,
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where, in general,

(52) SP= 3 |nyne+2|.

n={

The operators S satisfy the relations[20,27]
p

B e il
(53) 2SS,
a=1
(54) SE(SNT=2,,,
(55) BRI =85

The de-amplification for ¢ non-integer can be obtained as a CP map, only if ¢ is the
inverse of an integer [20]. Thus, if = is denoted as 1/#, where # is a positive integer,
the de-amplification CP map is given by

: e O y )
(56) Sype(r) =[fr] = Z (SPAsL .
A=0

This transformation preserves operator products as a consequence of the

orthogonality conditions (54). In contrast, general operator products are not

preserved by amplification (51) but products of number operators are preserved.
The composition law for the squeeze maps

(57) ety
which follows from (55), implies the 2" scaling of Daubechies wavelets[4]
(58) Jyreds ooy = i
| ——
k coples

and, analogously,

(59) ‘J‘]‘.,J'E 'tfi.l,'g R Jl,,ffé Tt r__J]’J,rgk .

5. = Conclusions.

Two operator-valued wavelet transforms were given for quantum opties, both in
the Heisenberg and in the Schridinger pictures: i) the squeezing for one quadrature
of the electric field and ii) the number amplification and de-amplification processes.
The first example is implemented by a unitary squeeze operator; the second with a
non-unitary but completely positive map. An inverse problem was formulated giving
the density operator ¢ in terms of the wavelet transform W and a fixed g-number
wavelet y. Work continues on these operators.
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