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The suitability of the Monte Carlo simulation approach to Fokker-Planck equations in
quantum optics is investigated. The method is especially useful for multimode analysis,
and hence for studying realistic models of nonlinear optical systems. Here it is illustrated
on the basis of two simple examples of application: i) a one-dimensional Fokker—FPlanck
equation in the number representation, which describes a simple model of optical ampli-
fier, and ii) the Van der Pol two-dimensional equation in the P-function representation.

Simulation methods have been recently introduced in quantum optics and proved
to be very efficient for treating complex nonlinear systems. In Refs. 2 a Monte
Carlo wave function method has been developed which allows the solution of the
master equation. The master equation approach, however, is not suited to large
numbers of photons, due to the high effective dimension of the truncated Hilbert
space. This prevents its use in several situations of practical interest, for example,
when studying lasers or optical amplifiers.

Apart from the case of very small numbers of photons, the Fokker-Planck equa-
tion is a more suitable tool for numerical evaluations. The general form of the
Fokker—Planck equation is

0,P(a, ) =~V - [Qe, DP(z, O] + 5 VaVe i (D@ OP@ O, (1)

where P(z, t) is a probability (or quasiprobability) distribution in the d-dimensional
space of the vectors = € R?, Q(z) is the drift vector, and D(z) is the diffusion
matrix. Depending on the analytical form of the drift and diffusion terms, Eq. (1)
can model a wide class of phenomenology in quantum optics, also allowing a precise
treatment of the noise of quantum origin in the presence of saturation and, more
generally, nonlinear effects.? The vector z can represent a set of photon numbers for
different modes of radiation, or a set of real and imaginary parts of complex field
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amplitudes: the former case corresponds to a number representation probability
distribution, the latter to a Wigner function quasiprobability (in this case we only
consider initial conditions and diffusion matrices such that P will remain positive
at all times).

Despite that the Monte Carlo simulation has been devised as a convenient tool
for solving equations of the Fokker-Planck form,! it is yet largely unknown by
researchers in quantumn optics. In this paper we illustrate the method and its effec-
tiveness in modeling quantum optical systems on the basis of some typical examples.
We show that the simulation gives reasonably accurate estimates of several quan-
tities of physical interest with a moderate computational effort. The algorithm is
very simple to implement and to use, and can be readily applied to a wide range
of complex models in quantum optics. As in the case of any statistical integra-
tion method, the present approach is particularly efficient when a multidimensional
integral (i.e. a multimode analysis) is concerned and direct integration algorithms
become prohibitive.

We now briefly outline the procedure, using a Green function formalism. Let
us describe the probability P(z, t) for a generic time ¢ by means of a statistical
ensemble of N configurations {z(¢), z5(¢), ..., 2n(t)}. For ¢t = 0, the ensemble is
sampled from a given initial probability distribution P(x, 0) by standard Metropolis
algorithms.* The time evolution of the probability distribution is

P(x, t + Af) :] de'G(z, ='; At)P(z', 1). (2)

4

The Green function G(w, 2';1), which acts as a transition probability for P(z, t),
is the solution of Eq. (1) with the initial condition G(z, 2'; 0) = 6(z — 2'). A short
time approximation, correct to second order in At, is

G(z, z'; At) = [det D(2rAL)Y]~1/?
x exp[—(z' —z + QAl) - QAD)™ - (' — 2+ QAL].  (3)

The time evolution is simulated® by moving the configurations SEV(E), et}

zn(t)} according to the distribution represented by the approximate Green function

of Eq. (3): :
2i(t + At) = 2:(t) + Qai ()AL + Efe(t)], (4)

where E is a zero average (laussian random variable with variance Dlz:(t)]At,
The value of a generic physical quantity is given by an average over the proba-
bility distribution of the relative function F(z, 1). We denote this average by ( ):

(F(1)) = [F(x)P(a:, {)dz . (5)
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The corresponding estimate given by the simulation, which we denote by F, is
obtained by averaging over the ensemble:

N

F@ = 5 3 Flas(). (6)

The central limit theorem ensures that the two averages (5) and (6) coincide in
the limit N — oco. Due to the finite size N of the sample, F(t) has a statistical
uncertainty whose estimate is

T /0'%;55) :\/F(t)ﬂj:rf“(t) | -

if the configurations are independent. The statistical error defined in Eq. (7) 18 a

decreasing function of NV, whereas the variance o} is usually only weakly dependent

on the dimension d of the configuration space. This should be compared with the
number of steps needed for convergence of customary integration algorithms, which
is an exponentially increasing function of the dimension d. For the calculations
presented in this paper, in order to obtain reasonable estimated error bars, it was
sufficient to consider N ~ 10%-10°.

The use of a finite time step Al introduces a systematic bias in the computed
averages, because the Green function of Eq. (3) is exact only in the limit of vanishing
time step. In the practical calculation one can tune At short enough to produce a
bias smaller than the statistical error in the measured quantities. For very accurate
estimates, one should perform simulations with different time steps and extrapolate
the results to At — 0 (typically, both the statistical error and the systemalic time
step bias get larger for increasing order of the evaluated distribution moment). In
the following we give two examples of application of the above method.

A. A one-dimensional ezample

In this first example we consider the Fokker-Planck equation which can be derived
from the laser one-mode master equation of Ref. 5 in the limit of large photon
saturation numbers. The probability distribution P(y, r) describes the evelution
of the normalized photon number ¥ = n/n. for saturation number n., 7 being the
time rescaled by the cavity damping time. The drift and diffusion coefficients have
the simple form

Q) =(v+ ns D[ +6(1+ v + n, ! )_1]
— [l + ngn + 6'(1 +)7 1, (8)
D(v) = 5:? {(v+na7D[nm + 6L+ v+ n7)7 Y

+ [l + nen + 0 (1 + )7}, (9)
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where ng, is the thermal photon number, and 6 and ¢’ are pumping parameters
which are proportional to the injection rates of atoms in the excited and the ground
state, respectively. The present simple model is also suited for describing a traveling
wave optical amplifier or, equivalently, an active fiber amplifier for negligible deple-
tion of the pumping radiation mode. The boundary condition ¥ > 0 was imposed
in the simulation by a reflecting barrier. A sample of the probability evolution is
given in Fig. 1, where the function P(v, 7) is plotted for an input coherent state at
three different values of 7.
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Fig. 1. Histograms representing the evolution of the probability distribution at + = 2, 10, and
20 for the one-dimensional Fokker—Planck equation with drift and diffusion coefficients given in
Eqs. (8) and (9). Here ny = 10*, # = 1,15, and ngp, = ' = 0. At 7 = 0 an input coherent state has
been used with (n)o = 100. The full line represents the result from direct numerical integration.

As an application to a real system, we consider the traveling wave optical am-
plifier of Ref. 6. We evaluate the gain G and noise figure R defined as follows:

Sout = (S/‘R)m

Sin ; 3 {S/R)nulj . “O)

(=

In Eq. (10) S;, denotes the input mean photon number, whereas for on-off mod-
ulation, the output signal S,y: is the difference between the output mean values
in the presence and absence of input, namely, after subtraction of the amplified

spontaneous emission (the signal-to-noise ratio (S/R) = (n)?/{An?) contains the
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number fluctuations (An?) averaged on equal on-off probabilities). In Fig. 2 the
gain (G and noise figure R obtained from a numerical simulation are plotted. These
results can be compared with those reported in Ref. 6 (where, however, the ampli-
fied spontaneous emission has not been subtracted, leading to unphysical minimum
noise figures lower than unit).
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Fig. 2. Gain G and noise figure R for the traveling wave optical amplifier of Ref. 6, as a function
of the input average signal in dBm units (Sin(dBm) = 10 log(10°Siy ).

B. A two-dimensional example

As a two-dimensional example, we consider the rotating Van der Pol oscillator, a
popular simple model for the laser threshold.” The Fokker-Planck equation now
describes the evolution of the quasiprobability P-function P(e, o7, t) in the inter-
action picture:

ad
Jox*

ltg — laP)a] +4 5

32
}P(a, oty t) (11)
In Eq. (11) the complex field amplitude a and the time { have been rescaled in order
to have only the free parameter g (g is a pumping parameter, g = 0 corresponds to
the threshold). As the diffusion matrix is constant positive, for initial P(a, a*, 0) >
0 (for example, a coherent state, 1.e. a delta-like P) the probability distribution
remains positive for all times.
In Fig. 3 a sample of the probability distribution in the a plane along with the
respective number probability distribution are given for fixed g and ¢, starting from
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P(n)

Fig. 3. o plane representation of the P-function and number probability distribution for the Van
der Pol equation (11) with g = 6, ¢ = 10, and initial vacuum state,

radiation in the vacuum state (P(a, o, 0) = &y(a) is equivalent to diffusing just
the zero point). Notice that the evolution of the field is 1sotropic in the a plane,
as expected from Eq. (11). The number probability distribution is conveniently
obtained, taking advantage of fast Fourier transform techniques, according to the
following identity:

+% g 200
p(n, t) = / gﬁ et /d‘?&P(cr, a f)elaliteT=1} (12)

o — =

As a test of the method, in Fig. 4 the simulation steady state result for both the
average (n) and the Fano factor F = (An?)/(n) is compared with the analytical
result which follows from the normal-ordered moments

2 exp(—g¢*/4)

= 3
S LR SR T oy ()
v —g%/4)
12,2 = 200 exp(—g*/ 14
(a'“a®) = ¢g* + +gﬁ1+erf(g,f2)’ (14)
and the moments are evaluated according to
L /dzaP(a, a’)ama (15)

The stationary results have been obtained upon evolving only one configuration for
large number of steps (N ~ 10°), taking advantage of the ergodic hehavior of the

solution.
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Fig. 4. Van der Pol equation (11): steady state average (n) and Fano factor F' vs the pumping
parameter g, in comparison with the analytical results obtained from Egs. (13) and (14).
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Fig. 5. Field correlation function v(t) and corresponding fluctuation spectrum (§) vs detuning &
for g = 3 and 7 (the same model as in Fig. 4). The full lines are fits of the simulation points.

Finally, in Fig. 5 the field fluctuations after the steady state has been reached
at { = {5 are plotted for two different values of g. The field correlation function ¥(1)
is given by

il

o et et)alt)) 1 N . A
'T“-) (n,(ts)} == (ﬂ{tsj) ; ,,(t“l' ts) !(t's)- (16)
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As a consequence of the isotropic diffusion, this is a real quantity. The fluctuation
spectrum 7(6) versus the detuning & in Fig. b is obtained by Fourier transforming
the correlation function; the high frequency part of the spectrum has been cut off,
as it would exhibit an unphysical peak for large § due to statistical fluctuations at
short times.

In conclusion, the Monte Carlo approach is suited to the analysis of quantum
optical systems, in particular for multidimensional modeling, where the evaluation
of the physical quantities of interest by direct integration algorithms becomes pro-
hibitive (but the method may be conveniently used also for one-dimensional mod-
els). The present method — which is essentially equivalent to a Langevin approach
with a locally Gaussian noise — is a valid simulation technique for the high pho-
ton numbers regime, in alternative to the Monte Carlo wave function simulation of
the master equation,? which can be profitably adopted in the opposite low photon
numbers case.
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