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Summary. — A new master equation performing isotropie phase number squeezing
is suggested. The phase properties of coherent superpositions are analysed when
the state evolves in the presence of a bath with fluctuations squeezed in this
isotropie way. We find that such a reservoir greatly im proves the persistence of
coherence with respect to either a eustomary thermal bath, or to an anisotropically
squeezed phase-sensitive bath.,

PACS 04.40 — Continuous media; electromagnetic and other mixed gravitational
systems,

PACS 4250.Dv ~ Nonclassical field states; squeezed, antibunched, and sub-
Puissonian states; operational definitions of the phase of the field; phase
measurements,

1. — Introduction.

Recently, much attention has been focused on quantum interference effects for
superpositions of macroscopically distinguishable states[1-10], with attempts at
observing non-classical features at a macroscopic level[11]. Considerable effort has
been devoted to the investigation of the influence on macroscopic superpositions due
to dissipation, which rapidly destroys quantum coherence, and makes quantum
effects non-detectable in practice[12].

With the aim of reducing the effect of dissipation on a macroscopic superposition,
Kennedy and Walls[3] have studied the time evolution of an initial superposition of
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coherent states for a single mode of the field interacting with a bath having squeezed
fluctuations[13]. They have shown that when the fluctuations are squeezed in the
right quadrature a squeezed bath becomes more efficient than a thermal one in
preserving interference fringes in the output photocurrent of a homodyne
detector [14]. More recently, BuZek, Kim and Gantsog[8] have investigated the phase
properties of quantum superpositions of two coherent states under squeezed
amplification, showing that a suitable phase-sensitive amplifier is able to preserve
the phase distribution of the input state (Schridinger-cat state [15]).

In ref.[3] and[8] a superposition of two coherent components is considered as a
test quantum superposition. In this case the quantum state itself determines a
privileged direction—the line joining the two peaks in the complex plane—which
selects the quadrature suited to squeezing. Nevertheless, superpositions of macro-
scopically distinguishable states can be formed by more than two states. For
example, during the time evolution of an initial coherent state in a Kerr medium [2],
one can have superpositions of three, four, and even more coherent states. For this
reason, in this paper we suggest a new master equation for «isotropic» phase number
squeezing, which is much more efficient in preserving coherence of any general
superposition compared to an anisotropic squeezed bath. We analyse coherence by
observing the phase (quasi) probability that is marginal to the Wigner function [16],

@ P(g) = [ 1Wirexpligl, respl —iphar,

]
where the Wigner function[17] is defined by

2

(2) Wia, a*) = J’ i—;— exp[—Aa* + A*a]Tr{gexplia' — A*al},

and ¢ is the density matrix of the system. We will compare numerical results for the
time evolution of an initial superposition state in the cases of isotropic, directional,
and vanishing squeezing, concluding that the isotropic squeezing is much more
effective in preserving the peak structure of the phase distribution than the other
two cases.

This paper is organized as follows: in sect. 2 we introduce the model and the
master equation. In sect. 3 we show the results of numerical integration in terms of
P($) and of the Wigner function. Section 4 concludes the article with a short
discussion and some remarks, '

2. — The master equation.

The master equation for the reduced density operator of a single mode of the
electromagnetic field in a squeezed bath can be derived from the knowledge of the
correlation functions of the bath operators[18]. In the interaction picture and in the
rotating-wave approximation one obtains[3]
|

do = o, = el
(3) d_f = p(N + 1)(20ga" — a'ag — ga'a) + yN(20" 00 — aa’ g — gaa’) -

—yM(2a gat —a'a’p —pa’al) — yM* (2000 — aag — gan),
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where @, o' are the boson annihilation and ereation operators of the mode, y is the
damping constant, and M = |M|exp[iy] is the squeezing complex parameter
satisfying |M|? < N(N + 1). For M = 0 the reservoir reduces to the usual thermal
bath and N becomes the mean number of thermal photons; for |M|* = N(N + 1) the
squeezing is maximum. The master equation (3) describes a situation in which the
noise transferred to the system increases quadrature fluctuations in one direction
more rapidly than in the other ones. The choice of the squeezing direction is
determined o priori by the phase v of the squeezing parameter M. In this sense the
master equation (3) represents a «unidirectionally» squeezed bath.

In order to obtain an «isotropie» squeezing we modify eq. (3) in such a way that the
phase of M is dynamically shifted as a function of the phase of the field. For highly
excited states o the phase factor of the state can be approximately given by the
following expectation value:

4) exp[tig]=Tre* o],

where ¢ and ¢' = (¢ )" are the shift operators

(5) ¢ =(a’)ya, e*=a'(aa’)?,

acting on the Fock space as follows:

(6) e [nys (m+l), e |m)=|n-—=1}.

This suggests using ¢* as dynamieal phase factors in the master equation. As the
phase of squeezing rotates at double frequency with respect to the average field, the
shift operators should appear in pairs in the squeezing part of the Liouvillian (3). This
last observation, along with the requirement of an isometrical master equation

(which must preserve normalization of @) leads us to consider the following
substitutions in the squeezing term of eg. (3):

(M Blser e,  Hesde
Taking into account the following operator identities:
“a'=a' =Va+1,

the substitutions (7) suggest changing the master equation (3) into the form

=

(8)

d 0 - - £ — - £ . - - S
9 d—f = y(N + 1) 2a0a" —a"ap —ga’a) + yN(2a'6a — aa'p — ua’) —

—2yMAD[2 VR +1oVR+1— (i +1)6 — o + 1.

The master equation (9) here derived in a heuristic way could represent a
feedback-driven thermal bath which detects the phase of the state dynamically. As
we will see, the relaxation (9) is very effective in preserving coherence, and thus a
more fundamental derivation of (9) is motivated (work is in progrfess along this line).
Notice that the stationary solution of eq. (9) is still the thermal distribution, but the
decay of the off-diagonal terms iz achieved for longer times.

The time evolution of an initial coherent state |a,) = |4.0) according to the master
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Fig. 1. - The effect of isotropic squeezing (master equation (9)) for positive and negative values of
M on a coherent state with «a, = 4. Contour plots of the Wigner function and P(¢) distribution

evolved in time for N =10 and |M| = VNN + 1).

equation (9) is given in fig. 1 for two different values of M. Here the Wigner func-
tion and the phase distribution P(¢) are plotted at t=0.1y ! for N =10 and

M= +V/ NN + 1) (actually, M now becomes a real parameter, because its imaginary
part does not contribute in (9)). It is evident that the effect of the isotropic squeezing
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corresponds to phase-squeezing for M > 0 and to number-squeezing for M < 0. Due to
dissipation, in addition to squeezing the Wigner function also moves slightly towards
the origin of the phase space. In sect. 3 we will study the time evolution of a
superposition of three coherent states (generated via Kerr effect), and we will
analyse the persistence of phase coherence of the state.
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Fig. 2. — Contour plots of thé Wigner function and P(¢) distribution evolved in time for initial

state (11), and for isotropic squeezing (master equation (9)). Here N = 30, M = YV N(N + 1) and
ayg= —4.
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3. — Persistence of phase coherence.

The Kerr non-linearity in quantum opties is probably the best candidate to
produce quantum superpositions of macroscopically distinguishable states. In ref.[2],
Yurke and Stoler investigated the time evolution of an initial coherent state
propagating through such an «amplitude-dispersive» medium which is described by
the Hamiltonian

(10) H=wwa)+ 2a a)i.

They showed that the state vector is periodic with period 27t/ & and that during one
period the state evolves passing through symmetrical superpositions of k& coherent
states at times t = x/k2 (for not too large k).

For a superposition of two coherent states (symmetrical with respect to the
origin) there is no difference between isotropic and anisotropic squeezing. Therefore,

Re (&)

Fig. 3. — As in fig. 2, but for anisotropic squeezing (master equation (3)).
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Fig. 4. — As in fig. 2, but for customary thermal bath (M = 0),

we are interested in the simplest superposition’ with more than two components,
namely the state obtained for ¢ = /32,

|

(11)  |¢x= i lexp[ —ix/6] |a, explia/3]) +

+explim/2]| — ay) + expl —im/6] |y exp| —im/3]}].

In fig, 2 the contour plot of the Wigner function corresponding to the state (11) is
given for ay; = — 4.0. In the following the phase properties of the time evolution of the
state |¢); according to the master equation (9) are investigated and the results are
compared with those obtained with the same initial state for the thermal bath—eq. (3)
with M = 0—and for the anisotropically squezeed bath—eq. (3) with M?* = N(N + 1).
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Fig. 5. - As in fig. 2, but for N =3 and different times.

The time evelution has been obtained by integrating numerically the master equation
(9), using a standard fourth-order Runge-Kutta routine for truncated Hilbert-space
dimension d = 128; then, taking advantage of fast-Fourier-transform techniques, the
Wigner funetion has been computed from the knowledge of the matrix elements
(n|o|m) of g in the Fock basis. Numerical accuracy has been checked through
normalization of ¢ and W and reality of the diagonal elements of 5.

In fig. 2 the time-evolved Wigner function and P(¢) are depicted for isotropie
squeezing M =V N(N +1) and N =30; in fig. 3 and 4 for comparison the two
distributions are plotted at the same evolved times, but for anisotropie squeezing and
thermal bath, respectively. The effectiveness of eq. (9) in preserving coherence is
- evident. For isotropic squeezing the phase distribution P(¢) survives for much longer
times, and the three peaks remain identical to each other for all times. On the
contrary, for anisotropic squeezing the central peak is the only one surviving at long
times, whereas the other two are smeared out. Notice that the height of the central
peak for anisotropic squeezing is slightly greater than that of the three peaks for
isotropic squeezing at the same times: such survival of coherence in the directional
case, however, is fortuitous, being strongly dependent on the direction of squeezing
with respect to the angular shape of the Wigner function in the complex plane.

In concluding this section, we notice that the effect of the vacuum component of
the squeezed bath in washing out quantum interference is stronger for lower values
of N and M = \/N(N + 1). In fig. 5 this is shown for N = 3, where at yt = 0L01 the
interference patterns are weakly visible, whereas at yt = 0.02 they are already totally
absent. These plots should be compared with those in fig. 2, which correspond to
much longer times,

4, — Summary and conelusions.

In this paper we have suggested a new master equation which squeezes states
isotropically in the complex plane. This novel kind of squeezing turns out to be very

B T TR

absent. These plots should bewcompar‘éd with those in fig. 2, which correspond to
much longer times.
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effective in increasing the persistence time of coherence, independently of the
gquantum state. This suggests an improved scheme of detection and generation of
Schridinger-cat states, based on isotropically squeezed reservoirs. The master
equation of the isotropically squeezed bath has been derived heuristically: a suitable
feedback mechanism should now be envisaged, which supports this new type of
dissipative dynamies.
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This work has been partially supported by the European Economic Community
under the Human Capital and Mobility programme.

REFERENCES

[1] WaLLs D. F. and MiLeurn G. J., Phys. Rev. A, 31 (1985) 2403.

12] Yurke B. and StoLgr D., Phys Rew. Leit, 57 (1956) 13.

[3] KEnNNEDY T. A, B. and WaLrs D. F., Phys. Rev. A, 37 (1988) 152.

[4] MicBurn G. J., Mecozzl A. and Tomerst P., J. Mod. Opt., 36 (1989) 1607.

[5] BRUNE M., HarocHE S, LErevie V., RatMonD J. M, and ZacUry N., Phys. Eev. Lett., 65
(1990) 976: Brune M., HarocHe S., RaiMonp J. M., DavipovicH L. and ZAGUrY N., Phys.
Rev. A, 45 (1992) 5193.

[6] Brisupova M., J. Mod. Opt., 38 (1991) 2505.

[7] BuzeEk V., VIDIELLA-BaRaNCO A. and KNIGHT P. L., Phys. Ren. A, 45 (1992) 6570.

[8] Buzek V., Kim M. S. and Gantsoc Ts., Phys. Rev. A, 48 (1998) 3394,

[9] HacH III E. E. and GeErrY C. C., Quantum Opt., 5 (1993) 327.

[10] For superpositions of eoherent states which are not macroscopically distinguishable see also:

ScHLeicH W., PERNIGo M. and Faym LE KIEN, Phys, Rev. A, 44 (1991) 2172; ScaHLEIcH W.,

DowLing J. P., Horowicz R. J. and Varro S. in New Frontiers in Quantum

Electrodynamics and Quantuwm Optics, edited by A. 0. BAruT (Plenum, New York, N.Y,,

1990).

LEcarTT A. J., Prog. Theor. Phys. Swppl, 69 (1980) 80; LEGGETT A. J., in Lesson of

Quantum Theory, Niels Bohr Centenary Symposium, edited by DE BoER, DAL and

ULFBECK, 1985, pp. 35-37; WicHTMAN A. 8., Proceedings of the Infernational Workshop

Probabilistic Methods in Mathematical Physics, Certosa di Pontignano, Siena, May 6-11

1991, edited by F. Guerra, M. LorrrEDO and C. MARCHIORD (World Scientifie, Singapore)

1992, and references therein.

[12] MiLBURN G. J. and WaLrs D. B, Am. J. Phys, 51 (1983) 1134; CarprEira A. 0. and
LEGGETT A. J., Phys. Rev. A, 31 (1985) 1069; Savack C. M. and WaLLs D. F., Phys. Rev. A,
32 (1985) 2316; MIL.BURN (. J. and HoLmes C. A., Phys. Rew. Letl., 56 (1986) 2237; MILBURN
G.J and WaLLs D, F., Phys. Rev. A, 38 (1988) 1087; DanigL D. J. and MiLeurN G. J., Phys.
Rev. A, 39 (1989) 4628 For the generation of transient non-classical effects in a
phase-insensitive reservoir see also Kim M. 8., Buzek V. and Kim M. G., Phys. Lett. A, 186
(1994) 283.

[18] In the framework of the heam splitter model for dissipation, Tombesi and Meeozzi were the
first to use the squeezed-vacuum technique in order to enhance the interference fringes at
the output of a homodyne detector. See: MEcozzr A, and Tomsrs: P., Phys. Rev Letl., 58
(1987) 1055; Mecozzi A. and ToMBEST P., Phys. Lett. A, 121 (1987) 101; J. Opt. Soc. Am. B, 4
(1987) 1700.

[14] For further developments of the squeezed-bath (or amplifier) technique see also: EXKERT A.
K. and Kn1GHT P. L., Phys. Rev. A, 47 (1993} 4302; Kim M. S, LEE K. S. and BUZEK V,,
Phys. Rev. A, 47 (1993) 4302; Ler K. S, Kim M. 8. and BUZEK V., J. Opt. Soc. Am. B, 11

[11



1136 G. M. D'ARIANO, M. FORTUNATO and P, TOMBESI

(1994) 1118. For the treatment of the squeezed bath in connection with the anharmonic-
oscillator model see: D’Ariano G. M., FortunaTo M. and TomBEs: P., submitted to
Quantum Semicl. Opt.

[15] SCHRODINGER E., Natwrwiss, 23 (1935) 807.

[16] Garraway B. M. and EKwigur P. L., Phys Rev. A, 46 (1992) R5346; Tana$8 R.,
MuURZAKHMETOV B. K., GANTS0G T8, and CHizov A. V., Quantum Opt., 4 (1992) 1; BUZEK V.,
GanTsog Ts. and K M. 8., Phys. Ser., 48 (1993) 131.

[17] HiLLERY M., (*ConNELL R. F., ScuLny M. O. and WicGNeEr E. P, Phys. Rep., 106 (1984)
121.

[18] GarRDINER C, W,, Quantum Noise (Springer-Verlag, Berlin) 1991,

© by Socletd Ttaliana di Fislea Questo periodico
Proprieta letleraria riservata & iscritto

all'lnione Stampa
Direttore responsabile: RENATO ANGELO RICCT Periodies Italiana

Questo fageicolo & stato realizzato in  fotocomposizione dalla Monograf, Bologna
e gtampato dalla tipografia Compositori. Bologna

nel mese di settembre 1995

an carta patinata ecologies chlorine-free

prodotta dalle Cartiere del Garde SpoA., Riva del Garda (TN)



