The Role of Quantum Efficiency in Impeding
the Measurement of the Wave Function
of a Single System

by G.M. D’Ariano

Dipar{.imén'to di Fisica *Alessandro Volta®
Istituto Nazionale di Fisica Nucleare -
via A. Bassi 6, -27100 Pavia, Italy

Abstract. Homodyne detection provides a concrete method for "meas-
uring the quantum state”. The state measurement is achieved by repeat-
ing many measurements of inequivalent observables after re-preparing
the system in the same state at each measurement. If the quantum effi-
ciency 7 of the measurement. is lower than 1/2 the density matrix of the
state cannot be reconstructed. The presence of such lower bound for
quantum efficiency prevents measuring the wave function of a single sys-
tem using schemes of weak repeated indirect measurements on the same
system. From one hand, this is another way to reassert the statistical
meaning of the wave function in quantum theory. From the other hand
it clarifies the fundamental role of the concept of quantum efficiency in
measurement theory.

1 Introduction

The possibility of measuring the wave function of a quantum system has remained
as a kind of taboo during the whole history of quantum mechanics. About 13 years
ago E. P. Wigner wrote [1]: There is no way to determine what the wave function
of a system is—if arbitrarily given, there is no way to "measure” its wave function.
[} In order to verify the [quantum] theory in its gene rality, at least a succession of
two measurements are needed. There is in general no way to determine the original
state of the system, but having produced @ definite state by a first measurement, the
probabilities of the outcomes of a second measurement are then given by the theory.
As a matter of fact, the possibility of measuring quantum states has remained at the
level of mere speculation for years [3]. and entered the realm of experiments only
less than three years ago [4] in the domain of quantum optics. ‘These real experi-
ments started desecrating the taboo, and reopened the discussion on this delicate
issue. In the meanwhile, the experimental availability of quantum nondemolition
measurements stimulated a new debate on the possibility of determining the wave
function of a single quantum system [5, 6. 7, & 9. 10].. Astonishingly, with H.

" Yuen I discovered that, despite its fundamental relevance in the logical framework
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of quantum mechanics, the general impossibility of measuring a single-system wave
function seem to have remained unproved. and thus we decided to give a set of
proofs [11] of the impossibility of determining the state of a single quantum system
for arbitrary measuring schemes, including any succession of measurements.

In this paper | will show in some detail the crucial role of quantum efficiency in
impeding the measurement of the wave function of a single system. Homodyne
detection provides a concrete method for “measuring” the quantum state. The
state is reconstructed by repeating many measurements of inequivalent observables
(the different quadratures of the field) after re-preparing the field in the same state
at each measurement. In Ref. [12] an exact technique was derived. that produces
the number-state matrix elements by averaging functions of homodyne data. This
opened the route to a rigorous treatment of this new kind of measurement, and in
Ref. [13] the possibility of homodyning the density matrix was recognized even
for nonideal detector quantum efficiency n < 1. There. it was proved that there is
a lower bound 7, for 5 that depends on the chosen representation for the matrix.
and that at best n. = 1/2. For quantum efficiency # < 5. the density matrix of
the state cannot be reconstructed. The presence of such lower bound for quantum
efliciency prevents measuring the wave function of a single system using schemes of
weak repeated indirect measurements on the same system. In fact. weak disturbance
corresponds to low quantum efficiency, and the need of an efficiency above the hound
necessarily leads to a state disturbance. either because the interaction between
system and apparatus should be sufficiently strong. or because the preparation itself
of the apparatus has to be “strong”.

After analyzing the meaning of quantum efficiency in Sect, 2 for some indirect
measurement schemes in quantum optics, the method of homodyning the state of
the field is briefly reviewed in Sect. 3. A scheme for a chain of homodyne measure-
ments-on the same copy of the field is analyzed in detail in Sect. 4, before giving
conclusions in Sect. 5. i

2 Quantum efficiency of indirect measurements

The photon-count distribution for a photodetector (with a photo-tube small with
respect to the coherence length of radiation) is given by the Mandel-Kellev-Kleiner
formula

,(nﬂfﬂ)“
: n!

t

Pyln) = exp(—na'a): ) . (2.1)

where (..} = Tr[}')". -] 1s the usual ensemble average for density operator Bt
denotes normal ordering, and 7 (0 < 5 < 1) is the quantum efficiency of the
detector. For simplicity in Eq. (2.1) the case of monochromatic field is considered.
with a denoting the annihilator of the nonvacuum meode. For ne= 1 Eq. (2.1)
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Figure 1: Equivalence of a nonideal (n < 1} detector with an ideal one preceded by a
beam splitter of transmissivity n,

gives the output probability of ideal photon-number detection Pi(n) = {In){n]).
More generally, for n < L, Eqs. (2.1) gives a Bernoulli convolution of the ideal
probability. It is easy to show [14] that a detector with quantum efficiency 5 < 1 is
equivalent to an ideal detector preceded by a beam splitter of transmissivity 5, as
schematically depicted in Fig. 1: the probability distribution of the photocurrent
cle at the output can be rewritten in terms of the input field a as in Eq. (2.1). On
the other hand, one can regard Fig. 1 also as a schenie for an indirect repeatable
measurement of the number of plhotens afa, by'ailowiug mode @ to interact with
mode b, and then performing the measurement on mode ¢: mode d can thus be
viewed as mode a after the evolution due-to the measurement. Apart from trivial
phase changes, the Heisenberg evolution ofimodes at the beam splitter is given by

the unitary transformation of fields -’

S e L =
(o) =215 el T J(3) o2

It is clear that for n = 1 measuring d is.equivalent to measuring a. and the meas-
urement becomes exact. However. the field is totally absorbed. and no photon is
available for a subsequent measurement on mode ¢. On the other hand, for n = 0
the measurement produces no disturbance, i. e. the output mode d is now equival-
ent to mode a. In this case no information on « is gained from the measurement
on mode ¢. This simple example illustrates the tradeoff between information gain
and disturbance in quantum theory: quantum efficiency parameterizes such tradeoff
between information and disturbance. Nearly unit i means very informative meas-
urement, however with strong disturbance on the field. Low 7. on the contrary,
means weakly disturbing measurements, however with scarce information on the
field. This tradeoff can be taken as a fundamental principle of quantum theory, and
in this sense the concept of quantum efficiency becomes a general feature of any
repeatable measurement. '

For homodyne det_ect_ion the output photocurrent is just the quadrature r, of the
field at p'ha;_sé_dﬁ_ with respect to the local oscillator (LO)

e % (ale'® 4+ ae~i?) (2.3)
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In this case, for detection with overall quantum efficiency n < 1 the probability
distribution becomes a Gaussian convolution of the ideal probability. with additional
r. m. s. noise given by

e
4n

Ay = (2.4)
A scheme for a repeatable homodyne measurement is depicted in Fig. 2. The field
with nonvacuum mode a impinges into a beam splitter with reflectivity 5. The re-
peatable measurement of the quadrature a, of the mode a is achieved by measuring
the quadrature ¢4 of mode ¢, namely by performing the measurement on another
mode b after the interaction with a [one can regard mode ¢ as the Heisenberg-
picture evolution of b, with unitary transformation given by Eq. (2.2)]. As we will
see shortly in Section 4 a repeatable homodyne measurement with reflectivity n
has the same output probability distribution of a non-repeatable measurement with
quantum efficiency 1, namely the probability distribution is a Gaussian convolution
of the ideal probability, with additional r. m. s. noise given by Eq. (2.4).

g - — 0

b [0)

Figure 2: Scheme of a repeatable homodyne measurement.

3 Brief review of the method of homodyning the guantum state

Homodyning the quantum state of the field [12] is the only known experimental
method for measuring the state of a quantum system. More precisely, the method
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allows the determination of the matrix elements (v|o|t'} of the density operator ¢
of the electromagnetic field between vectors [v) and [y}, preparing the field again
in the same state at each measurement. For a single mode field with annihilator
operator a the matrix elements are obtained by making repeated measurements
of the quadrature operators a4 = —é-(a'i‘ts"‘5 + ae~'®) at different phases ¢. Before
analyzing a repeatable measurement scheine for a single system in Section 4 let us
briefly recall the basics of the method.

The density operator is connected to the probabilities p(z, ) of the outcomes of the
quadratures a4 according to the identity [13]

T d Ao y $ ;
g:]ﬂ -;ff de pl.¢) Kylz — o) | (3.5)

where the kernel K, (x) given by

; Lo I s bl

Kalz) = -_—Ref drrexp (————-r + t?‘.l') (3.6)
depends parametrically on the detector quantum efficiency n. In a real experiment,
according to Eq. (3.5) the density matrix elements (¥'|g|i') are measured by av-
eraging the kernels (| Np(z — a4)|¢’) over the experimental data (z,¢), provided
that (¥|Ky(z — a,;,)it,i"} are bounded as a function of r and ¢. Despite the kernel
Kq(x) is not even a tempered distribution. the matrix elements (v'| Ay (r — ag)]v’)
are bounded if the following inequality is satisfied for all phases 0 < ¢ < n

1

T 2]

n >

where g -} t |
2(9)  e3le) | (o)

(3.8)

and ei(dﬁ) is the “resolution™ of the vector |¢7) in the r,-representation, namely:

Lol 2 enm [— zl(@}} . (3.9)

In Eq. (3.9) the symbol ~ stands for the leading term as a function of x, and
lz)y = e'® "d‘!r) denote eigenkets of the quadrature r,. Upon maximizing Eq.
{3.7) with respect to ¢ one obtains the bound o

s Slomi min {e*(¢)} (3.10)

T A T ey ' ;

One can immediately see that the bound is n > 1/2 for both number-state and
coherent-state representations, whereas for squeezed-state representations one has
n> (1+8%)"1 > 1/2, where s < 1, is the smallest squeezing semi-axe. From this
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last case one can see that that y = 1/2 is an absolute bound for n when homodyning
the quantum state (see also Ref. [15]), and generally. for any representation there is
a lower bound 5. > 1/2 above which the deusity matrix can be obtained. Hence. in
order to measure the density matrix by hemodyne tomography, a sizeable quantum
efficiency n > 1. 1s needed.

4 On the impossibility of measuring the density matrix of a single
system

In the previous section the tomographic scheme that we have considered is based on
“second kind” measurements, which completely destroys the quantum state of the
system. Many measurements are performed. but the system is prepared in the same
state ¢ before each measurement. We want now to consider a “first kind™ version
of the above scheme that in principle allows to measure the density matrix without
destroying it. Similarly to any first kind measurement. this goal can be achieved
using an indirect-measurement. namely by performing second-kind measurements
on another “probe” mode b that interacts with @ via a unitary operator ['. The
scheme for repeated measurements is depicted in Fig. 3, which is just a chain of
indirect homodyne measuring devices as in Fig. 2. The present scheme physically
corresponds to let the field mode a shine over a long chain of low-transmissivity
mirrors, detecting the quadrature of the weak transmitted field at each mirror.

Doy

lv(e1)) [v(g2)) [t{en))

Figure 3: Scheme for repeated quadrature measurements on the same single system.

Without loss of generality, we consider that before every single measurement the
probe is prepared in a pure state [v(¢)), which is generally optimized as a function
of the observable by that is measured. The generating function of the moments of
by after the interaction with a is given by

X(A¢)=Tr [elxp (ut;"%g’-‘) o (o)) (u(9) ] - (4.11)
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and is just the Fourier transform of the probability distribution of the experimental
outcomes. We consider the interaction given in Eq. (2.2), but here with mirror
transmissivity denoted by 1. The evolution of the b mode now reads

e= UMbl =sinnka+cosnb= v a4 (1—9)M2%, (4.12)

Due to the linearity of Eq. (4.12), the moment generating function factorizes in the
following way

X(Ao)= \a(m:‘?,x._r:a]u.(u =3 6) . (4.13)

where \q4(A, &) = Tr(exp(iday)o] is the generating function for the noninteracting
mode a only, and, analogously, \4(A. @) for the mode b. Using the operator identity

7

I i ¥
0= f - Tr{ge meHas]) ~<a' 4 (4.14)
T

the density operator ¢ is written in terms of the generating function \a(A @)
. " d@ D d)t -"'L =iXa i
o= [ 2 [ Bl 00, (4.15)
: o T - 4 ik

and using Eq. (4.13) one obtains

B '
g:/ 1‘3/ I (4.16)
0 w —
where py(z, @) is the probability of the measured quadrature b, rescaled by /2
4 i dA RS )
palr.0) = :J”-f —-;f_"w B XA e) . (4.17)

The kernel Z;(x) in Eq. (4.16) is given by

dX Ae M [\ AV(1 = J)/u.0)) L. : (4.18)

and generally depends on the coupling parameter 1 and on the probe state {v(o)).
One can easily see that when the probe niode b is in the vacuum state the kernel
(4.18) is identical to N,(x) in Eq. (3.6) with = n. namely, the transmissivity
v plays the role of the overall quantum efficiency of the indirect measurement.
However, the effective quantum efficiency can be decreased at will hy squeezing the
probe mode b in the direction of the quadrature b,. More precisely. one prepares
the probe in the squeezed vacuum '

Ju(o)) = 5,(0) . (4.19)

g

B o
_.tg(I}——:zREU

where

Sy = e‘_bf!’"Sﬂf"‘bibo . S = eh;p [—— (bf- - bg)} , (4.20)
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r > 0 denoting the squeezing parameter. One has
Sgﬁ-g.gg = ¢Thy Sgl:*) =" r) l (4.21)

with |z) denoting the eigenvector of by for eigenvalue x;: the rescaling (4.21) more

generally holds for the quadrature b, and its eigenvectors e"bh’olr) when using the
rotated squeezing operator Sy in place of 55. With the help of transformations
{4.20) and (4.21) it is easy to check that the kernel Z,(r) in Eq. (4.18) coincides
with Kp(z) in Eq. (3.6) with effective efficiency '

E?rl‘;.

oAl 4.2
eI+ 1~ (4:22)

=
Therefore, by increasing the squeezing parameter r it is possible to enhance the
effective quantum efficiency n beyond the allowed bound for measuring the density
matrix (17 > 1/2 for number and colierent states). At this point one may think that
squeezing the vacuum of b allows one to consider weaker and weaker interactions
with ¢ — 0, with the possibility of performing repeated measurements on the same
system with vanishing perturbation at each measurement. However. as we will show
immediately, this cannot be attained, because the squeezing needed to keep 5 as
constant also amplifies the perturbation back to a finite extent. This can be seen
upon analyzing the limiting behavior of the transition operator Q(r. @), that gives
the state reduction after each measurement

e T
i Ll (4.23)
Tr[eQl (2, 0)Q(x, 0)]
Here, the transition operator Q(r, ¢) is given by
: ol fogant o it o
Qz,¢) =0/ “z|e € Ss]0) | (4.24)

where the powers of ¥ account for quadrature rescaling. and one should keep in
mind that the matrix element is evaluated between vectors [9'/?z) and |0) in the
Hilbert space of mode b only, so that ((z, @) is an operator on the Hilbert space of
mode a. One has

Qe ¢) = 1-1‘r’*{a”%[S’Ue-‘*’fb%““rbtﬂim|0) : (4.25)
where

2% sinhral | (4.26)

a. =coshra+e¢

Using Eq. (4.21) and normal ordering the interaction operator with respect to b.
one obtains

Q(I}Qﬁ] o (ezrﬁ}lH({E?rﬂ)u?rle—-ibtbofrannarbT|U)|ccsﬁlaia, : (427)



The Hole of Quantum Efficiency in Impending the Measurement 483

Eq. (4.27) can be rewritten as follows

: | 22\ V/* ” e
Uep) = ( : ) exp [— (e7"dr — tan ke ™'%a,)
1 Ll ik
X exp ztan xe Sitgs b loos et (4.28)

We can now finally evaluate the asymptotic form of the transition operator in Eq.
(4.28) in the simultaneous limits of vanishing transmission coefficient ¥ — 0 and
infinite squeezing parameter r — oc keeping the effective quantum efficiency 7 as
constant according to Eq. (4.22). In Eq. (4.28), for ¥ — 0 using Eq. (4.12) one
obtains e*"J — A;?, where

Lo (4.20)
i

LY

Hl

= 3

- ; 1 : 5
Moreover, one has e~"e~'¢a, — a4, and |cos £[*7 % — exp[—a3/(2A3)]. Therefore,
the asymptotic form of the transition operator is simply given by

/4 e

5 =il

Oz, ¢) = (mg) exp —{_“‘"—Ai,i)— : (4.30)
n / n

i Equation (4.30) is the typical form of a von Neumann “reduction” of the state.

Therefore, one concludes that despite the interaction has been tuned as vanlshmgl\
small, the state is in fact “reduced” at each measuring step. :

5 Conclusions

In conclusion we have seen in which wav any scheme of repeated weak measure-
ments on the same single quantum system is doomed to fail in determining the
wave function. The lower bound for quantum efficiency for measuring the state of
an ensemble of systems is of fundamental relevance in impeding the measurement
of the individual wave function. There is always a tradeoff between information and
disturbance: weak disturbance means low quantum efficiency. hence low informa-
tion; high quantum efficiency means maximum information, however, it means also
strong disturbance. High quantum efficiency can be achieved even with vanishingly
weak interaction between system and apparatus, but the overall perturbation re-
mains sizeable, due to the need for “strong™ preparation of the apparatus in order to
enhance the efficiency. If the density matrix could be detected for vanishingly small
quantum efliciency, then there would be no need for strong preparation of the ap-
paratus, and the density matrix of a single system could be detected by successions
of repeated vanishingly weak measurements.



484 G. M. D’Ariano

References

[1] E. P. Wigner, in Quantum Optics, Erperimental Gravitation and Measure ment
Theory, P. Meystre and M. O. Scully, eds. (Plenum, New York. 1983). pp.
44 and 47. 1 found this quotation reported in the paper of A. Royer [2].

[2] A. Royer, Found. Phys. 19. 3 (1989)

[3] For a historical review on theoretical work and proposals for measuring quantum
states see Ref. [2]. For more recent references see also: U, Leonhardt. H. Paul
and G. M. D"Ariano, Phys. Rev. A 52 4899 (1995), and U. Leonhardt, Phys.
Rev. Lett. 74, 4101 (1995)

{4] D. T. Smithey. M. Beck. 8 el Ha}fmer.'and A. Faridani, Phyvs. Rev. Lett.
70, 1244 (1993)

[5] O. Alter, and Y. Yamamoto. Phys. Rev. Lett. 7T4. 4106 (1995).

[6] Y. Aharonov, J. Anandan. L. Vaidman, Phys. Rev. A 47. 4616 (1993): Y.
Aharonov and L. Vaidman, Phys. Lett. A 178, 3% (1993).

[7] W. G. Unruh, Phys. Rev. A 50, 382 (1994)

[8] M. Ueda and M. Kitagawa, Phys. Rev. Lett, 68, 3424 (1992).

[9] A. Imamoglu, Phys. Rev. A 47, ﬁ,éﬁﬁ: (1993).

[10] A. Royer, Phys. Rev. Lett. 73.913 (1994): Phys. Rev. Lett. 74, 1040 (1995)
[11] G. M. D’Ariano and H. P. Yuen, Phys. Rev. Lett. 76 2832 (1996)

[12] G. M. D’Ariano, C. Macchiavello and M. G. A. Paris, Phys. Rev. A50, 4298
(1994);

[13] G. M. D’Ariano, U. Leonhardt and H. Paul. Phys. Rev. A 52, R1801 (1995).

[14] G. M. D’Ariano, Quantum Estimation Theory and Optical Detection. in Con-
cepts and Advances in Quantum Optics and Speclroscopy of Solids, ed. by
T. Hakioglu and A. S. Shumovsky. (Kluwer, Amsterdam 1996, to appear)
[lectures given at the Summer School in memory of Prof. Asim Orhan Barut.
Ankara July/2-July/10 1995]

[15] For an extensive and detailed review on homodyne measurement of the ra-
diation state see: G. M. D'Ariano, Measuring Quantum States, in the same

book of Ref. [14].



