Amplification in small phase-shifts measurements
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Abstract. We study the performance of a quantum amplifier in order
to improve the sensitivity of small phase shifts measurernents. This
amplifier is based on ideal photon number attenuation. Phase mea-
surement is analyzed in the context of quantum estimation theory. We
consider quantum communication channels and, for binary hypothe-
sis testing, we observe sizeable bit-error-rate reduction and mcrease of
mformation retrieved from the measurement.

Phase amplification has never been considered in the past. Indeed, phase-modula-
tion based communications rely upon on-off 0-7 phase shifls keying (Barry and Lee
1990) and a phase amplifier is useless, because any kind of loss that decreases the
radiation field amplitude does not decrease the average phase, but just enhances
‘noise. The situation, however, is very different when the channel is intrinsically
signal-limited, namely when the information is unavoidably coded on small phase
shifts, as, for example, in interferometric high sensitive measurements. As we will
see in the following, in this case phase amplification represents a convenient strategy
to improve the overall sensitivity.

The words “phase amplification” can be given a precise meaning in the context
of the quantum estimation theory (Helstrom 1976). In our case the problem is
the estimation of the phase shift ¢ of a pure state [¢) that undergoes the unitary
transformation

1) — exp(m?ap)hﬁ) : (1)

with ala denoting the number operator of the mode a of the electromagnetic field.
The state |) itself is supposed to have a well defined phase (say »') namely in the
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number representation it is written as

) = Z tn|n) Pn = |¥n] exp(ing’) . (2)

n=0

Without loss of generality in the following we will consider ¢’ = 0, i.e. all ¢, are
real nonnegative. A phase amplifier multiplies the shift ¢ by a fixed gain g: in
general, this can be achieved at the expense of introducing some additional noise
and of partially destroying the coherence of the input state. We will see that these
undesired effects can be avoided by using phase coherent input states.

The quantum description of an apparatus for detecting a phase shift is given by a
Born’s rule in the following form

ploleldd = Tr ci'aT

“CluppleT * dji(g)] | (3)
where p(@|p) is the probability density of detecting a phase shift ¢ “conditioned” by
the actual value ¢, whereas dji(¢) denotes the POM (probability operator-valued
measure) that pertains the apparatus. When there is no a prior: preferred phasc
the conditional probability density should have the form p(é|¢) = p(¢—). In this
case the POM has the covariant form

di(9) = el regemielav C2

(4)
with ¢ being a fixed positive oporator For covariant measurements, the operator
¢ corresponding to the ideal POM is (Holevo 1982)

L= Inyiel; (5)

n,m=0

The phase amplifier considered here is based on ideal photon number attenuation.
In Ref. (D’Ariano 1992a) the Hamiltonian of the ideal photon number amplifier
(PNA) (Yuen 1986a, 1987) is derived. When the PNA is used in the inverse way
as ideal number attenuator, it works also as a phase amplifier. Ideal number
attenuation and simultaneous phase amplification are deseribed by the unitary
operator (1)'Arianc 1992a)

g=1 0o
0= Z > In)gn+v| @ |gm + v)(m] (6)

v=l nom=0

that acts on the enlarged Hilbert space H @ #; including the signal Hilbert space
H and the space H; of an additional idler mode, needed to preserve unitarity and
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respongsible for “mixing” the state. We introduce the amplifying maps A, and A;'
pertaining the signal Hilbert space # only, and obtained by partially tracing over
the idler mode. These are given by

A1) (l) = { Ugl¥)il @ it } |

o 1
AY(dfi(¢)) = Ty {I?Jd;i—(f&“) ®iﬂfgl®ﬂi} ; 5

with p; denoting the density matrix of the idler mode. From Eqs.(6) and (7) one
can see that the ideal number attenuator achieves the phase amplification

Ay (Qa(4)) = |
de 50} cialog=wnamiy 500 |y (n/glllbm/ gl mle=re o™ 2e0).

Ing

(8)

where [z] represents the integer part of z. Notice that for the ideal POM (5) Eq.
(8) is just a 2m-periodic rescaling of the POM: in this sense the present phase
amplification can be considered ideal.

Now we examine the performance of the phase amplifier for phase coherent input
states. Phase coherent states (Shapiro and Shepard 1991) are defined as follows

&) = (1= V2 S etlny, e=e¥lel, Kl<1, )

n=>0
where the complex number £ also carries the phase-shift information . Then, from
Eqs.(7) and (9) one has
A (1€)(ED = l67)(&7] - (10)

Thus, phase coherence is preserved under amplification. The phase-coherent state
|€) has average number of photons (i) = |€]*/(1 = |£]%). For ideal phase detection
the output phase probability after amplification is given by

1 1—[&]*
om 1+ |€]%0 — 2|¢]e cos(¢ — g)

pous(Bl¢) = o I(€71e ) = (1)

In the limit || — 17 one has pout () — dox (¢ — g¢), Jar denoting the periodicized
delta. All quantities of interest can be evaluated analytically for |£] = 1 — € with
ge €< 1 and gy € [—n, w]. The average phase is amplified as

(@Yout = g2+ Olge), (12)
whereas the run.s. fluctuations
(‘ﬁ‘f’rj)our = 2g¢ + C—)(ﬂ?'-_?] (13)

are amplified by only a factor g.
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As a preliminary information about the goodness of the amplifier, we evaluate the
noise figure ! -
(Sg/vm’}fn.

(SE /-N‘)ou! i

where § and N denote respectively the signal (¢) and the noise (A¢?). From Egs.
(12) and (13) we have

R= (14)

Rt fidtt (15)
g
This good performance of phase-coherent states is simply due to the fact that such
states exhibit shot noise (A¢?) o< (R)~* and, at the same time, they are preserved
under amplification. Hence, when attenuating (n) one gets a phase noise which is
amplified by only a factor ¢.

The typical situation in which one takes advantage of amplification occurs when
the signal (¢} is very low, below the detection threshold, and the amplifier is used
to enhance the signal above the threshold. However, as amplification also increases
noise, the net benefit must be evaluated carcfully, by comparing the values of BER
(bit error rate} and mutual information (Blahut 1987) obtained with and without
amplification. We consider now a binary channel that, pertains the phase detection
of a low signal. The measurement, consists of testing the hypothesis that a phase-
shifting event has occurred, assigning the “true” value to every outcome above a
fixed threshold ,. We denote by |0°) = [3}) the reference zero-phase state and by
1y = exp(iaimp)hb) the shifted state. The input signal is very weak (v < 1): the
threshold g, is taken above ¢ due to limitations of the detector sensitivity and in
order to achieve a low value of ihe “false alarm probability” 1o (Helstrom 1976;
Blahut 1987) :

e _

Quo= [ dép(al, | (16)
namely the probability of detecting ‘1’ given state [07). It is clear that amplifica-
tion will increase @y as a consequence of the spread of the right tail of the ‘0’
distribution; however, it will simultaneously enhance the “detection probability”
(21j1 (Helstrom 1976; Blahut1987)

Qi :/ dé p{dle) (17

=

namely the probability that ‘1” is correctly detected given state ‘1), An improve-
ment of the binary test measurement is determined by a decrease of the bit-error-
rate

B:I‘i'Ql]g“‘Q]“ 3 i y (]8)
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or, equivalently, by an enhancement of the mutual information (Blahut 1987)

i1
Qrlj _
F=: ) mQrsIve— o (19)
_f;n Y e pRi

after specifying the a priori probabilities {p;};=0,1 of input states |57}, and con-
sidering all possible conditional probabilities Qy; of detecting ‘k” given [42).

Now we evaluate the conditional probabilities @1y and Qi with (¢ > 1) and
without (¢ = 1} amplification for input phase coherent states. For ge <1 we have

Qujo = £ cot (%) .

Qii=1% {3;— — arctan [Eg-g tan (5”—*1;“—-(!-*5)}} : (20)

These probabilities give the BER and the mutual information plotted in Fig. 1 as
functions of the gain for different values of input number of photons {f)in. The case
of very weak input signal ¢ < ¢, has been considered. One can see that the BER
exhibits a steep decrease and that, at the same time, the mutual information shows
a rapid increase near the gain g, = ¢, /. These features are further enhanced when
the mean input photon number is increased. For the mutual information we refer
to the situation of rare events, i.e. p1 = 1 —po < 1, which ig of interest for example
in interferometric detection of gravitational waves: the behavior of I, however, does
not qualitatively depend on py, apart from the range of variation. For large input
signal ¢ > s, on the contrary, one could see that the mutual information would
monotonically decrease versus g, whereas there would be essentially no reduction

of the BER.
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Figure 1: Bit error rate (a) and mutual information {b) versus gain g for phase-coherent
states with mput number of photons (fi}in = 50, 500, 5000. The phase shift is ¢ = 0.05,
whereas the threshold phase is ¢, = 0.5. For the mutual information a probability
m = 0.01 has been used (rare events).
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For generic input states phase amplification changes the kind of state and pariially
destroys coherence: for example, phase amplification does noi preserve coherent
or squeezed states. However, especially for nonideal phase detection, one can gain
much benefit from phase amplification as well. This occurs because the amplifier
partially recovers the effective loss due to nonideal measurement. The qualitative
behavior of I and B for coherent and squeezed states is the same as for phase coher-
ent states (D’Ariano, Macchiavello, Sterpi, and Yuen 1996). The only differences
are that the variations of B and I are less steep, and the amplifier efficiency is
much reduced for low numbers of input photons: these phenomena are distinctive
of a partial loss of coherence of the amplified state.

We emphasize that phase amplification is advantageous only for measurements
of small phase shifts ¢, and notl too large gains g, such that gp < 1. In fact,
the transformation (8) folds the probability distribution at the boundaries of the
21 window in order to maintain the distribution as 2r-periodic after the stretching
along the direction of abscissa. In this way, in the limit of large gains any probability
distribution would converge to the uniform probability on the 2m window.

Some comments are now in order on the apparent violation of the data processing
theorem (Blahut 1987) inherent an improvement of mutual information. Indeed,
the theorem states the impossibility of improving the mutual mformation by per-
forming any kind of data processing. More precisely, for a channel described by
a map X — Y between input-output random variables X and Y, the mutual
information 7(X;Y) between X and Y can be improved neither by any kind of
“encoding” I/ — X, nor by any “decoding” ¥ — V, where I/ and V are new ran-
dom variables. In other words: the end-to-end mutual information /(I/; V) in the
Markov chain of random variables I/ = X — Y — V is never greater than 71{X;Y).
Tlowever, the data processing theorem does not pertain the case of insertion of a
quantum amplifier in a channel for two reasons. On one hand, the amplifier is not
a “classical” data processor, i.e. it is not equivalent to a measurement followed by
a data processing. Coherence is only partially destroyed throughout the amplifi-
cation process, and hence the amplifier is deseribed by a map between probability
amplitudes rather than a map between input-output probabilities. Probabilities
are determined only at the very end of the chain, depending on the observable that
is measured at the output. On the other hand, also classically, the amplifier is used
neither as an encoder nor as a decoder—i.e. at one of the two ends of the chain-
but it is inserted in the chain as a preamplifier before a source of additive noise, in
order to overcome a detection threshold: in this case, the conditions for the data
processing theorem are not fulfilled. In practice, the amplifier is used to reshape
the information channel to approach conditions for optimal information transfer,
“This is the case when the channel is suboptimal, as when it is intrinsically signal
timited by limitations of the detector sensitivity, because the detection threshold
is above the maximum incoming signal,
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In conclusion, we have proposed a scheme for amplifying small phase shifts below
the detection threshold. In such scheme the BER is reduced and the information
retrieved from the measurement is increased. The best performance is achieved by
phase-coherent states. Finally, we point out that, as suggested in Ref. (D’Ariano
1992b), phase-coherent states can be ideally achieved using a phase insensitive
amplifier (PTA) and a photon number duplicator (PND) (Yuen 1986b) in cascade,
whereas the PND can be approached by a sum-frequency up-converter.
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