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Abstract

We propose an experimental procedure for measuring the Hamiltonian operator (or the
Liouvillian super-operator, in the case of open systems) of an optical device. The setup
is based on the tomographic reconstruction of quantum states, and is composed of a non
degenerate optical amplifier, a homodyne detector and a linear high efficiency photodetector.
Numerical Monte Carlo simulation of experiments are given for the measurement of the
Liouvillian of a two photon phase insensitive amplifier.

Introduction

“Quantum homodyne tomography” (1, 2, 3] proved to be a very powerful technique for experimen-
tally reconstructing the quantum state of radiation [4, 5]. Here we propose to apply this technique
to the measurement of the Hamiltonian operator of a quantum device. In fact, by impinging a
complete set of input states and accurately measuring the respective output states, it is possible
to recover the full dynamical characterization of a device, namely to reconstruct the quantum op-
erator governing its dynamics. Since in the general case the dynamical evolution ig non-unitary,
one has to resort to the notion of Liouvillian £ super-operator. The Liouvillian is responsible for
the evolution of the density matrix p of a generally open quantum system, through the master
equation

d
Z0le) = Llp(] 1)
which is formally solved as
o(t) = Gi[p(0)], with G, = exp(tL), (2)

where G, is the so-called Gireen super-operator. Hence G; is a map (in the Liouville space of
density matrices F) between the input and output states for the device: Pour = Gi[pin]. By using
a complete set of states pin in F, and by measuring the resulting pout, it is possible to reconstruct
the mapping G, and hence the Liouvillian £ = $ logG;.

The outline of the present paper is as follows. In Sect. 1 we describe the experimental setup
and give the procedure for the measurement of the Liouvillian matrix. A short discussion is given
for the case in which the optical detectors involved in the experiment have non-unit quantum
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Figure 1: Sketch of the proposed experimental setup. Two correlated twin beams (b1 and b2) exit from a non
degenerate optical amplifier (NOPA). A direct measurement is performed on bl at detector DD, thus reducing the
beam 2 to a number state (or a mixture of number states if the quantum efficiency of the detector D is np < 1).
In this way, 2 number state (mixture) actually impinges into the optical device. After being evolved by the device,
the beam b2 emerges, and is subject to a homodyne measurement at detector H. The Liouvillian matrix can now
be reconstructed by data analysis.

efficiency. In Sect. 2 the underlying mathematical backbone is briefly presented. In Sect. 3 a
Monte Carlo numerical simulation of the experiment is given by analyzing the measurement of the
Liouvillian of a two photon phase insensitive amplifier. Finally in Sect. 4 we give the conclusions
and analyze the actual feasibility of the experiment,

1 Experimental Apparatus

The sketch of the experimental setup is given in Fig. 1. In this case the set of states impinging
into the device are number states {|n)(n|}. Since this set is not complete in the Liouville space
F, the setup presented here is capable of reconstructing only the diagonal part (in the number
state representation) of the Liouvillian £, i.e. the part where the 4 indexes of £ super-operator
matrix are two by two equal. The extension of the method to the reconstruction of the whole four-
dimensional matrix £ is under development, and is subject to the realization of a device capable
of preparing the appropriate input states. However, there is a vast class of devices for which the
Liouvillian £ is diagonal. These are the so—called phase insensitive devices, which transforms
dephased states (states that commute with the number operator ale of the electromagnetic mode)
into dephased states. Typical examples of such devices are the laser and the phase insensitive
linear amplifier (PIA).

The preparation of number states is rather critical, and resorts to the state-reduction mech-
anism. By means of a non degenerate optical amplifier (NOPA) with vacuum input and strong
classical pump, two distinct quantum correlated twin-beams (b1 and b2) are created. A very ac-
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curate direct measurement is performed at detector D on the beam b1, so that beam b2 is reduced
to a number state p = |n)(n|, where n is the result of the measurement in detector D. In the case
of non—unit quantum efficiency np < 1 at D, beam b2 is reduced to a mixture of number states
p =75 ¢i)(i| (the mathematical details are given in Sect. 2).

Once the reduced beam b2 has entered the optical device, it undergoes a (generally non—
unitary) evolution governed by the system'’s Liouvillian operator through the master equation (1).
The output beam emerging from the device is then subjected to a homodyne measurement at
detector H, where the density matrix py. of the output state is measured. Now only some data
analysis is needed in order to reconstruct the Liouvillian matrix £: the photon-number probability
measured in H is the n-th row of the Green matrix G, (in the number state representation), where
n is the number of photons of the input state pi, = In)(n|, which, for unit quantum efficiency at
detector D, is exactly the number of measured photons at D. In the case of non—unit quantum
efficiency mp # 1, one considers the most probable input state pin = |7} (7], given the outcome n.
The Green matrix G;, constructed in this way, is the input-output transformation matrix for the
phase-insensitive device. The Liouvillian matrix L is obtained by taking the natural logarithm
of G;, and dividing it by the evolution time ¢. The non-unit quantum efficiencies np and ngy at
detectors D and H yield rather different effects: while the non-unit quantum efficiency np < 1 at
detector D tends to shuffle the rows of the matrix G, the non-unit quantum efficiency ny < 1 at
detector I tends to smear out the details of each row of the reconstructed matrix G;.

2 Mathematical Backbone

We briefly give the mathematical details of the physical processes outlined in Sect. 1. We first
describe the input number state preparation procedure, and then the evolution process in the
number state representation inside the optical device. For a complete description of quantum
homodyne tomography we address the reader to the review paper [6].

2.1 Number State Preparation

At the output of the NOPA, the state of the correlated twin beams is [7] 1) = Talo ﬁ%ln, n),
where x is the pump-parameter for the NOPA. This state is reduced by the photodetector
D with quantum efficiency np. Such a photodetector can be modeled as a perfect (n = 1)
photodetector preceded by a beam splitter of transmissivity 77p that entangles the input mode
with a vacuum mode [6]. The unitary evolution operator U for the beam splitter is U =

exp Karctgdnﬁl - 1) (ad" - aTd)l, where 7 is the transmissivity of the beam splitter, a is the

annihilation operator of the relevant bl mode, and d is the annihilation operator of the vacuum
mode. To obtain the state of the reduced heam b2, we must project the state Uly) that exits
the beam splitter on the eigenstate |n) of the number operator, thus describing a perfect (n = 1)
direct measurement with outcome n. Moreover, it is necessary to trace out the spurious mode
corresponding to the evolution of the vacuum mode. The final state, which is actually the one
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entering into the optical device, is thus, the mixture

oo LR}

o= 37 32 (1~ no)" EE | )t 3
where A is a normalization and n is the result of the measurement in the photodetector D. Notice
that in the case of perfect detector D (i.e. 7p = 1), we obtain the number state p;, = |n){(n|;
otherwise a mixture of number states results, and the most probable state is pi, = |72) (7|, where 71
maximizes the mixture—state coefficients. Notice that np must be not too small in order to reduce
the spread of the mixture state distribution, and thus to reduce the probability of shuffling the
rows of the reconstructed matrix G;.

2.2 Number state evolution in a phase insensitive device

The most general evolution of radiation through an optical device is a non-unitary evolution
governed by a Green super—operator of the form given in Eq. (2). Given a complete set of vectors
in the Liouville space F, the general expansion for the super—operator G; is the four-index tensor
G defined as

o0
Gl = 3 Gl - (4)
ki=0
In the presently proposed experimental setup we are only interested in the diagonal part of the
Green super-operator in the number representation, since the subspace in F of diagonal operators
is invariant for phase insensitive devices. Thus we only need the two-index matrix G3,, = G™
obtained by expanding G; on the number states {|n)(n|}. It is immediate to see that the m-th row
of G° ., is the output photon number probability, when the input is the number state p;;, = |m)(m/|:

G = (nlGe[|m) (ml]n) = pous(n) , (5)

where pout = Gipin = Yon Pout(n) n){n|. In the practical case, one always needs to truncate the set
of states {|n}(n|} at sufficiently large n. Once G2, has been reconstructed through the measured
probabilities, we calculate the diagonal Liouvillian L%, = (n[ﬁ[[m} (m|] [n} by taking the natural
logarithm of the matrix GY_, and dividing it by the evolution time ¢ as shown in Eq. (2). For the
theoretical matrix this operation is straightforward, since all eigenvalues of the Markoff matrix
(Y, are within the interval (0, 1]. However, for the evaluation of the logarithm of the experimental
matrix G2, one needs to consider that for sizeable times ¢ the quantum homodyne noise can yield
a measured Green matrix with negative eigenvalues, so that the principal logarithm of G2 may
be undefined. For this reason, it is preferable to evaluate G; for small ¢, and to calculate the
logarithm by series expansion in order to keep to the principal branch. Other methods [8] for the
calculus of the logarithm have also been used.

3 Numerical Simulation of the experiment

We now present a numerical simulation of the experiment we proposed. In this example we will
analyze a two photon phase insensitive amplifier, with Liouvillian

L = AD[a'] + BD|d] + CD[a*] + DD[(a")?], (6)
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Figure 2: On the left the theoretical matrix L3 is plotted versus m and n from Eq. (7). The parameters of
the two photon phase insensitive amplifier are 4 = 0.3; B = 015, C=5:107% D=4-10~2 . On the right the
result of a Monte Carlo simulation of the measurement of the same Liouvillian is given. The reconstruction of L8
15 simulated by using only 15000 homodyne measurements divided into 3 statistical blocks of data for each input,

where @ is the destruction operator for the field mode, 4 and D are the one-photon and two—photon
absorption coefficients respectively, B and C' are the one— and two—-photon creation coefficients,
and Df]p = §pft — 1/2(6"6 p+ p8'8) denotes the Lindblad superoperator for the (complex) operator
0. The Liouvillian matrix L0 s

L:'jlm = A(m =5 1)f§nm.—l S5 é‘nm_r = Bm[gnmvl e 5nm]+
Cm(m + Tid s Onm] + D(m + 2)(m - e L Onm] (7)

In Fig. 2 the theoretical Liouvillian (7) is plotted versus the reconstructed Liouvillian obtained
by a Monte Carlo simulation of the proposed experiment. In this case both detectors have unit
quantum efliciency (np = ny = 1). In Fig. 3 the non—zero diagonals of matrix L2, are plotted
with the statistical error bars versys the theoretical value. One can see that the details of the
Liouvillian are very well recovered.

4 Conclusions

In conclusion we have Proposed an experiment to reconstruct the Liouvillian super-operator of a
phase insensitive quantum optical device. The actual feasibility of such an experiment is mostly
related to the availability of a goad photodetector D that is able to resolve single photons with
high quantum efficiency (possibly better than o = .5: see Ref.[3]), a device that may be avail-
able in a few years within the superconducting -detactors technology. Currently we are working
on the extension of the method to measuring non-diagonal Liouvillians and on error correction
techniques to reduce experimental errors coming {rom non-unit quantum efficiency np < 1 at
detector D. Notice that a correction scheme for the case of non—unit quantum efficiency 7, < 1
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Figure 3: The four non-zero diagonals of the reconstructed Liouvillian matrix L2, of Fig. 2 are plotted with the
statistical error bars. The dark line is the theoretical value from Eq. (7).

at the homodyne detector H is already available by using special 7—dependent pattern functions
for the homodyne tomography (3], and by increasing the number of homodyne data. We think
that a prototype experiment will be feasible soon, and that it will represent a useful experimental
test for theoretical models of quantum optical devices like lasers, parametric amplifiers, and the
quantum gates of the forthcoming quantum computer.
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