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SUNTO. - Dopo una breve digressione su alcuni recenti progressi teorici in Meccanica
Quantistica e nella teoria della misurazione, viene presentata una metodologia di re-
cente scoperta che permette una caratterizzazione quantistica completa di un dispo-
sitivo, senza conoscerne il funzionamento interno. Il metodo & basato sul confronto
con un apparato precedentemente calibrato ~ detto tomograpber - ¢ il confronto fra
tomographer e apparato da calibrare & effettuato disponendo i due in un setup di cor-
relazione con un input bipartito in uno stato cosiddetto fedele, ad esempio uno stato
massimamente entangled. Il metodo & robusto a imperfezioni del tomographer, ¢ fun-
ziona in pratica con la gran parte degli stati bipartiti di input.

The fun with ‘Quantum Information’ is that you can study the foun-

dations of the enigmatic world of Quantum Mechanics, and, at the

mmyuuhm&uuw/dhmm
(www.qubit.it homepage)

1. INTRODUCTION

‘Information’ is the paradigm of our times, as ‘Energy’ was the para-
digm of the previous century. We are definitely in the era of computers
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Studi di Pavia, Dipartimento di Fisica ‘A. Volta’; Center for Photonic Communication
and Computing, Department of Electrical and Computer Engineering, Northwestern
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and of the Internet. On the other hand, we are also in the era of the
Laser: Photonics is gradually taking place over Electronics, with the
possibility of transmitting gargantuan amounts of informations with the
optical wideband. We are approaching the Terabit era (with a Tbit/sec
one could transmit the entire Wall Street Journal from its first issue in
a handful of seconds!) The Laser, on the other hand, has also dramati-
cally changed the face of the entire Physics. By the extremely intense
radiation from a laser one can exert nonlinear optical effects — most of
all frequency conversion — which would otherwise be negligible with
conventional light. These effects on one side allow us to produce ‘entan-
glement’ — the most elusive quantum feature, and the main ingredient
of the new science of Quantum Information [1], [2]. On the other side
they help building up strong and controlled interactions with atoms,
offering the unique opportunity of manipulating single atoms and pho-
tons, opening a new era for Quantum Optics and Atomic Physics. This
facts along with the extreme miniaturization of nano-technology have
renewed the interest in Quantum Mechanics. Finally, the marriage of
Quantum Physics and Information Technology has recently opened the
way to the realization of radically new information-processing devices,
with the possibility of cryptographic communications which are guar-
anteed secure on the basis of physical laws [3], and with the perspective
of the tremendous computational speedups which would be possible in
principle with Quantum Computers [1], [2].

2. RECENT RESULTS ON FOUNDATIONS OF QUANTUM MECHANICS

It is common opinion that there is little to be understood yet in Quan-
tum Mechanics, and that the last relevant result was the work on non-
locality of John Bell [4]. This is definitely false. Indeed, the science of
quantum ‘Entanglement’ is still at its early stages, and there is plenty of
problems in Quantum Mechanics that are unsolved yet.

On the issue of nonlocality of Quantum Mechanics, Greenberger
Horn an Zeilinger with their GHZ state [5] provided a kind of Bel/
theorem without inequalities as a very strong counter-argument to the
Einstein Podolski Rosen incompleteness of Quantum Mechanics, clari-
fying how nonlocality and contextuality are intrinsic quantum features,
independently on the probabilistic framework. Another small revolution
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has been the no-cloning theorem ' [6)-[12] which is considered a cor-
nerstone of the theory of Quantum Information. From the foundational
point of view, this theorem has also allowed to assess rigorously the
impossibility of determining the wave function of a single system [13].
This may seem now a trivial issue: however, we should not forget the
numerous attempts to determine the wave-function of a single system,
that continued to appear up to the middle of the nineties, including
papers by authoritative scientists [14]-[18] exploring concrete measure-
ment schemes for such an impossible goal. Moreover, the no-cloning

theorem has also lead to new insights on non-causality of entanglement,
and on the impossibility of superluminal communications [21].
Another small revolution of the last years has certainly been the
quantum teleportation of Bennett, Brassard, Crépau, Jozsa, Peres, and
Wotters [22], which showed that even though the state of a single
system is unknowable and unclonable, the nonlocality of entanglement
can be used to teleport the quantum state, using only two bits per spin.
In order to achieve teleportation one performs a new kind of quan-
tum measurement which gives no information on the state, nevertheless
plays a crucial role in the accomplishment of teleportation. Francesco
De Martini [23] in Roma La Sapienza and Anton Zeilinger in Innsbruck
[24) have pioneered the first teleportation experiments. To somebody

' The no cloning theorem is usually attributed to W. K. Wootters, W. H. Zurek
(7], and sometimes also to D. Dieks [8]. The paper by Wootters and Zurek originated
as a comment against a paper by Nick Herbert [6], who devised a method for super-
luminal communication based on the assumption of perfect cloning of polarized pho-
tons by means of stimulated emission in a laser. (Ironically Nick Herbert even patent
his method! Notice that the first impossibility proof for superluminal communications
[19] appeared four years before his paper). However, without the general no-cloning
theorem in those years it was not easy to understand how the quantum noise from
spontaneous emission could nullify Herbert’s method. The first proof of the no-clon-
ing theorem was actually provided by Giancarlo Ghirardi in an unpublished referee
report on the manuscript of Herbert’s paper (6] (he actually recommended rejection).
Ghirardi underestimated the value of his proof, and published it only later [9] (for
a full story of the birth of the no-cloning theorem see Ref. [11]). One should notice
that these early proofs of the no-cloning theorem were still not stringent, since
assessed that the cloning transformation violates the superposition principle,
applies to a set of at least rhree states. Actually, one cannot clone even fwo states, if
they are not orthogonal, since this would violate unitarity (this more stringent version
of the theorem is due to H, Yuen [10)). Finally, my favored way of stating the theorem
is that the cloning transformation is non isometric, whence it cannot be achieved deter-
ministically [12].
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now quantum teleportation may seem a little thing, but it has dramati-
cally changed our understanding of Quantum Mechanics.

In these last twenty years also the field of Quantum Measure-
ments got a renewed interest. The paradigm has shifted from the nega-
tive viewpoint of ‘uncontrollable disturbance of measurement’ of the
Messiah book [25] to the positive attitude of ‘control of coherence’ in
engineering new quantum measurements. A relevant example is that of
the Standard Quantum Limit for measuring the position of a free mass,
which is involved in the problem of achieving the astonishing sensitivi-
ties needed for gravitational wave detection. The issue became the sub-
ject of a big debate in the '80. The Standard Quantum Limit was posed
by Carlton Caves, Kip Thorne and other authors [26], following a faulty
derivation by Braginski [27] - the disciple of Weber, the constructor of
gravitational antennas — based on a misuse of the Heisenberg principle
[28]. Then Yuen [29] showed that such limit can be breached, and
Ozawa provided a feasible measurement scheme [30] for it.

One of the results of the debate on the Standard quantum Limit was
to attract attention on the faulty interpretation of the of the Heisenberg
principle itself, in the form that was originally formulated by Heisen-
berg in his “y-ray microscope gedanken experiment’. According to its
popular version (which was then elevated to ‘principle’ by Ruark [31],
and became the paradigm itself of Quantum Mechanics) it is impos-
sible to measure one variable, say the momentum, of a conjugated pair
(e.g. position ¢ and momentum p) without ‘disturbing’ the value of the
conjugated variable ¢ of an amount Ag no less than the order of 1i/Ap,
where Ap is the accuracy of the measurement. In the correct interpreta-
tion both Ap and Agqare a priori uncertainties, and neither will result as
a consequence of the disturbance due to the measurement?. As a matter

? Let me clarify the common confusion between ‘uncertainty relations’ and
‘uncertainty principle’, the former concerning the statistics of repeated measurements
on an ensemble of equally prepared identical quantum systems, the latter, on the con-
trary, concerning a sequence of measurements on the same quantum system (this dif-
ference is well emphasized in the Jammer book [32]). The ‘uncertainty relations’ do
not have any bearing on the issue of the measurement disturbance, since it can be
experimentally tested by measuring each of the observables separately: at most one of
the two rms deviations, say Ap can be considered as the precision of the preparation,
e.g. by a collimator of particle momentum, and then Ag will results from the statistics
of measuring only ¢. In other words, both Ap and A are 4 priori uncertainties accord-
ing to the Born rule, and neither will result as a consequence of the disturbance due to
the measurement.
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of fact, since both Ap and A gare intrinsical to the wave function before
the measurement, they cannot be logically connected to the interaction
with the apparatus. And in fact, a measurement model was provocatively
proposed by Ozawa [33] in which the position of the particle is meas-
ured leaving the particle in a eigenstate of the momentum!

That the Heisenberg principle is just a folklore is witnessed by
the fact that ‘classics’ of quantum mechanics do not even mention it:
see, for example, the Landau and Lifshitz book [34), or the the book of
Asher Peres [35]°. Clearly, the original spirit of the ‘y-ray microscope
gedanken experiment’ is still valid in the sense of trade-off between
information retrieved by a measurement and disturbance on the meas-
ured system: however, the general tradeoff is certainly not represented
by the Heisenberg principle, and it is very hard to quantify (I personally
derived a tradeoff of this kind in Ref. [36)).

Another commonplace in the theory of Quantum Measurements
which has been recently reconsidered is the paradigm of repeatable and
objective measurement, i.e. the von Neumann orthogonal measure-
ment [37]. In Ref. [38] we have shown that, contrarily to the wide-
spread belief, repeatable measurements are not necessarily described
by orthogonal projectors — the customary observable. These are only
few examples to show how research in Quantum Mechanics is still very
active at the foundational level.

All this renewed energy has been brought back to foundations
mainly from the new possible applications in Quantum Optics and Atomic
Physics, and, above all, by the promises of Quantum Cryptography and
Quantum Computation. On the application side, what makes Quantum
Information so interesting is the fact that the goal of designing radically
new physical devices involves all types of approaches, from the level
of pure mathematics, to theory, computer simulation, and experiment.
Indeed, as in any engineering process one has an optimization stage based
on a complete classification of all possibilities, a feasibility study based on
theory and simulations, and finally the experimental verification. And it
is this variety of approaches which makes researchers fond of this field.

In the field of Quantum Measurements our group has also focused
a coordinated effort to engineer a radically new generation of quan-

* In the Asher Peres Book, if you look for ‘uncertainty principle’ in the subject
index, you'll discover that the page number is just the page of the index itself - a delibe-
rate error, since there is no mention to the principle in the whole book.
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tum devices useful for the forthcoming Quantum Information technol-
ogy, most of all programmable quantum detectors [39] and universal
detectors and tomographers [40]. The motivation is that in Quantum
Mechanics one is faced with the problem that there are infinitely many
observables, and there is no simple rule to measure any desired one by
combining a small set of apparatuses. For example, even though one
has an apparatus that measures the observable A and another one that
measures the observable B, the two apparatuses are of no use for mea-
suring the observable A+ B or the commutator -i[ A, B], and often
one needs to rebuild a completely new device which is generally func-
tioning in a completely different way from those used for the measure-
ment of A and B. A programmable detector would achieve such task:
this is a device that can be tuned to measure any desired observable. On
the other hand, a universal detector is a device that performs a special
kind of measure — named informationally complete — from which by
only changing the data-processing of the measurement outcomes one
can obtain the expected value of any desired observable.

3. QUANTUM CALIBRATION

It is the theory which decides what we can observe!
Albert Einstein to Werner Heisenberg

The calibration of measuring apparatuses is at the basis of any actual
experiment. What does it mean calibration? For example, calibrating
a ‘scale’ means to put different known weights on it and annotate a
corresponding notch for each pointer position. The same procedure
would be not so easy for calibrating, for example, a photocounter,
since we don’t have standard sources with precise numbers of photons,
and, moreover, we cannot be sure that the photon has been actually
absorbed by the detector. This leads us to pose the following problem:
if we have an apparatus which performs a quantum measurement, how
can we know what and how much it measures? A kind of answer was
given by Einstein to Heisenberg in the quotation reported above *. The

* Assessing the need of theory for observation seems to contrast the firm realis-
tic beliefs of Albert Einstein! Indeed, it is well known that in regards of the objectiv-
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experimentalist may not be happy of needing a theoretician in the lab to
asses what it is being measured! But Quantum Mechanics is so: in order
to establish which observable is measured by an apparatus, one needs a
complete theoretical description of the interaction of the apparatus with
the measured system. A paradigmatic case is that of the photocounter
[41], where the number of photons claimed to be detected ~ usually
very uncertain — is typically inferred from the cascading mechanism of
the amplification process. The calibration is given essentially in terms of
quantum efficiency and dark-current, and mostly saturation effects cat-
egorize detectors into the major classes of ‘linear’ and ‘single- photoo
Even in a very sunphﬁcd model, a theoretical description

for the above features is very involved [42], [43), and the
theoretical calibration is exceedingly indirect. Would it be nice to have
a way to ‘calibrate’ a photocounter — and more generally any quantum
measuring apparatus — without using a complete theoretical statistical
mechanics description of its inner functioning?

To accomplish such task we need just a little theory about the phe-
nomenological description of a measuring device, independently on its
inner functioning. In a quantum mechanical description the complete
characterization of a measuring apparatus corresponds to the knowl-
edge of its POVM (positive operator-valued measure [44]), which gives
the probability p(n) of any measurement outcome # for arbitrary input
state, via the Born rule

p(n) = Tr[pP). (1

In Eq. (1) p is the density operator of the state of the system, and the
POVM is given by the set of operators { P, }. To ensure that p(n) is a
probability, the POVM must satisfy the positivity and normalization
constraints P, > 0, P, = L

The concept of POVM generalizes the familiar von Neumann
observable describing perfect measurements, according to which the
probability of obtaining outcome # is given by p(n) = |(¢|o,.)|‘ {lo)}
dcnotmg a complete orthonormal basis of states, i.c. in this case the
POVM is made of the one-dimensional prqecton P,= Io‘)(o,,l The
physical interpretation of the measurement is given via a quantization

ity issue of quantum measurements, Einstein loved to mention that the Moon exists in
its place even though we don't look at it. But in the present quotation actually Einstein
is assessing the need of theory to know if the Moon is still there!
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rule that associates a self-adjoint operator O to a classical observable,
|o,) being the eigenvector of O corresponding to its nth eigenvalue
0, Such concept of observable, however, does not cover many practi-
cal situations - e.g. phase-estimation [45], [46], joint measurements of
incompatible observables [47], [48], discrimination among non-orthog-
onal states [49], [50], informationally complete measurements (51],
transmission of reference frames [52] — and here the POVM descrip-
tion is needed. But then, in absence of a direct physical interpretation
of the measurement, the problem of assessing the correct functioning of
the measuring apparatus becomes even more compelling.

The problem now is if it possible to measure experimentally the
POVM of an apparatus without knowing its inner functioning, e.g. by
comparing the apparatus with other (previously calibrated) appara-
tuses.

Another similar problem is the following. Is it possible to deter-
mine experimentally the transformation affected by an apparatus,
namely the evolution of the state within the apparatus? In Quantum
Mechanics the most general evolution of a state p - including the evolu-
tion due to a quantum measurement ~ is described by means of a quan-
tum operation £ as follows £

LR v 2
?~ TriE)] i

where the normalization factor Tr[€(p)] <1 also gives the probabil-
ity that the transformation occurs, and the map £ is linear and sends
density operators to (unnormalized) density operators, i.e. it preserves
positivity (technically, the map is completely positive, i.e. it preserves
positivity of any bipartite state when applied locally). The simplest case
of quantum operation is just the usual unitary evolution of isolated
systems. More generally the quantum operation is a sum of the form
(called Kraus form)

E(p) =Y KupK}. 3)

3.1. Quantum tomography

Now, in order to determine experimentally the operators P, describ-

ing a measuring apparatus or the quantum operation £ of any device,
we need a method called quantum tomography (53], [54], [55]. This is
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simply a method to estimate the ensemble average ( H) of any arbitrary

operator H by measuring a quorum of observables { O}, namely simply
a set of Hermitian operators O, on which one can expand any operator

H as
H=Y (Q,H)O. @)

[

Then the tomographic estimation of the ensemble average (H) is
simply obtained by averaging over both the ensemble and the quorum
(in infinite dimensions the derivation of the expansion is more involved,
and, as we will see, becomes conveniently nonlinear). The estimation
of the density matrix element p; corresponds to the operator given by
thcoutcrproductofH— |4) (3. "The method i is very powerful, because
is very robust to any kind of experimental imperfections, and a gen-
eral approach is available to unbias instrumental noise [53]. Moreover,
there are techniques (such as adaptive methods [56), maximum-like-
lihood strategies [57], etc) by which one can increase the precision of
the estimation dramatically.

3.1.1. Homodyne tomography

The most popular example of quantum tomography belongs again to
the field of Quantum Optics, and is called homodyne tomography,
since it is based on homodyne detection (a schematic of an homodyne
detector is depicted in Fig. 1). The quantum system is the harmonic
oscillator associated to a given mode of the electromagnetic field,
described by the annihilation and creation operators a and a', respec

tively, with commutator [a,a'] = 1. The gquorum is the set ofqudn-
tures X, = a'e¥ + ae ™), i.c. the real e.m. field at tunable phase ¢
relative to the local oscillator of the homodyne detector (see Figure 1).
The actual form of the expansion depends on boundedness proper-
ties of the operator to be expanded. For example, for Hilbert Schmidt
operators H one has

dy W 2o ikX ), ~ikz
H= 7Eﬂ(xv; @), Eg(z; 9)= 7 dk|k|Tr[He'* e ]e~ %=, (5)
0

As one can see that the expansion in X, is actually nonlinear. We intro-
ducedthcongxnaltheoreucalmethodem[58]mthcbcgnnnmgof
1993. The name ‘tomography’ came from an analogy with the Radon



24 GIACOMO MAURO IYARIANO

transform algorithm used for imaging in computerized axial tomogra-
phy: here the probability distributions of the quadratures for varying ¢
are the marginals (or projections) of the Wigner function of the state,
similarly to the set of radial radiographies for the density of mass to be
reconstructed in the imaging process (see Fig. 1).

[]

b (LO) lz> y : 2

-2 x

Fig 1.

LEFT: Scheme of a balanced homodyne detector. The ‘signal’ mode a is combined by means
of a 50-50 beam splitter with a ‘local oscillator’ (LO) mode boperating at the same frequency
ofa.nndptepnwdinm‘intaue'oobauxméx).Auhempndthebumsplitman
has the sum and difference modes c= (a + b)/v2 and d = (a- b) /2. Thele output modes
are detected by two identical photodetectors, and finally the difference of photocurrents
1, - I (at zero frequency) is rescaled by 2| z|, giving the quadrature X, where ¢ = arg(z).
RIGHT: The probability distributions of the quadratures for varying ¢ are the marginals (or
projections) of the Wigner function of the state, similarly to the set of radial radiographies
for the density of mass to be reconstructed in the imaging process. In the figure the marginal
distributions are the dark functions plotted on the axes, and the Wigner function is the
two-variables function in the center. The marginals are obtained by integrating the Wigner
function in the orthogonal direction (i.c. along the z axis for the marginal plotted on the y
axis and along the y axis for the marginal plotted on the zaxis). [In particular, this Wigner
function refers to the state 4 (0) +|3))]. [Figure kindly provided by L. Maccone.)

3.1.2. Pauli tomography

The situation for finite dimensions is much easier. For example, for
dimensions two (namely a spin, or ‘qubit’) the tomographic expansion
is just the Bloch form of an operator, namely the linear expansion over
the Pauli matrices

H= %[a . Tr(3H) + I Tr(H)). ©)
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In Quantum Optics the two-state system is a single photon with
vertical or horizontal polarization, and the analogous of the homodyne
detector is simply obtained using a polarizing beam splitter, two single-
photon detectors, and a wave-plate as in Fig. 2.

a4
T

Fig 2.
In Quantum Optics the qubits are encoded on polarization of single photons
I1)=11),10,| | =]0),1),,and the Pauli matrices are given in terms of the two modes, e.g.
o, = h'h - v'v. Inthis representation the Pauli-matrix detectors are realized as in figure, us-
ing polarizing beam splitters [(PBS), single-photon detectors, and A /4 wave-plates).

3.2. The quantum calibration method

Now, let’s come back to the original problem, namely how to determine
experimentally the POVM or the quantum operation of a device.

3.2.1. Calibration of a Quantum Operation of an apparatus

In order to determine the transformation carried out by a device, a brute
force method consists in performing an exhaustive scanning of all pos-
sible inputs, making a tomographic reconstruction of the corresponding
outputs. This method, however, requires many input states (not ’[ust
an orthonormal basis, but also some special linear combinations) *, or
a sufficiently over-complete set of states, such as coherent states [59).
This stringent requirements makes the method actually infeasible. As
a matter of fact, in Quantum Optics producing states with a definite
number of photons is and will remain an impossible task for many years
~ even for few photons. On the other side, ‘coherent’ over-complete
sets of states are not easily available for atomic systems. Then, if we

* According to the polarization identity we need also all linear combinations
|n) + i*|m) of elements of an orthonormal basis { |n)} with k = 0,1, 2, 3,i being the
imaginary unit.
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cannot use the brute force method, what can we do? The solution was
proposed by us in Ref. [60], [61], and uses just a single entangled state
at the input. And, indeed in Quantum Optics it is very easy to produce
entangled states: these are the well known twin-beams produced by
parametric downconversion of vacuum, which are achieved by pumping
with a laser a nonlinear crystal (e.g. a KTP), and the entanglement of
the twin beam is increased by enhancing the pump intensity.

Oy

%)

COMPUTER

Fig 3 - General experimental scheme of the method for the tomograpbic estimation
of a quantum operation.
Two identical quantum systems are prepared in an entangled state |¢)). One of the two
systems undergoes the quantum operation £, whereas the other is left untouched. At the
output one makes a quantum tomographic estimation, by measuring jointly two random
observables from a quorum {O}} (see the text).

v T ol

0 2 4 6 8

Fig. 4 - Homodyne tomography of the quantum operation A corresponding

to the unitary displacement of one mode of the radiation field.
Diagonal elements A, (shown by thin solid line on an extended abscissa range,) with
their respective error bars in gray shade, compared to the theoretical probability (thick
solid line). Similar results are obtained for all upper and lower diagonals of the quantum
operation matrix A. The reconstruction has been achieved using an entangled state |¥)
at the input corresponding to parametric downconversion of vacuum with mean thermal
photon 7 and quantum efficiency at homodyne detectors 7. Here z =1, i =3, =07 and
300 blocks of 2:10° data have been used. These are the same parameters of the experiment
in Ref.[67). (From Ref. [60]).
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The main idea of the method which uses a single entangled state
in place of many input states is sketched in Fig. 1. Here only one of
two entangled quantum systems (e.g. the twin beams) experiences the
quantum operation, whereas the other system is left untouched. In this
way a single entangled input state |¢)) performs the same work of scan-
ning all input states in parallel. This is due to the fact that with an
input entangled state one has a one-to-one correspondence between
the output state R and the quantum operation £, namely, the output
state R, carries a complete imprinting of the operation £ that it has
experienced. Actually, one even doesn’t need entanglement, and any
faithful state [62] would make the job. A bipartite state R is called
‘faithful’ when acting with a device on R in a ‘fork’ scheme as in Fig. 3
the output R, will carry a complete information about the operation
£ of the device. One can easily see that a state R is faithful when its
associated map #defined as #(p) = Tr,[(p' ®I) R) is invertible (X"
denotes the transposition with respect to a reference basis), namely R
can be obtained from a maximally entangled state via an invertible map
# Then, since invertibility is a ‘dense’ condition, essentially any state
is faithful: however, the knowledge of the map £ from the measured
output state #; will be affected by increasingly large statistical errors
when the input state R approaches a non-faithful one ©. A computer
simulation of the homodyne tomography of a quantum operation is
reported in Fig. 4.

De Martini in his labs in Rome performed an experiment as a
demonstration of the method for characterizing a single qubit device,
based on Pauli tomography [63]. In Fig. 5 the experimental results
are reported, in very good agreement with the theoretical prediction.
Actually, the De Martini team invented a method for preparing in a
very controlled way all sorts of bipartite states (mixed, entangled, etc.)
[64] (see a sketch of the setup in Fig. 6), whereas in Pavia we devel-
oped a method [65] to characterize the bipartite state more efficiently
than with quantum tomography, based on some prior knowledge of
the state (based on the technique called entanglement witness): some
experimental results are reported in Fig. 6.

¢ In infinite dimensions there are also convergence issues which give thresholds
for mixing noise on the input state.
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Fig 5 - The first experiment of quantum calibration performed in Rome [63].
LEFT: Experimental characterization of a single optical wave-plate with retardation phase
¢ = 0.457 and orientation angle of the optical axis respect to the laboratory horizontal
direction @ = - 0.1387. The experimental matrix elements U,,, of the wave-plate are
superimposed to statistical errors for 8000 events, and compared with the theoretical values.
RIGHT: The same experimental characterization as on the left figure, here for a device made
of a series of two optical wave-plates: a wave-plate with ¢ =0.457 and 0= 0.1387 followed
by another wave-plate with ¢ = 7 and 8 = + 0.297 [figures from Ref. [63].

P 0
—d — ; < ',!in :.z :
M % V2 \ : ! al
2 LGV . ) | B
G N4 m/ “’, .« - g*’ / E a
I \ ‘Q §A /_gb; TR TR TR a
D Singlet weight

Fig 6 — Experiment of entanglement witness performed in Rome [66].

LEFT: Scheme of the experimental apparatus. The polarization entangled photons are
generated by spontaneous parametric downconversion in a nonlinear BBO crystal, and are
detected by two silicon-avalanche photodiodes preceded by polarization analyzers. In this
experiment a novel geometry is exploited for collecting down-converted radiation, which
results in a very bright source of entangled photons, with also the advantage of complete
freedom in choosing the two-photon state.

RIGHT: Experimental results of entanglement detection for Werner states. These states
range from the pure singlet at weight p =1 to the totally chaotic state at p = 0, with the
transition between entangled and separable states at p = 1/3 The straight line corresponds
to the theoretical prediction. The experimental results verify the transition between
separable and entangled Werner states, occurring at zero-witness at p = 1/3.

TN
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3.2.2. Calibration of the POVM of a measuring apparatus

How we can calibrate a POVM? We need to use a faithful state R
as the input in the calibration scheme sketched in Fig. 7, and use the
simple formula

Pa = p(n) [R'(pn)] " ()]

where p(n) is the probability of the outcome n, “# is the associated
map of the faithful state R, and p, is the conditioned state to be deter-
mined by quantum tomography. The probability p(n) is determined
casily as the experimental frequency of the outcome n. The knowledge
of the state R (whence the associated map), clearly requires a pre-cal-
ibration stage, in which we determine the state R of the apparatus by
performing a joint tomography with two tomographers (e.g. homodyne
detectors). Then, we substitute one of the two tomographers by
measuring apparatus, and perform the true calibration stage. In
way in principle we need only two tomographers and a single faithful
state to calibrate any measuring apparatus. In Quantum Optics
homodyne detector can be calibrated in a relatively easy way using
the vacuum state (in the homodyne setup photodetectors work in
linear regime). The special instance in which the measuring apparatus
actually measures a customary ‘observable’ can be easily recognized
directly from the homodyne data, which give a commutative POVM.
In such case one only needs to reconstructs the conditioned probabil-
ity distribution p(n|k) = (k| P,| k). Then, when using the ‘calibrated
observable’ the measurement will be unbiased, however, generally at
expense of some increasing statistical error.

I n
Pn
Fig. 7 — Experimental setup to determine the POVM
of the unknown measurement apparatus.

The apparatus is used jointly with a ‘tomographer’ on a bipartite system prepared in &
ka.mwmhmp.mdwwhm’.
outcome n at the measurement apparatus. The results are then numerically processed, for
different outcomes # to finally obtain the POVM {P,} of the measurement apparatus.
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In principle the method can be used to calibrate a real pho-
tocounter, using a twin beam from a pumped nonlinear crystal and
two homodyne detectors. For the real experiment there are, however,
technical issues that I'll not discuss here, mainly related to the mode
matching between the two different kinds of detectors — the homodyne
and the photocounter - and to the control of the phase of the LO at
homodyne detectors with respect to the pump of the doenconverter.
Alex Lvovsky of the university of Konstanz and the group of Marco
Genovese at Galileo Ferraris in Torino are interested in performing
the experiment. In principle one can even calibrate the full shape of
the photocurrent, and each feature (e.g. peak area, location, height,
shape, etc.) will correspond to a different observable compatible with
the number of photons (i.e. commuting with it). Moreover, it must be
mentioned that the pre-calibration stage has been already performed
in an old experiment that we did with Prem Kumar at Northwestern
in 2000 [67], where all diagonal matrix elements of a twin-beam have
been tomographically characterized, using two homodyne detectors
and a twin-beam from parametric down-conversion by a nonlinear
optical amplifier (see Fig. 8).

Actually, if one wants also the off-diagonal matrix elements, then
there is the technical issue of the control of the phases of the LO’s at
the homodyne detectors relative to the pump.

In Fig. 9 a computer simulation is reported of a homodyne
calibration of an On/Off photodetector [68]. You can see qualita-
tively how the On element of the POVM (on the right) responds
more to photons, where the Off element on the left responds more
to the vacuum. The simulation program, written by Paoloplacido Lo
Presti, is very sophisticated, and uses the best state-of-the-art maxi-
mum-likelihood algorithms precisely designed for this purpose. In
Fig. 10 from Ref. [68] only the off element is represented for differ-
ent values of quantum efficiency of homodyne detectors and of the
gain of the down-conyerter, using the same values of the Northwest-
ern experiment [67], namely 7 = 3 thermal photons per beam, N = 10°
data and homodyne quantum efficiency 1y = 0.7. The calibration of
the photocounter has been considered mostly for the sake of demon-
stration. Indeed a simple photocounter maybe more easily calibrated
by other means. Our technique, however, is general, and can be used
in principle for any measuring apparatus, on any physical quantum
system.,

Yoosspe ¥ To boxcar

Fig 8 — The experiment performed at Northwestern by Prem Kumar and coworkers [67]
in order to measure the joint photon-number probability distribution of a twin-beam.
Schematic of the experimental setup: NOPA, non-degenerate optical parametric amplifier;
LOs, local oscillators; PBS, polarizing beam splitter; LPFs, low-pass filters; BPF, band-pass
filter; G, electronic amplifier. Electronics in the two channels are identical. [From Ref. [67]).

Fig. 9 - Homodyne tomography of an On/Off pbotodetector with quantum efficiency
h=0.4 and thermal noise photon number n=0.1.

The reconstruction is obtained by pattern-function averaging of 1.5-10° data, for homodyne

quantum efficiency 7 = 0.9 and twin beam thermal photon 7 =3. [From Ref. (68]].
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Fig. 10 - Homodyne tomograpby of an On/Off photodetector with quantum efficiency
h=0.4 and thermal noise photon number n=0.1, with ii =3 photons in the twin-beam.
The ML estimation of the diagonal of the only Off POVM element are reported for differ-
ent values of sample size N and homodyne quantum efficiency 1, Left: N=10", ,«07;

Middle: N« 10%, 5, =0.9; Right: N«10°, 5),,= 0.7 [From Ref. [68]].
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4. CONCLUSION

I'd like to conclude by mentioning that faithful states and quantum cali-
bration may be relevant at a foundational level. Quantum Mechanics is
still a too mathematical theory, in the sense that in the axioms we have
mathematical objects such as Hilbert spaces and wave-functions, which
have no direct physical meaning (being unknowable the wave-function
is unphysical). In a truly physical axiomatization one should be able of
avoid Hilbert spaces, and derive the mathematical structure only from
physical axioms. Some authors such as Chris Fuchs at Bell Labs and
Lucien Hardy at Oxford have shown that the so-called ‘informationally
complete’ POVM'’s — which are essentially a kind of ‘calibrators’ - play
an important role at the foundational level, since they allow to derive the
full quantum mechanical description in a purely probabilistic settings
(it is amazing to see how many weird features which are usually consid-
ered quantum mechanical are actually just the consequence of a purely
probabilistic framework [69]). These informationally complete POVM’s
are our ‘calibrators’ and have been named by Chris Fuchs ‘the quantum
standards of the International Bureau of Weights and Measures a Paris’.
So, I'd love to speculate that a kind of calibrability hypothesis may sup-
port an alternative physical axiomatization of Quantum Mechanics.
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