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Abstract David Finkelstein was very fond of the new information-theoretic paradigm of
physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, how-
ever, the paradigm has concretely shown its full power, with the derivation of quantum
theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D’Ariano et al., 2017) and of free
quantum field theory (D’Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al.,
Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann.
Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first
time the possibility of avoiding physical primitives in the axioms of the physical theory,
allowing a re-foundation of the whole physics over logically solid grounds. In addition to
such methodological value, the new information-theoretic derivation of quantum field the-
ory is particularly interesting for establishing a theoretical framework for quantum gravity,
with the idea of obtaining gravity itself as emergent from the quantum information pro-
cessing, as also suggested by the role played by information in the holographic principle
(Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this
paper I review how free quantum field theory is derived without using mechanical prim-
itives, including space-time, special relativity, Hamiltonians, and quantization rules. The
theory is simply provided by the simplest quantum algorithm encompassing a countable
set of quantum systems whose network of interactions satisfies the three following simple
principles: homogeneity, locality, and isotropy. The inherent discrete nature of the infor-
mational derivation leads to an extension of quantum field theory in terms of a quantum
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cellular automata and quantum walks. A simple heuristic argument sets the scale to the
Planck one, and the currently observed regime where discreteness is not visible is the so-
called “relativistic regime” of small wavevectors, which holds for all energies ever tested
(and even much larger), where the usual free quantum field theory is perfectly recovered.
In the present quantum discrete theory Einstein relativity principle can be restated without
using space-time in terms of invariance of the eigenvalue equation of the automaton/walk
under change of representations. Distortions of the Poincaré group emerge at the Planck
scale, whereas special relativity is perfectly recovered in the relativistic regime. Discrete-
ness, on the other hand, has some plus compared to the continuum theory: 1) it contains it
as a special regime; 2) it leads to some additional features with GR flavor: the existence of
an upper bound for the particle mass (with physical interpretation as the Planck mass), and
a global De Sitter invariance; 3) it provides its own physical standards for space, time, and
mass within a purely mathematical adimensional context. The paper ends with the future
perspectives of this project, and with an Appendix containing biographic notes about my
friendship with David Finkelstein, to whom this paper is dedicated.

Keywords Quantum fields axiomatics · Quantum automata · Walks · Planck scale

Beware the Lorelei of Mathematics. Her song is beautiful.
David Finkelstein

1 Introduction

The logical clash between General Relativity (GR) and Quantum Field Theory (QFT) is the
main open problem in physics. The two theories represent our best theoretical frameworks,
and work astonishingly well within the physical domain for which they have been designed.
However, their logical clash requires us to admit that they cannot be both correct. One
could argue that there must exist a common theoretical substratum from which both theories
emerge as approximate effective theories in their pertaining domains–though we know very
little about GR in the domain of particle physics.

What we should keep and what we should reject of the two theories? Our experience
has thought us that of QFT we should definitely keep the Quantum Theory (QT) of abstract
systems, namely the theory of the von Neumann book [71] stripped of its “mechanical” part,
i. e. the Schrödinger equation and the quantization rules. This leaves us with the description
of generic systems in terms of Hilbert spaces, unitary transformations, and observables. In
other words, this is what nowadays is also called Quantum Information, a research field
indeed very interdisciplinary in physics.

There are two main reasons for keeping QT as valid. First, it has been never falsified in
any experiment in the whole physical domain–independently of the scale and the kind of
system. This has lead the vast majority of physicists to believe that everything must behave
according to QT. The second and more relevant reason is that QT, differently from any
other chapter of physics, is well axiomatized, with purely mathematical axioms contain-
ing no physical primitive. So, in a sense, QT is as valid as a piece of pure mathematics.
This must be contrasted with the mechanical part of the theory, with the bad axiomatic
of the so-called “quantization rules”, which are extrapolated and generalized starting from
the heuristic argument of the Ehrenfest theorem, which in turn is based on the superseded
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theory of classical mechanics, and with the additional problem of the ordering of canonical
noncommuting observables.1 No wonder then that the quantization procedure doesn’t work
well for gravity!

To what we said above we should add that today we know that the QT of von Neumann
can be derived from six information-theoretical principles [18, 25], whose epistemological
value is not easy to give up.2 On the contrary, it is the mechanical part of QFT that rises the
main inconsistencies, e .g. the Malament theorem [60], which makes any reasonable notion
of particle untenable [64].

The logical conclusion is that what we need is a field theory that is quantum ab initio.
But how to avoid quantization rules? The idea is simply to consider a countable set of
quantum systems in interaction, and to make the easiest assumptions on the topology of
their interactions. These are: locality, homogeneity, and isotropy. Notice that we are not
using any mechanics, nor relativity, and not even space and time. And what we get? We get:
Weyl, Dirac [22], and Maxwell [14]. Namely: we get free quantum field theory!

The new general methodology suggested to the above experience is then the following:
1) no physical primitives in the axioms; 2) physics only as interpretation of the mathematics
(based on experience, previous theories, and heuristics). In this way the logical coherence
of the theory is mathematically guaranteed. In this review we will see how the proposed
methodology can be actually carried out, and how the informational paradigm has the poten-
tial of solving the conflict between QFT and GR in the case of special relativity, with the
latter emergent merely from quantum systems in interaction: Fermionic quantum bits at
the very tiny Planck scale. In synthesis the program is an algorithmization of theoretical
physics, aimed to derive the whole physics from quantum algorithms with finite complexity,
upon connecting the algebraic properties of the algorithm with the dynamical features of the
physical theory, preparing a logically coherent framework for a theory of quantum gravity.

Section 2 is devoted to the derivation from principles of the quantum-walk theory. More
precisely, from the requirements of homogeneity and locality of the interactions of count-
ably many quantum systems one gets a theory of quantum cellular automata on the Cayley
graph of a group G. Then, upon restricting to the simple case of evolution linear in the dis-
crete fields, the quantum automaton becomes what is called in the literature quantum walk.
We further restrict to the case with physical interpretation in an Euclidean space, resorting
to considering only Abelian G.

In Section 3 the quantum walks with minimal field dimension that follow from the prin-
ciples of Section 2 are reported. These represent the Planck-scale version of the Weyl,
Dirac, and Maxwell quantum field dynamics, which are recovered in the relativistic regime
of small wavevectors. Indeed, the quantum-walk theory, being purely mathematical–and so
adimensional–nevertheless contains its own physical LTM standards written in the intrin-
sic discreteness and non-linearities of the theory. A simple heuristic argument based on the
notion of mini black-hole (from a matching of GR-QFT) leads to the Planck scale. It fol-
lows that the relativistic regime contains the whole physics observed up to now, including
the most energetic events from cosmic rays.

In addition to the exact dynamics in terms of quantum walks, a simple analytical method
is also available in terms of a dispersive Schrödinger equation, suitable to the Planck-scale

1The problem of ordering is avoided miraculously thanks to the fortuitous non occurrence in nature of
Hamiltonians with products of conjugated observables.
2For short reviews, see also Refs. [19, 23].
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physics for narrow-band wave-packets. As a result of the unitarity constraint for the evolu-
tion, the particle mass turns out to be upper bounded (by the Planck mass), and has domain
in a circle, corresponding to having also the proper-time (which is conjugated to the mass)
as discrete. Effects due to discreteness that are in principle visible are also analyzed, in par-
ticular a dispersive behavior of the vacuum, that can be detected by deep-space ultra-high
energy cosmic rays.

Section 4 is devoted to how special relativity is recovered from the quantum-walk dis-
crete theory, without using space-time and kinematics. It is shown that the transformation
group is a non-linear version of the Poincaré group, which recovers the usual linear group in
the relativistic limit of small wavevectors. For nonvanishing masses generally also the mass
gets involved in the transformations, and the De Sitter group SO(1, 4) is obtained.

The paper ends with a brief section on the future perspectives of the theory, and with an
Appendix about my first encounter with David Finkelstein.

Most of results reported in the present review have been originally published in Refs. [9,
11–15, 22, 24, 26, 27] coauthored with members of the QUit group in Pavia.

2 Derivation from Principles of the Quantum-walk Theory

If you are receptive and humble, mathematics will lead you by the hand.
Paul Dirac

The derivation from principles of quantum field theory starts from considering the uni-
tary evolution A of a countable set G of quantum systems, with the requirements of
homogeneity, locality, and isotropy of their mutual interactions. These will be precisely
defined and analyzed in following dedicated subsections. All the three requirements are dic-
tated from the general principle of minimizing the algorithmic complexity of the physical
law. The physical law itself is described by a finite quantum algorithm, and homogeneity
and isotropy assess the universality of the law.

The quantum system labeled by g ∈ G can be either associated to an Hilbert space Kg ,
or to a set of generators of a C∗-algebra3

ψg ≡ {ψν
g }, g ∈ G, ν ∈ [sg] := {1, 2, . . . , sg}, sg < ∞. (1)

The evolution occurs in discrete identical steps4

A ψg = UψgU
†, Uunitary, (2)

describing the interactions among systems. When the unitary evolution is also local, namely
A ψg is spanned by a finite subset Sg ⊂ G, thenA is called Quantum Cellular Automaton.
We restrict to evolution linear in the generators, namely

A ψg = UψgU
† =

∑

g′
Ag,g′ψg′ , (3)

3The two associations can be connected through the GNS construction.
4More generally the map A is an automorphism of the algebra.
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where Ag,g′ is an sg × sg′ complex matrix called transition matrix. Here in all respects
the quantum cellular automaton is described by a unitary evolution on a (generally infinite)
Hilbert space H = ⊕

g∈GHg , with Hg = Span{ψν
g }ν∈[sg]. In this case the quantum

cellular automaton is called Quantum Walk. Here the system simply corresponds to a finite-
dimensional block component of the Hilbert space, regardless the Bosonic/Fermionic nature
of the field. In the derivation of free quantum field theory from principles, the quantum walk
corresponds to the evolution on the single-particle sector of the Fock space, whereas for
the interacting theory a generally nonlinear quantum cellular automaton is needed. Simple
generalization to Fock-space sectors with fixed number of particles are also possible.

2.1 The Quantum System: Qubit, Fermion or Boson?

At the level of quantum walks, corresponding to the Fock space description of cellular
quantum automata (leading to free QFT in the nonrelativistic limit), it does not make any
difference which kind of quantum system is evolving. Indeed one can symmetrize or anti-
symmetrize products of wavefunctions, as it is done in usual quantum mechanics, or else
just take products with no symmetrization. Things become different when the vacuum is
considered, and particles are created and annihilated by operating with algebra generators
on the vacuum state, as in the interacting theory. Therefore, as far as we are concerned with
free QFT, which kind of quantum system should be used is a problem that can be safely
postponed.

However, there are still motivations for adopting a kind of quantum system instead of
another. For example, a reason for discarding qubits as algebra generators is that there is
no easy way of expressing the operator U making the evolution in (3) linear, whereas,
when ψg is Bosonic or Fermionic this is always possible choosing U exponential of bilin-
ear forms in the fields. On the other hand, a reason to chose Fermions instead of Bosons is
the requirement that the amount of information in a finite number of cells be finite, namely
one has finite information density in space.5 The relation between Fermionic modes and
finite-dimensional quantum systems, say qubits has been studied in the literature, and the
two theories have been proven to be computationally equivalent [17]. However, the quan-
tum theory of qubits and the quantum theory of Fermions differ in the notion of what are
local transformations [28, 29], with local Fermionic operations mapped into nonlocal qubit
transformations and vice versa.

In conclusion, the derivation from informational principles of the fundamental particle
statistics still remains an open problem. One could promote the finite information density to
the level of a principle, or motivate the Fermionic statistics from other principles of the same
nature of those in Ref. [18] (see e. g. Refs. [28, 29]), or derive the Fermionic statistics from
properties of the vacuum (e. g. having a localized non-entangled vacuum in order to avoid
the problem of particle localization), and then recover the Bosonic statistics as a very good
approximation, with the Bosonic mode corresponding to a special entangled state of pairs of
Fermionic modes [14], as it will be reviewed in Section 3.9. This hierarchical construction
will also guarantee the validity of the spin-statistic connection in QFT.

5Richard Feynman is reported to like the idea of finite information density, because he felt that: “There might
be something wrong with the old concept of continuous functions. How could there possibly be an infinite
amount of information in any finite volume?” [61].
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Fig. 1 The linear (3) endows the set G with a directed graph structure. We build a directed graph with an
arrow from g to g′ wherever the two are connected by a nonnull matrix Agg′ in (3)

2.2 QuantumWalks on Cayley Graphs6

The linear (3) endows the setG with a directed graph structure Γ (G,E), with vertex setG
and edge set E = {(g, g′)|Ag,g′ ̸= 0} directed from g to g′ (see Fig. 1). In the following we
will denote by Sg := {Ag,g′ ̸= 0} the set of non-null transition matrices with first index g,
and by Ng := {g′ ∈ G|Ag,g′ ̸= 0} the neighborhood of g.

2.2.1 The Homogeneity Principle

The assumption of homogeneity is the requirement that every two vertices are indistinguish-
able, namely for every g, g′ ∈ G there exists a permutation π of G such that π(g) = g′

which commute with any discrimination procedure consisting of a preparation of local
modes followed by a general joint measurement. In Ref. [26] it is shown that this is
equivalent to the following set of conditions

∀g ∈ G one has:

H1 sg = s;
H2 there exists a bijection Ng ↔ N with a fixed set N ;
H3 Sg contains the same s × s transition matrices, namely Sg = S := {Ah1}|N |

i=1;
H4 Ag,g′ = Ahi ∈ S ⇒ Ag′,g = Ahj ∈ S;

Condition H2 states that Γ (G,E) is a regular graph—i. e. each vertex has the same
degree. Condition H3 makes Γ (G,E) a colored directed graph, with the arrow directed
from g to g′ for Ag,g′ = Ah ∈ S and the color associated to h.7 Condition H3 introduces
the following formal action of symbols hi ∈ S on the elements g ∈ G as

Agg′ = Ahi ⇒ ghi = g′. (4)

Clearly such action is closed for composition. From condition H4 one has that

Ag′g = Ahj ⇒ g′hj = g, (5)

6This subsection is based on results of Refs. [22] and [15].
7If two transition matrices Ah1 = Ah2 are equal, we conventionally associate them with two different labels
h1 ̸= h2 in such a way that

∑
f∈Nπ(g)

Aπ(g)f ψπ−1(f ) = ∑
f∈Ng

Agf ψf . If such choice is not unique, we
will pick an arbitrary one, since the homogeneity requirement implies that there exists a choice of labeling
for which all the construction that will follow is consistent.
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and composing the two actions we see that ghihj = g, and we can write the label hj
as hj =: h−1

i . We thus can build the free group F of words made with the alphabet
S. Each word corresponds to a path over Γ (G,E), and the words w ∈ F such that
gw = g correspond to closed paths (also called loops). Notice that by construction, one
has Aπ(g)π(f ) = Agf = Ahi , which implies that π(g)hi = π(f ) = π(ghi), from which
one can prove that f ′w = π(f )w = π(fw) = π(f ) = f ′ (see [26]). Thus we have the
following

H5 If a path w ∈ F is closed starting from f ∈ G, then it is closed also starting from any
other g ∈ G.

The subset R ⊂ F of words w such that gw = g is obviously a group. Moreover R is a
normal subgroup ofG, since gwrw−1 = (gw)rw−1 = (gw)w−1 = g, namelywrw−1 ∈ R

∀w ∈ F,∀r ∈ R. Obviously the equivalence classes are just elements of G, which means
that G = F/R is a group. Pick up any element of G as the identity e ∈ G. It is clear that
the elements of the quotient group F/R are in one-to-one correspondence with the elements
of G, since for every g ∈ G there is only one class in F/R whose elements lead from e

to g (write g = ew for every w ∈ F , w representing a path leading from e to g). The
graph Γ (G,E) is thus what is called in the literature the Cayley graph of the group G (see
the definition in the following). The Cayley graph is in correspondence with a presentation
of the group G. This is usually given by arbitrarily dividing the set as S = S+ ∪ S− with
S− := S−1

+ ,8 and by considering a set W of generators for the free group of loops R.
The group G is then given with the presentation G = ⟨S+|W ⟩, in terms of the set of its
generators S+ (which along with their inverses S− generate the group by composition), and
in terms of the set of its relators W containing group words that are equal to the identity,
with the goal of using these words in W to establish if any two words of elements of G
correspond to te same group element. The relators can also be regarded as a set of generators
for R.

The definition of Cayley graph is then the following.

Cayley graph of G Given a group G and a set S+ of generators of the group, the Cay-
ley graph Γ (G, S+) is defined as the colored directed graph with vertex set G, edge set
{(g, gh); g ∈ G,h ∈ S+} with the edge directed from g to gh with color assigned by h

(when h = h−1 we conventionally draw an undirected edge).
Notice that a Cayley graph in addition to being a regular graph, it is also vertex-

transitive—i. e. all sites are equivalent, in the sense that the graph automorphism group acts
transitively upon its vertices. The Cayley graph is also called arc-transitive when its group
of automorphisms acts transitively not only on its vertices but also on its directed edges.

2.2.2 The Locality Principle

Locality corresponds to require that the evolution is completely determined by a rule involv-
ing a finite number of systems. This means having each system interacting with a finite
number of systems (i. e. |N | < ∞ in H2), and having the set of loops generating F as finite
and containing only finite loops. This corresponds to the fact that the group G is finitely
presented, namely both S+ andW are finite in G = ⟨S+|W ⟩.

8The above arbitrariness is inherent the very notion of group presentation and corresponding Cayley graph,
and will be exploited in the following, in particular in the definition of isotropy.



104 Int J Theor Phys (2017) 56:97–128

The quantum walk then corresponds to a unitary operator over the Hilbert space H =
ℓ2(G) ⊗ Cs of the form

A =
∑

h∈S
Th ⊗ Ah, (6)

where T is the right-regular representation of G on ℓ2(G), Tg|g′ = |g′g−1 .

2.2.3 The Isotropy Principle

The requirement of isotropy corresponds to the statement that all directions on Γ (G, S+) are
equivalent. Technically the principle affirms that there exists a choice of S+, a group L of
graph automorphisms on Γ (G, S+) that is transitive over S+ and with faithful unitary (gen-
erally projective) representation U over Cs , such that the following covariance condition
holds

A =
∑

h∈S
Th ⊗ Ah =

∑

h∈S
Tl(h) ⊗ UlAhU

†
l , ∀l ∈ L. (7)

As a consequence of the linear independence of the generators Th of the right regular
representation of G one has that the above condition (7) implies

Al(h±1) = UlAh±1U
†
l . (8)

Equation (8) implies that the principle of isotropy requires the Cayley graph Γ (G, S+) to
be arc-transitive (see Section 2.2.1).

We remind that the split S = S+ ∪ S− is non unique (and in addition one may add to
S the identity element e corresponding to zero-length loops on each element corresponding
to self-interactions). Therefore, generally the quantum walk on the Cayley graph Γ (G, S+)
satisfies isotropy only for some choices of the set S+. It happens that for the known cases
satisfying all principles along with the restriction to quasi isometric embeddability of G in
Euclidean space (see Section 2.3) such choice is unique.

2.2.4 The Unitarity Principle

The requirement that the evolution be unitary translates into the following set of equations
bilinear in the transition matrices as unknown

∑

h∈S
A†
hAh =

∑

h∈S
AhA

†
h = Is,

∑

h,h′∈S
h−1h′=h′′

A†
hAh′ =

∑

h,h′∈S
h′h−1=h′′

Ah′A†
h = 0. (9)

Notice that the structure of equations already satisfy the homogeneity and locality princi-
ples. The solution of the systems of (9) is generally a difficult problem.

2.3 Restriction to Euclidean Emergent Space

How a discrete quantum algorithm on a graph can give rise to a continuum quantum field
theory on space-time? We remind that the flow of the quantum state occurs on a Cayley
graph and the evolution occurs in discrete steps. Therefore the Cayley graph must play the
role of a discretized space, whereas the steps play the role of a discretized time, namely the
quantum automaton/walk has an inherent Cartesian-product structure of space-time, corre-
sponding to a particular chosen observer. We will then need a procedure for recovering the
emergent space-time and a re-interpretation of the notion of inertial frame and of boost in
the discrete, in order to recover Poincaré covariance and the Minkowski structure. The route



Int J Theor Phys (2017) 56:97–128 105

for such procedure is opened by geometric group theory, a field in pure mathematics initi-
ated by Mikhail Gromov at the beginning of the nineteen.9 The founding idea is the notion
of quasi-isometric embedding, which allows us to compare spaces with very different met-
rics, as for the cases of continuum and discrete. Clearly an isometric embedding of a space
with a discrete metric (as for the word metric of the Cayley graph) within a space with a
continuum metric (as for a Riemaniann manifold) is not possible. However, what Gromov
realized to be geometrically relevant is the feature that the discrepancy between the two
different metrics is uniformly bounded over the spaces. More precisely, one introduces the
following notion of quasi-isometry.

Quasi-isometry Given two metric spaces (M1, d1) and (M2, d2), with metric d1 and d2,
respectively, a map f : (M1, d1) → (M2, d2) is a quasi-isometry if there exist constants
A ≥ 1, B,C ≥ 0, such that ∀g1, g2 ∈ M1 one has

1
A
d1(g1, g2) − B ≤ d2(f (g1), f (g2)) ≤ Ad1(g1, g2)+ B, (10)

and ∀m ∈ M2 there exists g ∈ M1 such that

d2(f (g),m) ≤ C. (11)

The condition in (11) is also called quasi-onto.
It is easy to see that quasi-isometry is an equivalence relation. It can also be proved that

the quasi-isometric class is an invariant of the group, i. e. it does not depend on the presenta-
tion, i. e. on the Cayley graph. Moreover, it is particularly interesting for us that for finitely
generated groups, the quasi-isometry class always contains a smooth Riemaniann manifold
[21]. Therefore, for a given Cayley graph there always exists a Riemaniann manifold in
which it can be quasi-isometrically embedded, which is unique modulo quasi-isometries,
and which depends only on the groupG of the Cayley graph. Two examples are graphically
represented in Fig. 2.

2.3.1 Geometric Group Theory

With the idea of quasi-isometric embedding, geometric group theory connects geometric
properties of the embedding Riemaniann spaces with algebraic properties of the groups,

9The absence of the appropriate mathematics was the reason of the lack of consideration of a discrete struc-
ture of space-time in earlier times. Einstein himself was considering this possibility and lamented such lack
of mathematics. Here a passage reported by John Stachel [20]

But you have correctly grasped the drawback that the continuum brings. If the molecular view of mat-
ter is the correct (appropriate) one, i. e., if a part of the universe is to be represented by a finite number
of moving points, then the continuum of the present theory contains too great a manifold of possibili-
ties. I also believe that this too great is responsible for the fact that our present means of description
miscarry with the quantum theory. The problem seems to me how one can formulate statements about
a discontinuum without calling upon a continuum (space-time) as an aid; the latter should be banned
from the theory as a supplementary construction not justified by the essence of the problem, which
corresponds to nothing “real”. But we still lack the mathematical structure unfortunately. How much
have I already plagued myself in this way!
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a b

e
b
a a

b ab

a2

ab2

Fig. 2 From Ref. [26]. (Colors online). Given a group G and a set S+ of generators, the Cayley graph
Γ (G, S+) is defined as the colored directed graph having set of nodes G, set of edges {(g, gh); g ∈ G,h ∈
S+}, and a color assigned to each generator h ∈ S+. Left figure: the Cayley graph of the Abelian group Z2

with presentation Z2 = ⟨a, b|aba−1b−1⟩, where a and b are two commuting generators. Right figure: the
Cayley graph of the non-Abelian groupG = ⟨a, b|a5, b5, (ab)2⟩. The Abelian-group graph is embedded into
the Euclidean space R2, the non-Abelian G into the Hyperbolic space H2 with negative curvature

opening the route to a geometrization of group theory, including the generally hard problem
of establishing properties of a group that is given by presentation only.10

The possible groups G that are selected from our principles are infinitely many, and we
need to restrict this set to start the search for solutions of the unitarity conditions Section 2.3
under the isotropy constraint. Since we are interested in a theory involving infinitely many
systems (we take the world as infinite!), we will consider infinite groups only. This means
that when we consider an Abelian group, we always take it as free, namely its only relators
are those establishing the Abelianity of the group. This is the case of G = Zd , with d ≥ 1.

A paradigmatic result [21] of geometric group theory is that an infinite groupG is quasi-
isometric to an Euclidean space Rd if and only if G is virtually-Abelian, namely it has an
Abelian subgroupG′ ⊂ G isomorphic to Zd of finite index (namely with a finite number of
cosets). Another result is that a group has polinomial growth iff it is virtually-nihilpotent,
and if it has exponential growth then it not virtually-nihilpotent, and in particular non
Abelian, and is quasi-isometrically embeddable in a manifold with negative curvature.

In the following we will restrict to groups that are quasi-isometrically embeddable in
Euclidean spaces. As we will see soon, such restriction will indeed lead us to free quantum
field theory in Euclidean space. It would be very interesting to address also the case of
curved spaces, to get hints about quantum field theory in curved space. Unfortunately, the
case of negative curvature corresponds to groups, as the Fuchsian group in Fig. 2, whose
unitary representations (that we need here) are still unknown [55, 57, 76]. The virtually-
nihilpotent case also would be interesting, since it corresponds to a Riemaniann manifold
with variable curvature [76], however, a Cayley graph that can satisfy the isotropy constraint
could not be found yet [30].

10One should consider that the Dehn’s problem of establishing if two words of generators correspond to
the same group element is generally undecidable. The same is true for the problem of establishing if the
presentation corresponds to the trivial group!
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I close this section with some comments about the remarkable closeness in spirit between
the present program and the geometric group theory program. The main general goal of
geometric group theory is the geometrization of group theory, which is achieved studying
finitely-generated groups G as symmetry groups of metric spaces X, with the aim of estab-
lish connections between the algebraic structure of G with the geometric properties of X
[62]. In a specular way the present program is an algorithmization of theoretical physics,
with the general goal of deriving QFT (and ultimately the whole physics) from quantum
algorithms with finite complexity, upon connecting the algebraic properties of the algorithm
with the dynamical features of the physical theory. This will allow a coherent unified axiom-
atization of physics without physical primitives, preparing a logically coherent framework
for a theory of quantum gravity.

3 QuantumWalks on Abelian Groups and Free QFT as their Relativistic
Regime

As seen in Section 2.3, from the huge and yet mathematically unexplored set of possibilities
for the group G of the quantum walk, we restrict to the case of G virtually-Abelian, which
corresponds to G quasi-isometrically embeddable in an Euclidean space. As we will see in
the present section, the free QFT that will be derived from such choice exactly corresponds
to the known QFT in Euclidean space.

Since we are interested in the physics occurring in R3, we need to classify all possible
Cayley graphs of G having Z3 as subgroup with finite index, and then select all graphs
that allow the quantum walk to satisfy the conditions of isotropy and unitarity. We can pro-
ceed by considering increasingly large dimension s > 0 (defined in H1), which ultimately
corresponds to the dimension of the field–e .g. a scalar field for s = 1, a spinor field for
s = 2, etc.

3.1 Induced Representation, and Reduction from Virtually Abelian to Abelian
QuantumWalks

An easy way to classify all quantum walks on Cayley graphs with virtually Abelian groups
is provided by a theorem in Ref. [27], which establishes the following

A quantum walk on the Cayley graph of a virtually Abelian group G with Abelian
subgroup H ⊂ G of finite index iH and dimension s is also a quantum walk on the
Cayley graph of H with dimension s′ = siH .

This is just the induced-representation theorem [66–68] in group theory, here applied to
quantum walks. The multiple dimension s′ = sih corresponds to tiling the Cayley graph of
G with a tile made with a particular choice of the cosets of H . The new set of transition
matrices of the new walk for H can be straightforwardly evaluated in terms of those for
G (generally self interactions within the same tile can occur, corresponding to zero-length
loops in the Cayley graph). In Fig. 3 two examples of such tiling procedure are given.

The induced-representation method guarantees that scanning all possible virtually
Abelian quantum walks for increasing s is equivalent to scan all possible Abelian quantum
walks, since e. g. the set of Abelian walks of dimension s = nm will contain all virtually
Abelian walks with s = n and index m, etc. We therefore resort to consider only Abelian
groups.
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Fig. 3 From Ref. [27]. (Colors online). Two examples of reduction of a quantum walk on the Cayley graph
of a virtually Abelian group G to that of a quantum walk on the Cayley graph of an Abelian subgroup
H ⊂ G with finite index iH . The graphs on the left of the figures are the Cayley graph of G (it is easy to
see that both groups are non Abelian). The graphs on the right represents a choice of the Cayley graph of
the subgroup H = Z2, with the tiling corresponding to the induced representation (the elements of H are
the black bullets). Top figures: G = ⟨a, b | a4, b4, (ab)2⟩. The index is iH = 4. The subgroup generators are
hx = a−1b and hy = ba−1. The tiling is defined by the coset representatives e, a, a2, a3. Bottom figures:
G = ⟨a, b | a2b−2⟩. The index is iH = 2. The subgroup generators are h1 = ba and h2 = a2 (or h1 = ba
and h3 = ab−1), with the tiling the cosets representatives e, a

3.2 Isotropy and Orthogonal Embedding in R3

We will also assume that the representation of the isotropy group L in (7) induced by the
embedding in R3 is orthogonal, which implies that the graph-neighborhood is embedded in
a sphere S2 ⊂ R3 (we want homogeneity and isotropy to hold locally also in the embedding
space R3). We are then left with the classification of the Cayley graphs of Z3 satisfying the
isotropic embedding in R3: these are just the Bravais lattices.

3.3 QuantumWalks with Abelian G

When G is Abelian we can greatly simplify the study of the quantum walk by using the
wave-vector representation, based on the fact that the irreducible representations of G are
one-dimensional. The interesting case is for d = 3, but what follows holds for any dimen-
sion d. We will label the group elements by vectors g ∈ Zd , and use the additive notation
for the group composition, whereas the right-regular representation of Zd on ℓ2(Zd) will be
written as Th|g⟩ = |g − h⟩. This can be diagonalized by Fourier transform, corresponding
to write the operator A in block-form in terms of the following direct-integral

A =
∫

B
d3k|k⟩⟨k| ⊗ Ak, Ak :=

∑

h∈S
e−ik·hAh, |k⟩ := 1√|B|

∑

g∈G
e−ik·g|g⟩. (12)
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where B is the Brillouin zone, and |k is a plane wave.11 Notice that the quantum walk is
unitary if and only if Ak is unitary for every k ∈ B.

3.4 Dispersion Relation

The spectrum {e−iω
(i)
k } of the operator Ak is usually given in terms of the so-called dis-

persion relations ω
(i)
k versus k. As in usual wave-mechanics, the speed of the wave-front

of a plane wave is given by the phase-velocity ω
(i)
k /|k|, whereas the speed of a narrow-

band packet peaked around the value wave-vector k0 is given by the group velocity ∇kω
(i)
k

evaluated at k0.

3.5 The Relativistic Regime

As we will see in Section 3.8.3 an heuristic argument will lead us to set the scale of discrete-
ness of the quantum walk (and similarly the quantum cellular automaton for the interacting
theory) at the Planck scale. The domain |k| ≪ 1 then corresponds to wave-vectors much
smaller than the Planck vector, which is much higher than any ever observed wave-vector.12

Such regime includes that of usual particle physics, and is called relativistic regime. To be
precise, the regime is defined by a set of wavepackets that are peacked around k = 0 with
r.m.s. value much smaller than the Planck wave-vector, which we will refer shortly to as
narrow-band wave-packets.

I want to emphasize here that we have never used any mechanical concept in our deriva-
tion of the quantum walk, including the notion of Hamiltonian: the dynamics is given in
term of a single unitary operator A. A notion of effective Hamiltonian could be consid-
ered as the logarithm of A, which would correspond to an Hamiltonian providing the same
unitary evolution, and which would even interpolate it between contiguous steps. For this
reason we will call such an operator interpolating Hamiltonian. In the Fourier direct-integral
representation of the operator, the interpolating Hamiltonian will be given by the identity
e−iH(k) := Ak. It is easy to see that the relativistic limit H0(k) of H(k), corresponding to
consider narrow-band wave-packets centered at k = 0, is achieved by expanding it at the
first order in |k|, i. e. H(k) = H0(k) + O(|k|2). The interpolated continuum-time evolu-
tion in the relativistic regime will be then given by the first-order differential equation in the
Schrödinger form

i∂tψ(k, t) = H0(k)ψ(k, t). (13)
Rigorous quantitative approaches to judge the closeness between free QFT and the rela-
tivistic regime of the quantum walk have been provided in Ref. [11] in terms of channel
discrimination probability, and in Ref. [22] in terms of fidelity between the two evolutions.
Numerical values will be provided at the end of Section 3.8.

3.6 Schrödinger Equation for the Ultra-relativistic Regime

In the ultra-relativistic regime of wave-vectors comparable to the Planck vector, an obvious
option is that of evaluating the evolution by a numerical evaluation of the exact quantum

11The Brillouin zone is a compact subset of R3 corresponding to the smallest region containing only
inequivalent wave-vectors k. (See Ref. [22] for the analytical expression.)
12The highest momentum observed is that of a ultra-high-energy cosmic ray, which is k ≪ 10−8.
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walk.13 However, even in such regime we still have an analytical method available for evalu-
ating the evolution of some common physical states. Indeed, for narrow-band wave packets
centered around any value k0 one can write a dispersive Schrödinger equation by expanding
the interpolating Hamiltonian H(k) around k0 at the second order, thus obtaining

i∂t ψ̃(x, t) = ±
[
v · ∇ + 1

2
D · ∇∇

]
ψ̃(x, t), (14)

where ψ̃(x, t) is the Fourier transform of ψ̃(k, t) := e−ik0·x+iω0tψ(k, t), v = (∇kω) (k0) is
the drift vector, and D = (∇k∇kω) (k0) is the diffusion tensor. This equation approximates
very well the evolution, even in the Planck regime and for large numbers of steps, depending
on the bandwith (see an example in Fig. 4 from Ref. [11]).

3.7 Recovering the Weyl Equation14

In Section 3.2 we were left with the classification of the Cayley graphs of Z3 satisfying
the isotropic embedding in R3, which are just the Bravais lattices. For dimension s = 1
it is easy to show that the only solution of the unitarity constraints gives the trivial quan-
tum walk A = I .15 We then consider s = 2. Now, the only inequivalent isotropic Cayley
graphs are the primitive cubic (PC) lattice, the body centered cubic (BCC), and the rhom-
bohedral. However only in the BCC case, whose presentation of Z3 involves four vectors
S+ = {h1, h2,h3,h4} with relator h1 + h2 + h3 + h4 = 0, one finds solutions satisfying
all the assumptions of Section 2. The isotropy group is given by the group L of binary rota-
tions around the coordinate axes, with the unitary projective representation on C2 given by
{I, iσx, iσy, iσz}. The group L is transitive on the four BCC generators of S+. There are
only four solutions (modulo unitary conjugation) that can be divided in two pairs A± and
B±. The two pairs of solutions are connected by transposition in the canonical basis, i. e.
A±
k = (B±

k )
T . The solutions B±

k can be also obtained from the solution A±
k by shifting the

wave-vector k inside the Brillouin zone16 to the vectors [22]

k1 =
π

2
(1, 1, 1), k2 = −π

2
(1, 1, 1), k3 = −π

2
(1, 0, 0). (15)

The A±
k solutions in the wave-vector representation are

A±
k = Iu±k − iσ± · ñ±k (16)

with

ñ±k :=

⎛

⎝
sxcycz ∓ cxsysz
cxsycz ± sxcysz
cxcysz ∓ sxsycz

⎞

⎠ , u±k := cxcycz ± sxsysz, (17)

13A fast numerical technique to evaluate the quantum walk evolution numerically exploits the Fourier
transform. For an application to the Dirac quantum walk see Ref. [31].
14This section is a synthesis of the results of Ref. [22]. It should be noticed that there isotropy is not even
assumed in solving (9). A simplified derivation making use of isotropy and full detailed analysis of all
possible Cayley graphs will be available soon [30].
15Also more generally one has A = Th.
16The first Brillouin zone B for the BCC lattice is defined in Cartesian coordinates as −

√
3π ≤ ki ± kj ≤√

3π, i ̸= j ∈ {x, y, z}.
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Fig. 4 From Ref. [11]. (Colors online). Test of the quality of the approximation of the Schrödinger (14)
at for different time t of the Dirac quantum walk with mass m = 0.6 in one space dimension of Ref.[11].
Comparison of the probability distribution (in red) and the solution of the Schrödinger equation (in blue).
Right figures: the state is a superposition of Hermite functions multiplied by the Gaussian peaked around
momentum k0 = 3π/10, for drift and diffusion coefficients v = 0.73 and D = 0.31, respectively. The mean
value moves at the group velocity given by the drift coefficient v. The approximation remains accurate even
for position spread σ̂ = 20 Planck lengths. Left figures: The same four times comparison for the quantum
walk with m = 0.4, and an initial Gaussian state peaked around the momentum k0 = 0.1. In this case the
drift velocity and the diffusion coefficient are respectively v = 0.22 and D = 2.30

where ci := cos(ki/
√
3), si := sin(ki/

√
3), and σ+ = σ , σ− = σ T . The spectrum of A±

k

is {e−iω±
k }, with dispersion relation given by

ω±
k = arccos(cxcycz ∓ sxsysz). (18)
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It is easy to get the relativistic limit of the quantum walk using the procedure in Section 3.5.
This simply corresponds to substituting ci = 1 and si = ki/

√
3 in (17), thus obtaining

i∂tψ(k, t) = 1√
3
σ± · kψ(k, t). (19)

Equation (19) are the two Weyl equations for the left and the right chiralities. For G = Zd

with d = 1, 2 one obtains the Weyl equations in dimension d = 1, 2, respectively [22]. All
the three quantum walks have the same form in (16), namely

Ak = ukI − iσ · ñk, (20)

with dispersion relation

ωk = arccos uk, (21)

and with the analytic expression of uk and nk depending on d and on the chirality (see Ref.
[22]). Since the quantum walks in (17) or (20) have the Weyl equations as relativistic limit,
we will also call them Weyl quantum walks.

The interpolating Hamiltonian is H(k) = σ · nk, with nk := (ωk/ sinωk)ñk playing
the role of an helicity vector, and with relativistic-limit being given by H0(k) = 1√

d
σ · k,

which coincides with the usual Weyl Hamiltonian in d dimensions upon interpreting the
wave-vector k as the particle momentum.

We conclude the present subsection by emphasizing that one additional advantages of the
discrete framework is that the Feynman path-integral is well defined, and it is also exactly
calculated analytically in some cases. Indeed, in Refs. [32] and [33] the discrete Feynman
propagator for the Weyl quantum walk has been analytically evaluated with a closed form
for dimensions d = 1 and d = 2, and the case of dimension d = 3 will be published
soon [34].

3.8 Recovering the Dirac Equation

From Section 3.7 we know that all quantum walks derivable from our principles for s = 2
give the Weyl equation in the relativistic limit. We now need to increase the dimension
s of the field beyond s = 2. However, the problem of solving the unitarity (9) becomes
increasingly difficult, since the unknown are matrices of increasingly larger dimension s ≥
3 (we remind that the equations are bilinear non homogeneus in the unknown transition
matrices, and a canonical procedure for the solution is unknown). What we can do for the
moment is to provide only some particular solutions using algebraic techniques. Two ways
of obtaining solutions for s = 4 is to start from solutions in dimension s = 2 and built the
direct-sum and tensor product of two copies of the quantum walk in such a way that the
obtained quantum walk for dimension s = 4 still satisfies the principles. We will see that
the quantum walks that we obtain in the relativistic limit give the Dirac equation when using
the direct sum, whereas they give the Maxwell equation (plus a static scalar field) when we
use the tensor product.

When building a quantum walk in 2 × 2 block form, all four blocks must be quantum
walks themselves. The requirement of locality of the coupling leads to off-diagonal blocks
that do not depend on k. A detailed analysis of the restrictions due to the unitarity conditions
(9) shows that, modulo unitary change of representation independent on k,17 we can take the

17This can also be e. g. the case of an overall phase independent of k.
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off-diagonal matrix elements as proportional to the identity, whereas the diagonal blocks are
just given by the chosen quantum walk and its adjoint, respectively. We then need to weight
the diagonal blocks with a constant n and the off-diagonal identities with a constant m, and
unitarity requires having |n|2 + |m|2 = 1. Then, starting from the walk Ak that leads us to
the Weyl equations for all dimension d = 1, 2, 3, the walk, modulo unitary equivalence,18

can be recast in the form [22]

Dk :=
(
nAk im

im nA†
k

)
, n2 +m2 = 1, n ∈ R+, m ∈ R. (22)

Also the sign of m can be changed by a unitary equivalence (a “charge-conjugation”),
however, we keep m with changing sign for reasons that will explained in Section 3.8.2.
The walk (22) with s = 4 can be conveniently expressed in terms of gamma matrices in the
spinorial representation as follows

Dk := nIuk − inγ 0γ · ñk + imγ 0, (23)

where the functions uk and ñk depend on the choice of Ak in (22), i. e. on d = 1, 2, 3. The
dispersion relation of the quantum walk (23) is simply given by

ωk = arccos[
√
1 − m2uk]. (24)

We will see now that the quantum walks in (22) in the small wave-vector limit and for m ≪
1 all give the usual Dirac equation in the respective dimension d, with m corresponding to
the particle rest mass, whereas n works as the inverse of a refraction index of vacuum. In
fact, the interpolating Hamiltonian H(k) is given by

H(k) = ωk

sinωk
(nγ 0γ · ñk − mγ 0), (25)

with relativistic limit given by

H0(k) =
n√
d

γ 0γ · k+mγ 0, (26)

and to the order O(m2) we get the Dirac Hamiltonian

H0(k) =
1√
d

γ 0γ · k+mγ 0. (27)

One has the Dirac Hamiltonian, with the wave-vector k interpreted as momentum and the
parameter m interpreted as the rest mass of the particle. In the relativistic limit (26) the
parameter n plays the role of the inverse of a refraction index of vacuum. In principle this
can produce measurable effects from bursts of high-energy particles of different masses at
the boundary of the visible universe, and would be complementary to the dispersive nature
of vacuum (see Sections 3.8.3 and 3.9.2).

In the following we will also call the quantum walk in (22) Dirac quantum walk.19

18Also the solutions with walk B± = (Ak)
T are contained in (22), since they can be achieved either by a

shift in the Brillouin zone or as σyB
±σy = A±†, with the exchange of the upper and lower diagonal blocks

that can be done unitarily.
19For d = 1, modulo a permutation of the canonical basis, the quantum walk corresponds to two identical and
decoupled s = 2 walks. Each of these quantum walks coincide with the one dimensional Dirac walks derived
in Ref. [11]. The last one was derived as the simplest s = 2 homogeneous quantum cellular walk covariant
with respect to the parity and the time-reversal transformation, which are less restrictive than isotropy that
singles out the only Weyl quantum walk in one space dimension.
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In Ref. [32] the discrete Feynman propagator for the Dirac quantum walk has been ana-
lytically evaluated with a closed formal for dimension d = 1, generalizing the solution of
Ref. [63] for fixed mass value.

3.8.1 Discriminability between Quantum walk and Quantum Field Dynamics

In Section 3.5 we mentioned that rigorous quantitative approaches to judge the closeness
between the two dynamics have been provided in Ref. [11], and in Ref. [22] in terms of
fidelity between the two unitary evolutions. For the Dirac quantum walk for a proton mass
one has fidelity close to unit for N ≃ m−3 = 2.2 ∗ 1057, corresponding to t = 1.2 ∗
1014s = 3.7 ∗ 106 years. The approximation is still good in the ultra-relativistic case k ≫
m, e. g. for k = 10−8 (as for an ultra-high energy cosmic ray), where it holds for N ≃
k−2 = 1016 steps, corresponding to 5∗10−28 s. However, one should notice that practically
the discriminability in terms of fidelity corresponds to having unbounded technology, and
such a short time very likely corresponds to unfeasible experiments. On the other hand,
for a ultra-high energy proton with wave packet width of 100 fm the time required for
discriminating the wave-packet of the quantum walk from that of QFT is comparable with
the age of the universe.

3.8.2 Mass and Proper-Time

The unitarity requirement in (22) restrict the rest mass to belong to the interval

m ∈ [−1, 1]. (28)

At the extreme points ±1 of the interval the corresponding dynamics Dk = ±iγ 0 are
identical (they differ for an irrelevant global phase factor). This means that the domain of
the mass has actually the topology of a circle, namely

m ∈ S1. (29)

From the classical relativistic Hamiltonian [59]

H = p · q + c2mτ − L, (30)

with p and q canonically conjugated position and momentum and L the Lagrangian, we see
that the proper time τ is canonically conjugated to the rest mass m. This suggests that the
Fourier conjugate of the rest mass in the quantum walk can be interpreted as the proper time
of a particle evolution, and being the mass a variable in S1, we conclude that the proper time
is discrete, in accordance with the discreteness of the dynamical evolution of the quantum
walk. This result constitutes a non trivial logical coherence check of the present quantum
walk theory.

3.8.3 Physical Dimensions and Scales for Mass and Discreteness

We want to emphasize that in the above derivation everything is adimensional by construc-
tion. Dimensions can be recovered by using as measurement standards for space, time, and
mass the discreteness scale for space a∗ and time t∗ (a∗ is half of the BCC cell side, t∗ the
time-length of the unit step), along with the maximum value of the massm∗ (corresponding
to |m| = 1 in (22)). From the relativistic limit, the comparison with the usual dimensional
Dirac equation leads to the identities

c = a∗/t∗, ! = m∗a∗c, (31)
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which leave only one unknown among the three variables a∗, t∗ and m∗. At the maximum
value of the mass |m| = 1 in (22) we get a flat dispersion relation, corresponding to no
flow of information: this is naturally interpreted as a mini black-hole, i. e. a particle with
Schwarzild radius equal to the localization length, i. e. the Compton wavelength. This leads
to an heuristic interpretation of m∗ as the Planck mass, and from the two identities in (31)
we get the Planck scale for discreteness. Notice that the value of m∗ can be in principle
obtained from the dispersion of vacuum as m∗ ≃ 1√

3
!k

c(k)−c(0) for small k, which can be
in principle measured by the Fermi telescope from detection of ultra high energy bursts
coming from deep space.

3.9 Recovering Maxwell Fields20

In Sections 3.7 and 3.8 we showed how the dynamics of free quantum fields can be derived
starting from a countable set of quantum systems with a network of interactions satis-
fying the principles of locality, homogeneity, and isotropy. Within the present finitistic
local-algorithmic perspective one also considers each system as carrying a finite amount
of information, thus restricting the quantum field to be Fermionic (see also Section 2.1).
However, one may wonder how the physics of the free electromagnetic field can be recov-
ered in such a way and, generally, how Bosonic fields are recovered from Fermionic ones.
In this section we answers to these questions. The basic idea behind is that the photon
emerges as an entangled pair of Fermions evolving according to the Weyl quantum walk of
Section 3.7. Then one shows that in a suitable regime both the free Maxwell equation in 3d
and the Bosonic commutation relations are recovered. Since in this subsection we are actu-
ally considering operator quantum fields, we will use more properly the quantum automaton
nomenclature instead of the quantum walk one.

Consider two Fermionic fields ψ(k) and ϕ(k) in the wave-vector representation, with
respective evolutions given by

ψ(k, t + 1) = Wkψ (k, t). ϕ(k, t + 1) = W ∗
kϕ(k, t). (32)

The matrix Wk can be any of the Weyl quantum walks for d = 3 in (16), (the whole
derivation is independent on this choice), whereas W ∗

k = σyWkσy denotes the complex
conjugate matrix. We introduce the bilinear operators

Gi(k, t) := ϕT
(k
2 , t

)
σ iψ

(k
2 , t

)
= ϕT (k, 0)

(

W †
k
2
σ iWk

2

)

ψ
(k
2 , 0

)
(33)

by which we construct the vector field

G(k, t) := (G1(k, t),G2(k, t),G3(k, t))T (34)

and the transverse field

GT (k, t) := G(k, t) −
(

nk
2

|nk
2
| ·G(k, t)

)
nk

2

|nk
2
| , (35)

with nk := (ωk/ sinωk)ñk and ñk given in(17). By construction the field GT (k, t) satisfies
the following relations

nk
2
·GT (k, t) = 0, (36)

20The entire subsection is a short review of Ref. [14]
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GT (k, t) = Exp
(

−i2nk
2
· Jt

)
GT (k, 0), (37)

where we used the identity

exp
(

− i

2
v · σ

)
σexp

(
i

2
v · σ

)
= Exp(−iv · J)σ, (38)

the matrix Exp(−iv · J) acting on σ regarded as a vector, and J = (Jx, Jy, Jz) representing
the infinitesimal generators of SU(2) in the spin 1 representation. Taking the time derivative
of (37) we obtain

∂tGT (k, t) = 2nk
2

× GT (k, t). (39)

If EG and BG are two Hermitian operators defined by the relation

EG := |nk
2
|
(
GT +G†

T

)
, BG := i|nk

2
|
(
G†

T − GT

)
, (40)

then (36) and (39) can be rewritten as

∂tEG = i2nk
2

× BT (k, t) ∂tBG = −i2nk
2

× ET (k, t)
2nk

2
· EG = 0 2nk

2
· BG = 0.

(41)

Equation (41) have the form of distorted Maxwell equations, with the wave-vector k
substituted by 2nk

2
, and in the relativistic limit |k| ≪ 1 one has 2nk

2
∼ k and the usual free

electrodynamics is recovered.

3.9.1 Photons Made of Pairs of Fermions

Since in theWeyl equation the field is Fermionic, the field defined in (35) and (40) generally
does not satisfy the correct Bosonic commutation relations. The solution to this problem is
to replace the operator G defined in (35) with the operator F defined as

F(k) :=
∫

dq
(2π)3

fk(q)ϕ
(k
2 − q

)
σ ψ

(k
2 + q

)
, (42)

where
∫ dq

(2π)3
|fk(q)|2 = 1, ∀k. In terms of F(k), we can define the polarization operators

εi (k) of the electromagnetic field as follows

εi (k) := uik · F(k, 0), i = 1, 2, (43)

uik · nk = u1k · u2k = 0, |uik| = 1, (u1k × u2k) · nk > 0. (44)

In order to avoid technicalities from continuum of wavevectors, we restrict to a discrete
wave-vector space, corresponding to confinement in a cavity. Moreover we assume |fk(q)|2
to be uniform over a region -k which contains Nk modes, i. e.

|fk(q)|2 =
{ 1

Nk
if q ∈ -k

0 otherwise.
(45)

Then, for a given state ρ of the field we denote by Mϕ,k (resp. Mψ,k) the mean number
of type ϕ (resp ψ) Fermionic excitations in the region -k. One can then show that, for states
such thatMξ,k/Nk ≤ ϵ ≪ 1 for both ξ = ϕ,ψ and forall k we have

[εi (k), εj †(k′)]− = δi,j δk,k′ , (46)

i. e. the polarization operators are Bosonic operators.
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3.9.2 Vacuum Dispersion

According to (41) the angular frequency of the electromagnetic waves is given by the
modified dispersion relation

ω(k) = 2|nk
2
|, (47)

which recovers the usual relation ω(k) = |k| in the relativistic regime. In a dispersive
medium, the speed of light is the group velocity ∇kω(k) of the electromagnetic waves, and
(47) predict that the vacuum is dispersive, namely the speed of light generally depends on
k. Such dispersion phenomenon has been already analyzed in some literature on quantum
gravity, where several authors considered how an hypothetical invariant length (correspond-
ing to the Planck scale) could manifest itself in terms of modified dispersion relations [4,
56, 65, 70, 75]. In these models the k-dependent speed of light c(k), at the leading order
in k := |k|, is expanded as c(k) ≈ 1 ± ξkα , where ξ is a numerical factor of the order 1,
while α is an integer. This is exactly what happens in our framework, where the intrinsic
discreteness of the quantum cellular automata A±

k leads to the dispersion relation of (47)
from which one obtains the following k-dependent speed of light

c∓(k) ≈ 1± 3
kxkykz

|k|2 ≈ 1± 1√
3
k. (48)

Equation (48) is obtained by evaluating the modulus of the group velocity and expanding
in powers of k with the assumption kx = ky = kz = 1√

3
k, (k = |k|).21 Notice that the

dispersion is not isotropic, and can also be superluminal, though uniformly bounded [22]
by a factor

√
d (which coincides with the uniform bound of the quasi-isometric embed-

ding). The prediction of dispersive behavior, as for the present automata theory of quantum
fields, is especially interesting since it is experimentally falsifiable, and, as mentioned in
Section 3.8.3, allows to experimentally set the discreteness scale. In fact, differently to other
birefringence effects Fig. 5, the disperision effect, although is extremely small in the rel-
ativistic regime, it accumulates and become magnified during a huge time of flight. For
example, observations of the arrival times of pulses originated at cosmological distances
(such as in some γ -ray bursts[1, 5, 6, 79]), have sufficient sensitivity to detect corrections
to the relativistic dispersion relation of the same order as in (48).

4 Recovering Special Relativity in a Discrete Quantum Universe22

We have seen how relativistic mechanics, and more precisely free QFT, can be recovered
without using any mechanical primitive, and without making any use of special relativity,
including the relativity principle itself. However, one may wonder how discreteness can be
reconciled with Lorentz transformations, and most importantly, how the relativity principle
itself can be restated in purely mathematical terms, without using the notions of space-time
and inertial frame. In this section we will see how such goal can be easily accomplished.

The relativity principle is expressed by the statement:
Galileo’s Relativity Principle: The physical law is invariant with the inertial frame.

21Notice that, depending on the quantum walk A+(k) of A−(k) in (16) we obtain corrections to the speed of
light with opposite sign.
22This entire section is a review of the main results of Ref. [15].
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Fig. 5 From Ref. [14]. (Colors online). Left: In a rectilinear polarized electromagnetic wave, the polarization
plane (in green) is slightly tilted with respect the plane orthogonal to k (in gray). Right: vector 2n k

2
(in

green), which is orthogonal to the polarization plane; wavevector k (in red) and group velocity (in blue) for
the value |k| = 0.8 and different directions. Notice that the three vectors are not parallel (the angles between
them depend on k)

Otherwise stated: the physics that we observe, or, equivalently, its mathematical repre-
sentation, is independent on the inertial frame that we use.

What is a frame? It is a mathematical representation of physical laws in terms of space
and time coordinates. What is special about the inertial frame? A convenient way of
answering is the following

Inertial frame: a reference frame where energy and momentum are conserved for an
isolated system.

When a system is isolated? This is established by the theory. In classical mechanics, a
system is isolated if there are no external forces acting on it. In quantum theory a system is
isolated when its dynamical evolution is described by a unitary transformation on the sys-
tem’s Hilbert space. At the very bottom of its notion, the inertial frame is the mathematical
representation of the physical law that makes its analytical form the simplest. In classical
physics, if we include the Maxwell equations among the invariant physical laws, what we
get from Galileo’s principle is Einstein’s special relativity.

The quantum walk/automaton is an isolated system (it evolves unitarily). Mathematically
the physical law that brings the information about the constants of the dynamics in terms of
their Hilbert eigenspaces is provided by the eigenvalue equation. For the case of virtually
Abelian group G (which ultimately leads to physics in Euclidean space) the eigenvalue
equation has the general form corresponding to (19) and (21)

Akψ(ω, k) = eiωψ(ω,k), (49)

with the eigenvalues usually collected into s dispersion relations (the two functions
ω±(k) for the Weyl quantum walk). This translates into the following re-interpretation of
representations of the eigenvalue equation:

Quantum-digital inertial frame: Representation in terms of eigen-spaces of the constants
of the dynamics of the eigenvalue (49).

Using such notion of inertial frame, the principle of relativity is still the Galileo’s prin-
ciple. The group of transformations that connect different inertial reference frames will be
the quantum digital-version of the Poincaré group:
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Quantum-digital Poincaré group: group of changes of representations in terms of
eigenspaces of the dynamical constants that leave the eigenvalue (49) invariant.

It is obvious that the changes of representations make a group. Since the constants of
dynamics are k and ω±, a change of representation corresponds to an invertible map k →
k′(k), where with k we denote the four-vector k := (ω,k).

In the following subsection we will see how the inherent discreteness of the algorith-
mic description leads to distortions of the Lorentz transformations, visible in principle at
huge energies. Nevertheless, Einstein’s special relativity is perfectly recovered for |k| ≪ 1,
namely at energy scales much higher than those ever tested.

On the other hand, as we will see in the following, discreteness has some plus compared
to the continuum theory, since it contains the continuum theory as a special regime, and
moreover it leads to some additional features with GR flavor: 1) it has a maximal particle
mass with physical interpretation in terms of the Planck mass; 2) it leads to a De Sitter
invariance (see Section 4.2). And this, in addition to providing its own physical standards
for space, time, and mass within a purely mathematical context (Section 3.8.3).

4.1 Quantum-digital Poincaré Group and the Notion of Particle23

The eigenvalue (49) can now be rewritten in “relativistic notation” as follows

nµ(k)σ
µψ(k) = 0, (50)

upon introducing the four-vectors

k = (ω,k), n(k) = (sinω,n(k)), σ = (I, σ ), σ = (σx, σy, σz), (51)

where the vector n(k) is defined in (16), namely

n(k) · σ := i

2

(
Ak − A†

k

)
. (52)

As already mentioned, since the constants of dynamics are k and ω±, a change of repre-
sentation corresponds to a map k <→ k′(k). Now the principle of relativity corresponds to
the requirement that the eigenvalue (50) is preserved under a change of representation. This
means that the following identity must hold

nµ(k)σ
µ = Γ̃ −1

k nµ(k
′)σµ Γk, (53)

where Γk , Γ̃k are invertible matrices representing the change of representation.
The simplest example of change of observer is the one given by the trivial relabeling

k′ = k and by the matrices Γk = Γ̃k = eiλ(k), where λ(k) is an arbitrary real function of k.
When λ(k) is a linear function we recover the usual group of translations. The set of changes
of representation k <→ k′(k) for which (53) holds are a group, which is the largest group of
symmetries of the dynamics. In covariant notation the dispersion relations are rewritten as
follows

n±µ(k)n
µ±(k) = 0, (54)

and in the small wave-vector regime one has n(k) ∼ k, recovering the usual relativistic
dispersion relation.

In addition to the neighbour of the wavevector k0 = (0, 0, 0), the Weyl equations can
be recovered from the quantum walk (16) also in the neighborhood of the wavevectors in

23For a simpler analysis in one space dimensions and the connection with doubly-special relativity and
relative locality, see Ref.[8]. For a connection with Hopf algebras for position and momentum see Ref. [10].
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Fig. 6 From Ref. [15]. (Colors online). The distortion effects of the Lorentz group in the present quan-
tum walk theory leading to the Weyl quantum field in the relativistic limit. Top left figure: the orbit of the
wavevectors k = (kx, 0, 0), with kx ∈ {.05, .2, .5, 1, 1.7} under the rotation around the z axis. Top right fig-
ure: the orbit of wavevectors with |k| = 0.01 for various directions in the (kx, ky) plane under the boosts
with β parallel to k and |β| ∈ [0, tanh 4]. Bottom figure: the orbit of the wavevector k = (0.3, 0, 0) under the
full rotation group SO(3).

(15). The mapping between the vectors ki exchange chirality of the particle and double the
particles to four species in total: two left-handed and two right-handed.24 In the following
we will therefore more generally refer to the relativistic regime as the neighborhoods of the
vectors {ki}3i=0.

The group of symmetries of the dynamics of the quantum walks (16) contains a nonlinear
representation of the Poincaré group, which exactly recovers the usual linear one in the
relativistic regime. For any arbitrary non vanishing function f (k) one introduces the four-
vector

p(f ) = D (f )(k) := f (k)n(k) (55)

and rewrite the eigenvalue (50) as follows

p(f )
µ σµψ(k) = 0. (56)

24Discreteness has doubled the particles: this corresponds to the well known phenomenon of Fermion
doubling [73].
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Upon denoting the usual Lorentz transformation by Lβ for a suitable f [15] the Brillouin
zone splits into four regions Bi , i = 1, . . . , 4 centered around ki i = 0, . . . 3, such that the
composition

L (f )
β := D (f )−1LβD (f ) (57)

is well defined on each region separately. The four invariant regions corresponding to the
four different massless Fermionic particles show that the Wigner notion of ”particle” as
invariant of the Poincaré group survives in a discrete world. For fixed function f the maps
L (f )

β provide a non-linear representation of the Lorentz group [2, 3, 69]. In Fig. 6 the orbits
of some wavevectors under subgroups of the nonlinear Lorentz group are reported. The
distortion effects due to underlying discreteness are evident at large wavevectors and boosts.
The relabeling k → k′(k) = L (f )

β (k) satisfies (53) with Γk = 5β and Γ̃k = 5̃β for the

right-handed particles, and Γk = 5̃β and Γ̃k = 5β for the left-handed particles, with 5β

and 5̃β being the
(
0, 1

2

)
and

(
1
2 , 0

)
representation of the Lorentz group, independently on

k in each pertaining region.
For varying f , one obtains a much larger group, including infinitely many copies of the

nonlinear Lorentz one. In the small wave-vector regime the whole group collapses to the
usual linear Lorentz group for each particle.
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4.2 De Sitter Group for Nonvanishing Mass

Up to now we have analyzed what happens with massless particles. For massive particles
described by the Dirac walk (22), the rest-mass m gets involved into the frame transfor-
mations, and their group becomes a nonlinear realization of the De Sitter group SO(1, 4)
with infinite cosmological constant, where the rest mass m of the particle plays the role of
the additional coordinate. One recovers the previous nonlinear Lorentz group at the order
O(m2).

5 Conclusions and Future Perspectives: the Interacting Theory, ...,
Gravity?

The logical connections that have lead us to build up our quantum-walk theory of fields
leading to free QFT are summarized in Fig. 7. The free relativistic quantum field theory
emerges as a special regime (the relativistic regime) of the evolution of countably many
Fermionic quantum bits, provided that their unitary interactions satisfy the principles of
homogeneity, locality, and isotropy, and with the restrictions of linearity of the evolution
and of quasi-isometric embedding of the graph of interaction in an Euclidean space.

We are left now with the not easy task of recovering also the interacting relativistic quan-
tum field theory, where particles are created and annihilated. We will need to devise which
additional principles are missing that will lead to the interacting theory, breaking the lin-
earity assumption. This is likely to be related to the nature of a gauge transformation. How
can this be restated in terms of a new principle? From the point of view of a free theory,
the interaction can be viewed as a violation of homogeneity, corresponding to the presence
of another interacting field–namely the gauge-field. The gauge-field can be regarded as a
restoration of homogeneity by a higher level homogeneous “meta-law”. For example, one
can exploit the arbitrariness of the local bases of the Hilbert block subspaces Cs for the
Weyl automata, having the bases dependent on the local value of the wave-function of the
gauge automaton made with pairs of entangled Fermions, as for the Maxwell automaton. In
order to keep the interaction local, one can consider an on-situ interaction. In such a way
one would have a quantum ab initio gauge theory, without the need of artificially quantizing
the gauge fields, nor of introducing mechanical Lagrangians. A d = 1 interacting theory
of the kind of a Fermionic Hubbard quantum cellular automaton, has been very recently
analytically investigated by the Bethe ansatz [78], and two-particle bound states have been
established. It should be emphasized that for d = 3 just the possibility of recovering QED
in the relativistic regime would be very interesting, since it will provide a definite proce-
dure for renormalization. Very interesting will be also the analysis of the full dynamical
invariance group, leading also to a nonlinear version of the Poincaré group, with the pos-
sibility that this restricts the choice of the function f in (55). Studying the full symmetry
group of the interacting theory will also have the potential of providing additional internal
symmetries, e. g. the SU(3) symmetry group of QCD, with the Fermion doubling possibly
playing the role in adding physical particles. The mass as a variable quantum observable (as
in Sections 3.8.2 and 4.2) may provide rules about the lifetimes of different species of parti-
cles. The additional quasi-static scalar mode entering in the tensor-product of the two Weyl
automata that give the Maxwell field in Section 3.9 may turn out to play a role in the inter-
acting theory, e. g. playing the role of a Higg boson providing the mass value, or even being
pivotal for gravitation. But for now we are just in the realm of speculations.
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What we can say for sure is that it is not just a coincidence that so much physics comes
out from so few general principles. How amazing is the whole resulting theory which, in
addition to having a complete logical coherence by construction, it also winks at GR through
the two nontrivial features of the maximum mass, and the De Sitter invariance. And with
special relativity derived without space-time and kinematics, in a fully quantum ab ini-
tio theory. So much from so little? This is the power of the new information-theoretical
paradigm.
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Appendix

Appendix A: A Very Brief Historical Account

The first very preliminary heuristic ideas about the current quantum cellular automa-
ton/quantum walk theory have been presented in a friendly and open-minded environment
at Perimeter Institute in Waterloo in a series of three talks in 2010-11 [35–37].25 Originally,
the idea of foliations over the quantum circuit has been explored, showing how the Lorentz
time-dilations and space-contractions emerge by changing the foliation. This work has lead

25Other talks have been presented in the Växjö conference on quantum foundations [38–41], at QCMC [42],
and other conferences. The general philosophy of the program have been object of four FQXi essays [43–46]
partly republished in [47–50].
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to the analyses of Alessandro Tosini in Refs. [51, 52] and in the conclusive work [54]. How-
ever, it was soon realized that the foliation on the quantum circuit explores only the causal
connectivity of the automaton, and works in the same way also for a classical circuit, as it
happens for random walks in one dimension (see e. g. Ref. [72]). Moreover, only rational
boosts can be used, with the additional artifact that the events have to be coarse-grained in a
boost-dependent way, with very different coarse-graining for very close values of the boost.
This makes the recovery of the usual Lorentz transformations at large scales practically
unfeasible. On the other hand, the first Dirac automaton in one space dimension [24] exhib-
ited perfect Lorentz covariance for small wavevectors, which made clear that the quantum
nature of the circuit plays a pivotal role in recovering the Lorentz invariance. In the same
Ref. [24] it also emerged that the Dirac mass has to be upper bounded as a consequence of
unitarity.

The idea that so-called “conventional”principles as homogeneity and isotropy may play
a special role entered the scene since the very beginning [35] through the connection with
the old works of Ignatowsky [80], whereas ideas about how to treat gauge theories emerged
already in Ref. [37]. However, the project remained stuck for a couple of years because of
two dead ends. First, we were looking to the realization of the quantum cellular automa-
ton in terms of circuit gates, and we much later realized that the problem of connecting
the gate realization (socalled Margolus scheme [77]) to the linear quantum walk was a
highly non trivial problem for dimension greater than one. Second, we where considering
Jordan-Wigner mappings between local qubits and discrete Fermions [53], generalizing to
dimensions d > 1 what can be done for d=1, and later Tosini realized that for d > 1 such
mapping cannot be done iso-locally [28, 29], namely preserving the locality of interactions.
Paolo Perinotti, inspired from the work of Bialynicki-Birula [7], recognized the first Dirac
quantum walks in 2 and 3 dimensions. Later the graph structure of the walk was pointed
out to be a Cayley graph of a group by Matt Brin, and the work of the derivation from prin-
ciples of Weyl and Dirac [22] followed after a Paolo’s nontrivial solution of the unitarity
conditions. This was the turning point of the whole program. It was soon recognized that the
Maxwell field could be obtained by tensor product of two Weyl, and Alessandro Bisio soon
found a way of achieving the photons with entangled pairs of Fermions. We finally realized
the pivotal role played by the eigenvalue equation of the quantum in restating the relativity
principle and recovering Lorentz covariance, and Bisio found the construction recovering
the notion of particle as invariant of the deformed Poincaré group.

Appendix B: My Encounter with David Ritz Finkelstein

Vieque Island, January 6th 2014: FQXi IV International Conference on The Physics of
Information. The conference is very interactive, mostly devoted to debates, round tables,
and working groups. Max Tagmark organizes and chaires a morning session made of five-
minutes talks. The audience includes distinguished scientists, a unique opportunity for
presenting my Templeton project A Quantum-Digital Universe. I want to say many things
that I consider very important, and I prepare my talk carefully, measuring the time of each
single sentence, and memorizing each single word. The result goes beyond my best expec-
tations, with gratifying comments by a number of scientists, some whom I meet for the first
time.26 But the best that happens is that a beautiful old man, whom I never met before, with
a white bear and a hat, literally embraces me with a great smile, and almost with tears in his

26Very flattering are the compliments of Federico Faggin, the designer of the first microprocessor at Intel.
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blue eyes says that I realized one of his dreams. His enthusiasm, so passionate and authentic
captures me. I spend most of the following days discussing with him. He invites me to visit
him in his home in Atlanta.

I visit David on March 16th and 17th in a weekend during a visit in Boston. His house
is beautiful, with large windows opened on a surrounding forest. With his wife Shlomit we
have pleasant conversations, some about their past encounter with the Dalai Lama.

David writes a nice dedication on my copy of his last book [58]. He then asks me to
explain to him the derivation of quantum theory from information-theoretical principles
(which I did with my former students Paolo Perinotti and Giulio Chiribella [18]: a textbook
from Cambridge University Press is now in press [25]). I spend almost the two entire days
in front of a small blackboard in David room full of books (see Fig. 8), drawing diagrams
and answering to his many questions. His genuine interest will boost my enthusiasm for the
years to come.

After that visit David and I will continue to exchange emails. David regularly will send
to me updates of his work. We promise to exchange visits soon, but unfortunately this will
not happen again.

Appendix C: My Talk at FQXi 2014 Verbatim

I’d like to tell you about the astonishing power of taking information more fundamental than
matter, the informational paradigm advocated byWheeler, Feynman, and Seth Lloyd of “the
universe as a huge quantum computer”. Quantum Theory is indeed a theory of information,
since it can be axiomatically derived from six axioms of pure information-theoretical nature.
Five of the postulates are in common with classical information. The one that discriminates

Fig. 8 The blackboard in David room, after a day-long tour on the derivation of quantum theory from
principles [25]. You can notice some diagrams that pertain noncausal variations of quantum theory
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between quantum and classical is the principle of conservation of information–technically
the purification postulate. Information means describing everything in terms of input-output
relations between events/transformations, mathematically associating probabilities to closed
circuits between preparations and observations. [Some of the principles are conceptually
quite new and interesting, such as the local discriminability one, which in the quantum case
reconciles holism with reductionism, with the possibility of achieving complete information
by local observation.]

Now these postulates provide only the quantum theory of abstract systems, not the
mechanical part of the theory. In order to get this you need to add new principles that lead to
quantum field theory, without assuming relativity and space-time. These principles describe
the topology of interactions, which determine the flow of information along the circuit. The
first of these requirements is that of finite info-density, corresponding to having a numer-
able set of finite-dimensional quantum systems in interaction. Such principle, along with
the assumption of unitarity, locality, homogeneity, isotropy and minimal dimension of the
systems in interaction, are equivalent to minimizing the quantum algorithmic complexity of
the information processing, reducing the physical law to a bunch of few quantum gates, and
leading to a description in terms of a Quantum Cellular Automaton.

Now, it turns out that from these few assumptions only two quantum cellular automata
follow that are connected by CPT, and Lorentz covariance is broken. They both converge
to the Dirac equation in the relativistic limit of small masses and small wave-vectors. In
the ultra-relativistic limit of large wave-vectors or masses (corresponding to a Planck scale)
Lorentz covariance becomes only an approximate symmetry, and one has an energy scale
and length scale that are invariant in addition to the speed of light, corresponding to the
Doubly Special Relativity of Amelino-Camelia/Smolin/Magueijo, with the phenomenon
of relative locality, namely that also coincidence in space, not only in time, is observer-
dependent. The covariance is given by the group of transformation leaving the dispersion
relations of the automaton invariant, and holds for energy-momentum. When you get back
to space-time via Fourier, then you recover a space-time of quantum nature, with space-time
points in superposition.

The quantum cellular automaton can be regarded as a theory unifying scales ranging from
Planck to Fermi. It is interesting to notice that the same quantum cellular automaton also
gives the Maxwell field, interestingly in the form of the de Broglie-Fermi neutrino theory
of the photon. With the principle of bounded information density, also the Boson becomes
an emergent notion, but the relation with Fermions is subtle in terms of localization. The
fact that the theory is discrete avoids all problems that plague quantum field theory arising
from the continuum, especially the problem of localization, but, most relevant, the theory is
quantum ab initio, with no need of quantization rules. And this is the great bonus of taking
information as more fundamental than matter.
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