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Improving quantum interferometry by using entanglement
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We address the use of entanglement to improve the precision of generalized quantum interferometry, i.e., of
binary measurements aimed to determine whether or not a perturbation has been applied by a given device. For
the most relevant operations in quantum optics, we evaluate the optimal detection strategy and the ultimate
bounds to the minimum detectable perturbation. Our results indicate that entanglement-assisted strategies
improve the discrimination in comparison with conventional schemes. Possible implementations of
entanglement-assisted schemes, in order to approach the performances of the optimal strategies, are also

suggested.
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[. INTRODUCTION with another subsystem, ariil) measuring the two systems

jointly at the output of the interferometésee Fig. 1b)].

An interferometric setup is devised to reveal minute per- In order to optimize the detection strategies, and to show
turbations to a given configuration. Such perturbations mayne benefit of entanglement, we will make use of results and
be induced by the environment or by the action of a givenethods from quantum detection theory applied to binary
device. In an interferometer, the internal quantum operatiorqec's'on[g’{l' Th|§ approach is_particularly usejgl for our
is monitored by probing the output state, which, in turn re-Purposes, since it does not refer to any specific detection

sults from the evolution of a given input. By suitably choos- scheme for the final stage of the interferometer, but rather,

) . : . e owing to its generality, it allows one to find the ultimate
ing the input signal and the detection stage one optimizes th g 9 Y

: ; N _ (?uantum limits to interferometry for specific classes of quan-
interferometric measurement. Optimization has two mair, . signals
goals: (i) to maximize the probability of revealing a pertur-

. : - oy In Sec. Il, in order to establish notation, we briefly review
bation, when it occurs, angi) to minimize the value of the e Neyman-Pearson approach to quantum binary decision,

smallest perturbation that can be effectively detected. and state a lemma about minimum input-output overlap.
In essence, an interferometric scheme may be viewed asghen, in Sec. 11, we apply these results to the interferometric
binary communication systerfil,2|, with the perturbation detection of perturbations induced by the most relevant op-
playing the role of the encoded information. In order to seeerations in quantum optics such as displacement, squeezing,
better this analogy let us consider the scheme shown in Fignixing, and phase shifting. As we will see, entanglement-
1(a). A sourceS of quantum states prepares the input signalassisted interferometers provide better discrimination than
saypQ,, which travels along the interferometer, and it is even-conventional schemes. In Sec. IV, we analyze possible
tually measured by some detector, denotedDbyThe detec- implementations of entangled-assisted schemes, in order to
tor is described by the positive operator-valued measur@pproach, for the quantum operations discussed in Sec. Il
(POVM) TI(x), with xe X, X being the manifold describing the ultimate bounds to precision. Finally, in Sec. V we close
the possible detection outcomes. Inside the interferometer wié€ paper with some concluding remarks.
have a generic quantum device, which may or may not per- (@)
turb the signal, i.e., it performs the quantum operation de-
scribed by the positivéJ, . If a perturbation occurs the sig- S==
nal is modified and, at the output, we have the staje
= U)\QOUI . The aim of the detection stage is to discriminate
betweeng, and its perturbed versiog, . An optimized in-
terferometer is a device that is able to tell whighfor A as
small as possible. _Posed m.thls way, interferometry is na_tu- FIG. 1. A generalized interferometer is a binary detection
rally viewed as a binary decision problem, and the detection

. - scheme aimed at checking whether or not a given quantum device
stage can be described by a two-value POV, II, =I (the hexagon in the figuyehas performed the quantum operations

—Ilo}, whose realizations correspond to the two possiblescrined by the unitary operattr, . The signal employed as a
inferences. ) probe is prepared by the sourSeand then enters the device, which
The main goal of the present paper is to demonstrate thgay or may not apply, . The two hypothesest, (the signal is
benefit of entanglement in binary interferometry. We will unperturbedl and H, (U, has been appligdshould be discrimi-
show that distinguishability of the two hypotheseblo( nated on the basis of the outcome of the dete€tofa) Simple
nothing happened arilf) : a perturbation has occurredan  scheme involving a single-mode prob®) Scheme involving an

be improved by:(i) using an input signal that is entangled entangled probe.
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II. QUANTUM BINARY DECISION IN THE NEYMAN- zation strategy. Since interferometric schemes are frequently
PEARSON APPROACH used for detecting low-rate events, we may want to look for
a strategy that keeps a low-rate of false alarm, namely, of

N Q/vrong inference of perturbation occurrence. For this pur-
hypothesedgi, andH, about the state of a system, which is pose, it is suitable to adopt a so-called Neyman-Peaiiddn

described by a density operatgron the Hilbert space. To detection strategy, which consists in fixing a tolerable value

each hypothe.5|s it will correspond a different density Operag¢ o false-alarm probabilit®,—the probability of infer-
tor as follows:

ring that the state of the system g@g while it is actually

Hy: the system is in the stat, @o—and then maximizing the detection probabiliy, i.e.,
_ . the probability of a correct inference of hypothesis [5]. It
Hy: the systemis in the stas, . (D has been proved by Helstrof8] and Holevo[4] that this

Of course, there are many different measurements that ce{?{Oblem can be solved by diagonalizing the operator

provide information about the state of the system: each of
them, however, can be recast mathematically as a two-value O0)\— MO0, ©)]
POVM, corresponding to the two possible inferenggsand

Hy, namely, u playing the role of a Lagrange multiplier accounting for

,,I1,=0, Mo+I,=1. (2)  the bound of fixed false-alarm probability. According to Ref.
[3] the optimal POVM is the one in whicH, is the projec-

One then needs an optimization strategy in order to detetion onto the eigenspaces (@) relative to positive eigenval-
mine the most reliable measurement discriminating betweenes andll=1-1I, . Unfortunately, the diagonalization of
the two states. Ifo, and ¢, are orthogonal, i.e.po0,  (3) is generally not easy. However, whep=|q)(#,| and
=0, 00=0 the solution is trivial, sincél, is the projection ©,=|#,)(,| are pure states it can be easily solved analyti-
into any subspace that contains the supporiogfand is  cally, by expandindi,) and|y,) on the eigenvectors of the
orthogonal to the support op,, andII, is simply the difference operato3). In this way one can evaluate bafh
complementI, =1—1II,. In most cases of interest, however, andQ, versusu, and after eliminatinge from their expres-
the states are not orthogonal and one has to apply an optimsions one obtains

_[NQ[ P+ T=Qo) (T [«A)]?  for 0=Qo=]”

R for |k|?<Qo=1,

(4)

where | k| %= (| ¥ )|?>= (0| U\| o)|? is the overlap be- where A is the angular spread of the eigenvalues. Zero
tween the two states. The detection probability is a decreagverlap can be achieved with a probe state that is given by a
ing function of the overlap—the smaller the overlap, thesuperposition of at least three eigenvectorsigf, corre-
easier the discrimination—since one can reach detectiosponding to eigenvalues that make a polygon that encloses
probability 1 while keeping a low false-alarm probability. On the origin(or, if they exist, by a superposition of two of them
the contrary, when the overlap approaches 1, one is forced fwmorresponding to diametrically opposed eigenvalués-
decrease the detection probability in order to keep the falsestead, if the minimum overlap is not zero, it is achieved by

alarm probability small. the optimal probe state given by
The optimal choice of the probe that minimizes the over-
lap depends on the eigenvalues of the unitary operadipn 1
In order to illustrate this, let us expand, in terms of its )= E(|€Di>+|¢’j>)i (6)

eigenvectorsU, = =;e'¢i|¢;)(¢;| (with integrals replacing

sums in case of continuous spectjuamd let us denote by
O(U,) =min,[g{U,|#)|* the minimum overlap between the
two possible outputs, as obtained by varying the probe state.

Then we have the followingverlap lemmd6,7]: the mini- IIl. ENTANGLEMENT IN BINARY INTERFEROMETRY

mum overlapO(U,) is given by the distance from the origin |y this section we compare the performances of single-
in the complex plane of the polygon whose vertexes are thg,ode[Fig. 1(a)] and entanglement-assisted binary interfero-
eigenvalues ol . Therefore, the overlap is either zei6  metric scheme$Fig. 1(b)] in the detection of small pertur-

with Ap=¢;— ¢;.

the polygon includes the origiror it is given by bations induced by relevant quantum optical operations such
as displacement, squeezing, mixing, and phase shifting. The

O(U)\)ZCOSZA—(P (5) comparison is made in terms of the detection sensitivity,

2 namely, upon parametrizing the “size” of the perturbation—
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whence the corresponding output state—by a coupling parameters, which makes the whole optimized scheme very
rameter. In other words, the comparison is made in termsunstable, namely, one should know the phase of perturbation
of the minimum detectable value,;, of A corresponding to very precisely in order to get a truly optimized detection.
output states that can be effectively discriminated whilelndeed, we have

keeping theacceptance ratioy* of the NP strategy large,

namely, y* =Q, /Qy>1. We will employ the quantit\ i, N>1

as a measure of the sensitivity of the interferometric scheme. |alfin = A(Qq,¥*)/4N for 5= 2, (10
Using Eq.(4) the above condition can be written in terms of

the overlap as follows: N>1

|@|Zin = 4NA(Qo,¥*) for =0, (11)

2_ *
[<*=1=A(Qo. 7). ) with the second expression that shows an asymptotically di-
*\_ * vergent behavior in.
AQo,¥")=Qol 1+ 7" (172Q0) I?et us now consider an entanglement-assisted scheme,
—2Vy*(1— Qo) (1— ¥* Qo) 1. where one has available a two-mode probe sté#fe and
take the configuratiotd ,=D(a)®1 in which the displace-
For each class of transformations, we will make some genment perturbs one mode, say and the other mode is left
eral considerations and then focus our attention on sensitivitynperturbed. At the probe state we consider the entangled
bounds that can be achieved using probe signals that agate from parametric down-conversion of vacuum for finite

feasible with current technology. gain—the so-called “twin-beam” state
A. Perturbation made of a single-mode complex displacement |X)y= ,/1_X22 x"[nnY), 0=x<1, (12)
n

Let us first consider the case when the perturbation is
imposed by the displacement operatby=D(a)=exp(@a’  where|nn))=|n),®|n),. The twin beam in Eq(12) has
—aa). In principle, in this case, the discrimination can be mean photon numbeN=2x?%/(1—x?) and it is achieved
done exactly with single-mode probe. This can be seen bgtarting from the vacuum via the unitary evolutigr))
writing the displacement asU,=exp(2ejx), x, =exdx@'b'—ab)]0)). In order to evaluate the sensitivity,
=1/2(a’e'’+ae™'?) being the quadrature operator, ad the main task is now to calculate the overlda|?
=arg(a)+ /2. Since the spectrum of the quadrature coin-=|{{(x|U,|x)}|?. We have
cides with the real axis, the spectrumlf, covers the whole
unit circle, and, therefore, the statdsy,) and |i,)
=U,|#y) can be discriminated with certainty either by
choosing|#,) as the eigenstate of the conjugated quadrature
Xg+ -2, OF, according to the overlap lemma, as a superposi- *
tion of at least two eigenstates of the quadratuye Unfor- =(1-x3) E x2"(n|D(a)|n)
tunately, such optimal states are unphysical, since they are n=0
not normalizable and have infinite energy. Moreover, even o
though we approximate them with physical states with finite :(1—x2)e*(1/2)|a|22 X2"L (| a|?)
energy, the identification of the optimal states would require n=0
the knowledge of the phase of the perturbation. In order to
see that, let us rewrite the eigenvect@y,. ., as the limit- B la]? 1+x2| |er|?
ing case of a squeezed vacuurQ), ,,=Ilim, .|¢) TR T e T — (N+1)
=Iim‘§‘_,wS(§)|O), where 6=arg({) + /2 is the argument
of the squeezing parametgiof the squeezing operator given wherel (x) is thenth Laguerre polynomial. Equatiofi3)
by implies for|a|Z,, the scaling

S(O)=exd 1/2(¢a*?~¢ad)], ®) a2, = MQo7)
min= TNFT

K=(1—x2)mE:O ngo XM mmD(a) @l nn)

, (13

(14)
and |0) is the electromagnetic vacuum. Our squeezed
vacuum has mean photon numiér sint?|¢|. The overlap is  which is independent on the phase of perturbation, and thus

readily evaluated as represents a robust bound to the sensitivity of a single-mode
5 5 displacement.
|k|*=1(£ID(a)|{)]
=exp[—|a|2[2N+ 1+ N(N+1)cos 251}, (9) B. Perturbation made of_ _a single-_mode squeezing
(phase-sensitive amplifiey
where §=arg({) —arg(a). By inserting the overlap in Eq. The second kind of perturbation that we analyze is the

(7) we obtain the minimum detectatjle|?. However, Eq(9)  squeezing of a single radiation mode, which is described by

shows a very strong dependence| @f?,, on the phase pa- the squeezing operat&(¢) in Eq. (8). Without loss of gen-
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erality we can considef=¢{=r as real and use the notation WhereN=|a|*=(ala’ala) is the mean number of photons
U, to indicate the transformation, namely,=exg—irA],  ©f the probe state. By expanding for smalive have

with A=i/2(a"?—a?). The spectrum oA is continuouq8]

and extends over the whole real axis. This means that the [{@|U,|a)|?=1—Nr? (16)
eigenvalues o), cover the whole unit circle. Therefore, it is

possible, in principle, to discriminate the perturbation ex-and, therefore, the minimum detectable perturbation would
actly, using as a probe either an eigenstate of the operatie

conjugated toA, or using a superposition of two or more

eigenstates ofA. However, analogously to the case of the A(Qq,7%)

displacement, such probe states are not normalizable and Fmin™=\/ — (17)
have infinite energy, whence one must resort to physical ap- N

proximations of such states. For a coherent probe the overlap

can be calculated through the overlap of the correspondinfor a squeezed vacuum proBg)|0) one haq9]

Wigner functions, giving as a result

_/olat
, N coZ¢(1— coshr —sinhr )2 «=(0IS{(OUS(0)]0)
(alU]a)|*=expg — 1+exp2r) =[coshr + 2i sint ¢|cosh|sinhr sing] Y2, (18)

~ 2N sinf¢p(1—coshr +sinhr)? 15 where y=arg({) and correspondingly the minimum detect-
1+exp(—2r) ’ abler is given by

1 1 —_—
'”(1_A(QO,Y*){1—\/A(Q0,7 )[2=A(Qq,¥*)1}|  for sing=0,

Mmin= < (19
\/A(Qo’y )_1 otherwise
2 N sin s '
|
with N=sint?||. Again, the bound in Eq(19) strongly de- ni [n/2] (—1)'[sinh(r)]2
pends on the phase between the squeezing perturbation and (n|U,|n)= 1) T .
the squeezing of the probe, and, therefore, cannot be [coshir)] (=0 4(I")*(n—=2I)!
achieved in practice without prior knowledge of the phase of (22
the perturbation. Using Eq.(22) we calculatex by means of Eq(20),
Let us now consider an entangled probe state in a twin-
beam state of the form given by E@L2). The input-output n! (/2] (—1)'[sink(r)]?

: : k=(1—x?) x2"
overlap is calculated as follows: ( HZO [coshr)]™ 12 56 4(11)2(n—21)!

oG (1% i ( x4sinhz(r))|2II
K:«X|UI’®H|X»:(1_X )nZO X <n|Ur|n>- (20) [Cosl,(r)]l/Z i=o 4C05H(r)
5 (n+21)! 2 "
In order to calculate the matrix elememtU,|n) we use the X > (n ) ( X )
identities n=o ni2lt | coshr)
(1-x%)

t _ata_ _ = .
Ur:e(1/2)tanh()a [COSI’(I’)] a'a 1/2e (1/2)tanh¢)a [(X4+1)COS|’(I’)—2X2]1/2

Inserting this expression in Ed7) we have forr,;, the

and ;
scaling law
[n/2] | *
[—tanHr)] n! A(Qo, ") 1
—1/2 tanhf)a — In—2I r.. =2
e m=2=Zn Na-an" 2 "N 1TA Qo) NEF 2N+ 2

(21)
_ ] AQoy) 2 03
where[m] indicates the integer part o, and finally we get 1-A(Qq,y*)N’
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The same result is obtained by varying the phase of the NOPA D
squeezing amplitudé, i.e., for complexr, thus confirming W)} D
the robustness of the bour{@3) that is obtained using an > @)

entangled probe.

NOPA
C. Perturbation made of a two-mode phase shift D D
(b)

The third problem we address is that of a perturbation

induced by the two-modes phase-shift operaibb+ab, . . .
characterizing a mixefbeam splitter or a Mach-Zehnder FIG. 2. Difference-photocurrent interferometric scheme to
interferometer. This case differs from the previous ones iffchieve ultimate bounds on precision by means of an entangled
that the perturbation is represented by the two-modes unitar/OPe: The NOPA generates a twin beam that may be subjected to
operator,,= expli ¢(aTb+abT)} In this case the spectrum is e action of the unitary, . At the output the beams are detected

: » . - and the difference photocurrent is measured. For an unperturbed

iven by exgime}, with me 7 ( Ref.10]). Ther
?or: if ée (%/p@)ﬁ}, with q E/Zziieéﬁfb’ Z?(Ibut ;chis ?ser;l interferometer the output is again a twin-beam state, and the scheme

s = T €2/ IS

g . is designed in order to obtain a constant zero difference photocur-
null-measure set of values @f) then the optimal state is rent, whereas a perturbatidh, would produce fluctuations in the

given by a superposition of two eigenstates\of with ei- ifference photocurrenta) Scheme for single-mode perturbation;
genvalues differing byr. In the general case, the optimal () scheme for two-mode perturbation.

state is any superposition of three or more eigenstat¥s, of

such that the polygon of its eigenvalues on the unit circlesqueezing. This means that the entanglement-assisted inter-

encloses the origifi7]. Such optimal states are entangled, ferometry provides a much more reliable and easily tunable
since they are obtained from the eigenstdtesl)) of a'a  scheme.

—b'b,

(a’a—b'b)|n,d)=d|n,d) IV. IMPLEMENTATIONS OF ENTANGLEMENT-ASSISTED
’ e INTERFEROMETRIC SCHEMES

In+d)|n) for d=0,

(24) In this section we suggest two concrete schemes for bi-
[n)[n+]|d|) for d<O,

nary decision based on an entangled probe. The schemes are
feasible, at least in principle, and permit us to approach the
by the unitary transformation egp(w/4)(a’b—ab')}. Ac-  ultimate precision bounds that have been obtained in the pre-
tually, the optimal states are far from being practically real-ceding section.

izable. However, we have proved that they are entangled,

anq this S.UQQ.eS.tS tp explore th‘? possibilit_y of performing a A. Entanglement in difference-photocurrent interferometry
reliable discrimination by physically realizable entangled

In,d))=

states. For a twin beam we have In Flg 2 we show a schematic diagram of a difference-
photocurrent interferometer. The input state is the entangled
k={X|V4[x)=(1 twin-beam|x)) produced by a nondegenerate optical para-

metric amplifier. Such entangled probe is possibly subjected
to the action of the unitaryJ, [Figs. 2a) and 2b) describe
(25)  the cases of a single mode and of a two-mode perturbation,
respectively. At the output the two beams are detected and
where yo=tan¢ and y;=—In(cos'¢). After some algebra the difference photocurre=a‘a—b'b is measured. If no
we get perturbation occurs, then the output state is still a twin beam,
and sincgx)) is an eigenstate dd with zero eigenvalue we
2 1 1 have a constant zero outcome for the difference photocur-
| ] Y ——.  (26) ! ]
4x2sirtp 1+ N(N+2)sirte rent. On t.he other hand, vv_hen a perturbation occurs the out
t— put state is no longer an eigenstateDpfand we detect fluc-
(1-x9) tuations, which signal the presence of the perturbation itself.
The false-alarm and the detection probabilities are given by

—x2){(00|e*2%¢' 708 bgl(1/2)y1(aTa~b'b)} gi{v0ab"} gxa’ bT| 00)),

The minimum detectable, according to Eq(26), is thus
given by Qo=P(d#0|NOTU,)=0, (28

[ AMQo v | A(Qo, YY) Q,=P(d#0|U,)=1-P(d=0|U,),
Brmin arcsW( \/m) - (27) (29)

N
The scaling in Eq(27) does not depend on any parameterWhere the prpbability qf opserving zero counts at the output,
but the energy of the input state. This should be compared@fter the action otJ, , is given by
with the sensitivity of the customary single-mode interferom-
etry[11] based on squeezed states, where the same scaling is P(d=0lU.)= n-nlU. o2 30
achieved only for a very precise tuning of the phase of the ( Uy 2 [l (30
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since the eigenvalud=0 is degenerate. In this scheme the

false-alarm probability is zero and, therefore, it is not neces- > Trlell,(n+d)®Il,(n)], d=0,
sary to introduce an acceptance ratio. The scaling of the P,(d)= "
minimum detectable perturbation can be obtained directly in

terms of the detection probabili®, by Egs.(29) and(30). ; Tell(mell,(n+d)], d<0,

For the single-mode transformations considered in the pre- (36)
ceding section we have

where g is the outgoing statéeither gy or ¢,). The main
P(d=0]a#0)=exd —|a|?(1+N)]lo[|a|2YN(N+2)] effect of quantum efficiency is the occurrence of nonzero
(3D output also in the case of no perturbation, i.e., the appearance
of a false-alarm probability
for the displacement, wherky(x) is the zeroth modified
Bessel function, and
o QOEP(d¢0|a=O):1—(§O§n‘, (X|TT,(n+d)®TI,(n)
Q\
N

P(d=0|r#0)=1-r2N+0(r?) (32 +I1,(n) @ T1,(n+d)|x), (37)

for the squeezing. The minimum detectable perturbations ar¢hereas the detection probability is given by
thus given by
Q.=1-P(d=0]a#0)
2 VQ)\ \/Q_)\

|afmin= "R~ Tmin="" (33 =3 (D@L, (eI, (mD(@x). (38

For the two-mode phase-shift transformation we have Equation(37) would suggest a slight modification of the de-

20, tection strategy, where the inference’l® is associated with
_ _ _1 272 2 e Q a difference photocurrent whose absolute value is under a
P(d=0|¢#0)=1 ¢*N“+0(¢*) — Dmin . :

2 N threshold valued* . We have numerically calculateg, and

(34  Q, for different (intege) values of the threshold and ob-
_ _ ~tained the plots in Fig. 3. The plots represent the character-
One can see that in all examples considered above, an intdstics Q,(Q,) for different values of the entanglement pa-
ferometer based on a difference-photocurrent measuremerimeterx for quantum efficiency equal ty=0.9 and
provides a precision that rescales with the energy in the same 0,75, respectively. The perturbation intensity is given by
way as the ultimate bounds obtained in the preceding setw|=0.7. Apart from the trivial pointQy,=Q,=1, corre-
tiOﬂ-_ o _ sponding to a threshold* =0, for any value of the param-
It is worth noticing that the experimental measurement ofeter x we have a sequence of points, corresponding to the
a modulated absorption based on entanglement-assist@gteger values of the threshottf ,d* e N. The highest value
difference-photocurrent detection has been already pebf Q, corresponds to maximum entanglement, and to the
formed using the entangled beam exiting an amplifier abovénresholdd* =1, i.e., to our original strategy that associates

threshold(optical parametric oscillator, ORQ12]. a perturbation to every outcont different from zero. By
employing an acceptance ratio criterion, the optimal strategy
B. Effects of nonunit quantum efficiency is the one that has the highest detection probal:@i,];y pro-

ded that the ratidQ, /Qq is higher than a fixed valug*.
his criterion can be viewed in th@,,Q, plane as looking
or the highest point lying over the [in@,= y* Q,.
In Fig. 3 the horizontal line corresponds to the value of
. Obtained for unentangled prob&=0). In this case&Q,
£0 andQ, can be analytically calculated through E&9).
A systematic analysis shows that in the quantum regime of a
small number of photons, the benefit of entanglement can be
o n appreciated also in presence of nonunit quantum efficiency,
I, (m= > H(n)( ) ™(1—np)" ™ (35) i.e., the minimum detectable perturbation scales almost as in
n=m m the ideal case. On the other hand, in the semiclassical regime
of strong signal the scaling is degraded, as it happens for
which is a Bernoullian convolution of the ideal POVM of a single-mode squeezed-assisted interferomgid]. In this
photocountedI(n) =|n)(n|. This means that the probability case, the main advantage of an entangled scheme concerns
distribution of the outcomes for the difference photocurrentthe stability with respect to phase fluctuations of the pertur-
D is given hy bation.

Since the setup analyzed in the preceding section is aime\iq
for a possible implementation, it is worth analyzing the effectf
of nonunit quantum efficiency in the detection stage. We will
consider the case of the estimation of a displacing amplitud
The other perturbations may be treated in an analogous Waeg

In case of nonunit quantum efficiency the statistics of
each detector of Fig. 2 is described by the POVM
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FIG. 3. Characteristic curved,(Qq) for the threshold strategy FIG. 5. Characteristic curve3,,(Q) for the threshold strategy
in difference-photocurrent interferometr§g) Quantum efficiency  (40) in heterodyne interferometrya) Unit quantum efficiency and
7=0.9 and(b) »=0.75. In both plots, the horizontal curve corre- (b) »=0.75. Inboth plots the lower dashed curve corresponds to a
sponds toQ,, for a not entangled input. The data are for averagenot entangled input, whereas for increasing entangleifieam bot-
number of photons in the twin-beam given biy=1 (squares N tom to topN=0,1,2,3,4,5) we have improved characteristics. The
=2.8(circles, N=5.2 (triangleg, andN=8.0 (stars. perturbing amplitude i$e|=0.5.

) ) _ 4(a) describes the customary single-mode scheme to estimate

C. Benefit of entanglement in heterodyne interferometry an unknown amplitude with the vacuum as unperturbed sig-

In this section, we analyze heterodynelike interferometricnal: actually this corresponds to the optimal single-mode
schemes, i.e., schemes where the detection stage consistsneéasurement according to quantum estimation thé8ty
the measurement of the real and the imaginary part of th€igure 4b) represents the scheme employing twin beam as
complex photocurrerf=a+b', a andb being modes of the input. Each heterodyne outcome consists of a pair of real
field. Such a measurement can be obtained by heterodyngumbers for the photocurrenwz(ZJrZT)/Z and Y=(Z
eight-port homodyne and six-port homodyne detectors. Be=-71)/2i. The probability distribution for the complex out-
sides being a possible implementation of entanglement-baseéme z=x+iy is given by p;(z|a)=1/7|(z|a)|? in the
measurement, the analysis of this setup allows for a diredjngle-mode case and by,(z| )= 1/a|(x|DT(a)|2)?
comparison with the analog unentangled scheme. In Fig. 4.~ e entanglement-based ~ scheme,  wheig))

we show a schematic diagram of the detection séagain, — _ D(2)2,|p)|p). Both probabilities are Gaussian and can be
we consider the case of a displacement perturbatkigure summarized as

|0> D :(a) 1 |z— a|? , 1-x 1-9
o = — — =+ —
------ (__2______ Z p(z|a) 7TA>2(eX A)z( 1 AX 1+X 77 )
(39
(b) . . .
X D(a) where 7 is the quantum efficiency of the photodetectors in-
>> V4 volved in the heterodynéor multiport homodyng detector

[by puttingx=0 in Eq. (39) we easily recover the single-
FIG. 4. Schematic diagram of a heterodynelike interferometer tanode casg A binary inference from heterodyne data can be
detect an amplitude perturbatid «). obtained by a threshold strategy as follows:
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<t

N Q
— FIG. 6. Monte Carlo simulation of entangled-
assisted heterodyne interferometry to detect an
o amplitude perturbation. The simulated data are

reported as a function of an arbitrary rescaled
time 7 (7=1 corresponds to 1000 evenfsr an
initially unperturbed system that is subjected to
< , | : ] < . . | an amplitude perturbatiofe|=1 during a time

[ r 1 interval A 7= 15. We report the resulting outcome
for not entangled(a) and(c)] and entangled in-
put [(b) and (d) N=3.3] both for unit quantum
efficiency[(a) and (b)] and for =0.75[(c) and
(d].

L

TR RS

™ @
o . ,
0 20 40
(b) r
if |z|= A — “perturbatiorf (40 In this paper we have analyzed the effect of entanglement

on the interferometric estimation of relevant quantum optical
such that the false-alarm and the detection probability ar@arameters such as displacing and squeezing amplitudes or
given by interferometric phase shift. We have evaluated the minimum
detectable perturbation according to the Neyman-Pearson de-
) ) tection strategy, and have shown that entanglement improves
Qo= leAd zp(2|0), Q.= LzAd zp(zla). (41)  the detection in comparison with single-mode schemes. In
particular, for the case of estimation of the displacement and
the squeezing amplitudes we have shown that the precision

e : of the apparatus that uses an entangled probe is independent
characteristicsQ,(Qo) of the strategy(40). In Fig. 5 we of the phase of the perturbation, and is, therefore, more

reportQ,, versusQo for a small perturbing amplitude both in stable and reliable than a simple scheme based on single-

the ideal case and for quantum efficiengy: 0.75. The dif- o L
. mode probes. Similarly, the estimation of a two-mode phase
ferent curves correspond to different degrees of entangle-, ... - .
) - shift is more stable when we use a twin beam than when
ment at the input. As a matter of fact the characteristics are _.
using squeezed states.

improved using entanglement, and the benefit of entangle- Since the Neyman-Pearson detection strategy does not

ment is still present in case of an imperfect detection stage, s .
Remarkably, in the latter case the characteristics saturate f((a:rorrespond o a realistic detector, we also analyzed possible

) . ) implementations based on difference photocurrent and het-
increasing values ok, which means that only a moderate

) . : . ?rodyne interferometry using entangled twin beam. Remark-
entanglement is needed to achieve an optimal inference strat; . S .
eqy ably, these schemes improve precision also in presence of

We also performed a Monte Carlo simulation of the th)lenonunit quantum efficiency of the involved photodetectors.
detection sgheme In Fig. 6 we report the simulated data aswe conclude that the technology of entanglement can be of
function of an arbitrary rescaled time (=1 means 1000 g?reat help in improving precision and stability of quantum

events for an initially unperturbed system that is Subjectedmterferometers.
to a tiny amplitude perturbation on a time intervat=15.

We report the resulting outcome for entangled input and not

entangled input both for unit quantum efficiency and #pr

=0.75. As it is apparent from the plots, using an entangled This work has been cosponsored by the INFM through the
input results in a more distinguishable perturbation. project PRA-2002-CLON, and by EEC through the TMR

By varying the thresholdA we parametrically obtain the
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