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Optimal nonuniversally covariant cloning
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We consider nonuniversal cloning maps, namely, cloning transformations that are covariant under a proper
subgroupG of the universal unitary group (d), whered is the dimension of the Hilbert spagéof the system
to be cloned. We give a general method for optimizing cloning for any cost function. Examples of applications
are given for phase-covariant clonifigoning of equatorial qubits and qutritand for the Weyl-Heisenberg
group (cloning of “continuous variables"
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I. INTRODUCTION II. CLONING TRANSFORMATIONS

In a quantum cloning transformation, the input stapte

The impossibility of perfectly cloning an unknown input € L(H) is processed in order to produdé output clones
state is a typical quantum featufé]; nonetheless, in the [throughout the papef(7#) will denote the vector space of
laws of quantum mechanics there is enough room either tbnear bounded operators on the Hilbert spacg This re-
systematically produce approximate copj@$ or to make quires a “spreading” ofp into the joint statep’ e £L(H *")
perfect copies of orthogonal statg] or of nonorthogonal ©Of N identical quantum systems. The most general setup for
ones with a nonunit probabilithd]. These possibilities have such purpose is the following. Initially, is encoded in a
been studied in several works—7]. quantum systens;, while N—1 equivalent system§;, i

Recently, quantum cloning has entered the realm of ex= 2. - - - N, are prepared in a fixed sta@)y-1y. An aux-
perimental physic8,9]. Moreover, it has become interesting ary systemE is provided in a statée), in order to make the
from a practical point of view, since it can be used to speed?h0l€ system isolated. A unitary transformatiohacts on
up some quantum computatiofis0] or to perform some € overall state producing the output
guantum measuremenfd1,17. All these tasks require a
spreading of the quantum information contained in a system
into a larger system, and quantum cloning is a way t

ach|evr(?_ such a spreadl||r|19. h . ding” get the joint statep’ of the N output systems;. This state

In this paper we will see how any “spreading” corre- iy eventually support the clones. Upon calculating the trace
qunds to a particular completely positit@P) map. By ex- __with respect to a chosen bagig)e} for He one has

ploiting the correspondence between CP maps and positive

operators on the tensor product of the output and input dim He dim Heg
spaces[13],_we can parametrize all the possible spreading p' = E e(ilAlj)e= 2 Aij;ric‘:(p), (2
transformations. Then we focus on covariant CP maps, =1 =1
showing that quantum cloning is a particular case of permu- h .
tation covariance. By means of Schur’s lemmas we com¥ ereA; = e(j[U]@)n-1)| € -

pletely characterize the positive operators corresponding to The mapp—£(p) in Eq. (2) is a completely positive and

) T &N )
guantum cloning transformations. By the same technique, Wgace preserving linear map from(H). to L(H™T). Trace
characteriz&s-covariant cloning transformations, wheeeis preserving CP maps generally describe the evolution of open

inal . quantum systems. To understand the general features of
any singie-copy covariance group. guantum cloning and for the sake of optimization, it is con-

The parametrization of CP maps, and in particular of clony g ient 1o treat these maps at an abstract level: a realization

ing and covariant cloning, stands at the base of any furthe,qqrem guarantees that any CP map can be achieved as a
optimization. In fact, quantum cloning can be used to perynitary transformation on an extended Hilbert spei& 17,

form some tasks on the copies, and, depending on what theggmilarly to Eq.(1). CP maps will be briefly reviewed in the
copies will be used for, one defines a “goodness” criterionpext section.

for the cloning process and optimizes accordingly.

The paper is organized as follows. In Sec. Il, we briefly
describe a quantum cloning transformation and its relation to
CP maps. Section Il is devoted to the description of CP Alinear map&: L(H)— L(K) is completely positive if its
maps in terms of positive operators, while in Sec. IV we treatrivial extension€® 7, to L(H®H'") is positive, for anyH'
the case of covariant CP maps, giving their parametrizatiohZ,,, denoting the trivial map o (H")].
with suitable covariant positive operators. In Sec. V we use Here we recall a convenient notati¢ti4]. Fixing two
the previously explained techniques to deal with cloning op-orthonormal base§i),} and{|j),} for H, andH,, respec-
timization, focusing on the covariant case. tively, any vectorl¥)) e H,®H, can be written as

A=U p@(|o)o|)n-1)®|e)elUT. (1)

0By taking the partial trace oA on the auxiliary system, we

IIl. CP MAPS AND POSITIVE OPERATORS
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thus recovering the result that any CP map admits different
[W)y=2 cijli)ali)2=IC)), (3 Kraus's decompositiongl6], depending on the choice of the
! vectors|A;)) in Eq. (8).
Clearly, Eq.(8) holds for any positive operatd® on K
®H. The map defined by through Eq.(7) is completely
positive, since it can be expressed in the form of B,

where C=X;c;;|i)1 »(j| € L(H;,H;) is a linear bounded
operator fromH, to H,. The following relations can easily

be verified: ; > :
which trivially gives a CP map. Thus the correspondence
A®B|C))=|ACB")), (4)  from CP maps to operators is also “onto.”
Concluding, Eq(7) defines a one-to-one correspondence
TrHZ[lA)><<B|]=ABT e L(Hy). (5) between CP maps frofi({) to £(K) and positive operators

on K®H. By exploiting this correspondence, propertiesof

For every CP map: £(H)— £(K) we define the positive can be translated into properties Bf. For example, the
operatorR; in L(K®H) trace-preserving condition faf,

Re=EZ(|1)){(1)), (6) Tril €(p)1=1=Trylp Tre[ Rell,

. . . for all L such that Trp]=1, becomes
whereZ denotes the identical map over the extension space peL(H) Tl

H, and for the vectofl)) e H® H we used the notatiofB) Tri[Re]l=1e L(H). (10
for ¥ =1, the identity matrix with respect to a fixed basis on
‘H. The action off on p e L(H) can be expressed as In the following, it will be useful to consider the dual map
&V of a CP mapt, namely, the transformation in the Heisen-
Ep)=Tr{l®p Re], (7)  berg picture versus the Scliiager picture map— &(p).

N ) ] The dual magfV is defined by the identity
where the transpositiop—p' is performed with respect to

the same fixed basis. In fact, substituting E8).in Eq. (7), T pEV(O)]=Tr[&(p)O], (11
one has
which must be valid for all operato® € £(K). In terms of
Tr[1©p "R =Try[1® p TERT(| 1) (1])]. the operatoR; one has
Then it is possible to take the factb® p' inside the CP map EV(0) =Tr,C[O®1R;”], (12
E®T, since they act independently on different spaces. By
applying Eq.(4), one obtains whereT;, denotes partial transposition on the Hilbert space
‘H only [15].
Tr[1® p"Re] = Trp[ ER Z(| p)){{1]) ], In the next section, the correspondenge R, will be

applied to the covariance condition for a CP map, which
and thus, commuting the partial trace wifl®Z and using turns out to be the key idea for ring deal with cloning and

Eq. (5), one finally gets Eq(7). covariant cloning.
The operatoR; is the only one for which Eq(7) holds
true. In fact, supposB, andR’ give the same CP mapby IV. COVARIANT CP MAPS

means of Eq(7); then
To talk about covariance, we must first give some impor-

Tr[lep (R—R')]=0e L(K), VpeLl(H). tant definitions(see, for example, Ref18]). A unitary (pro-
jective) representatiotd of the groupG onH is a homomor-
Since an operatolOe L(H®K) is null if (v|OJv)=0  phism associating any elememyeG with a unitary
e L(K) for all [v)eH, it follows that R;.=R’. Thus, the transformationU,e £(H) in such a way that the composi-
correspondence from CP maps to positive operators iton law of the group is preserved under the correspondence,
“into.” ie.,

SinceRg is positive, it can be written as
Ug Ug,= ©(91,92)Ugq,, (13

R5=Ei |AD (AL (8  where|w(g;,9,)|=1 are the so called cocycles, and they
satisfy the following restrictions:

where there are many different choices of the vectArs),

which are not necessarily eigenvectorsRyf, and generally
are not normalized. Substituting this relation in E@). and
remembering tha#; e L(H,K), we find

©(91092,93) 0(91,92) = 0(91,92093) @(92,93),
0(g,9 ") =w(g,e)=1. (14)
A unitary representation isreducible (UIR) if there are no

&)= 1o AN(AI1=S ApAl, 9 proper subspaces left invariant by the action of all its ele-
(p) Z w12 p A Z P © ments. TwoG representations) on H and V on K are
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equivalent if there exists an isomorphige one-to-one and so that, by Schur’s lemmas, one finally has

norm-preserving linear correspondent¢e— K, such that i :

IUg=V,l for anygeG. Rj=c;jlj, (21)
The most important result for a UIR is the so called

Schur’s lemma: let) onH andV on K be irreducible unitary  Where, ifi~#], thenc;;=0, and, ifi~j, c;; can be different

G representations, and 18te £('H,K) satisfy from zero. _ o
Since equivalent representations are related by similarity,
BUy,=VyB, VgeG. (15) in any invariant subspacé; one can choose the basis

{li,1),I=1,...,dimM;} so that fori~]
If U andV are equivalent theB is proportional to the iso- _ ,
morphisml connecting them, otherwis® is null. (T my= (1T, m); (22)
Now we will use these tools to deal with covariant CP
maps. Let&: L(H)— L(K) be a CP map, and l&& be a Nence
group with unitary representationd and Vv on H, and K,
respectively£ is G covariant with respect ttJ andV if |}:Z i) =15, (23
[

EUgpUN =V E(p)V], 16
(UgpUg) =Vetlp) 19 and finally
for anype £L(H) andge G.
By means of Eq(7), the covariance condition becomes R=2 ci i (24)
< Cijlj
1

Ep)=Try[1®p Re]=Try[1®p Vi@ UIRV @ U 1.
(17) In order to have a positivR, the matrixc;; must be positive,
. : dim M,
ince takin =32 "i|1,1) one has
From the uniqueness of the operator associated with a cP )=z alild)

map, we conclude thatt is G covariant if and only if dim M;

(IRl =2 2 viicyiy.

Re=Vj@UJRVg@U}, VgeG, (18)

or equivalently Recalling that;; =0 if i #j, and reordering the indices of the

representations by grouping the equivalent ones, the matrix
[Re,Vg®Ug]=0, VgeG. (199 c¢;; assumes a block diagonal form, different blocks corre-

sponding to inequivalent representations, each block includ-

Thus,G covariance of a CP mafis equivalent taG invari-  ing all representations equivalent to the same one. In this

ance of the corresponding positive opera®pr. way, each block has dimension equal to the multiplicity of
the representation. Positivity & implies positivity of each

Group invariant operators block of matrixc;; . This structure ot;; is reflected orR by

The G representationV=diag(Vv®U*) on K®H, de- means of Eq(24).

fined asWy=V,® Uy , is generally reducible, i.e., the space
can be decomposed into a direct sum of minimal invariant
subspaces\; , A cloning map is just a CP mapfrom £(H) to L(H®N)
with the output copies invariant under the permutations of
KeH=&i-1M;, 20 then output spaces. This is equivalent to a particular cova-

: . . . . riance of the CP mag for the group of permutationSy,
each.M; supporting a unitary irreducible representation Ofnamely it corresponds to the invariance of the positive op-
the group. Given this decomposition one can look at any ' G
operatorO on K@M as a set of operato@! in £(M; M) eratorR, under the representatioV=diag(V®1), whereV

P hato — i P ! Jrei is the representation &, permuting theN identical output
so that0=2;;0j. _ spaces, and [corresponding toU in Eq. (16)] is the

Due to irreducibility of the subspace$t;, Wy will be g ivial representation on the input space. One has

decomposed as follows:

V. OPTIMAL COVARIANT CLONING

| - Clp)=V.Clp)V,, VYmeSy. (25)
(Wg)j= 3Ty,
. o J. Notice that permutation covariance does not imply that the
whereT! is the UIR supported byvf;. Two UIR's T' andT output state has support in the symmetric subspace of the
are equivalenti~ j, if they are connected by similarity, i.e., output spacé “N.

through an isomorphisml| e £(M;,M;) such that T’ As explained in the previous section, Eg5) determines
=(l })_lT' 15 - a peculiar block structure for the operafy associated with
The invariance equatio(i8) becomes the mapC. Such a structure is strictly related to the decom-
S position of H ®N*1) into invariant subspaces fof, ® 1. Any
RiTg=TgR;, VgeG, possible cloner is described by & with that structure and
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satisfying the trace-preserving condition of E40). In this

PHYSICAL REVIEW A64 042308

TABLE 1. H®3"1 decomposition into (1)-S; irreducibles.

way, one classifies all possible cloning maps through théJ(1) acts on each subspace as a phase efiiff wheren e Z (col-

decomposition into irreducibles of tI8, representatiolv on
HEN,

umn 3 labels inequivalent representatioiss. acts trivially (T) on
one-dimensional subspaces, whereas on bidimensional ones it acts

In addition to permutation invariance, in this paper we?as the defining representati@). Spin flipping connects subspaces

will consider covariance under a group of transformatiGns
with representatiofl on H. This corresponds to the follow-
ing identity:

C(TgpTH=TgNC(p)TEEN. (26)

One can choose a cost functi@(R,) related to the us-
age of the clones. Covariant cloning is suitedxanvariant
cost functions, which satisfy

E(R)=E(TN@TER T N0 T)). (27

A typical example of an invariant cost function arises when
one is interested in cloning a restricted covariant family ofMg

states{Tngg} given with a covarian@ priori probability
dp(g), maximizing the average input-clone fidel®(R,)

—E(R)=F(R)
= depw)TrUt@N—l@<Tng;>®(Tng;>TRC]

=T1*N "1 pepRc], (28)

wherep is the seed of the covariant family, arﬁ is the
covariant counterpart dR, obtained by group averaging,

ﬁc=f dp(@)TENe T RTINS TY (29)
G

Clearly for aG-covariant cloning one haR.=R;.

The optimal cloner minimizeE (R;) vs R; with the con-
straints forR;: (i) invariance under permutation a@} (ii)
positivity; (iii) trace preservation. The constraint leads to
Eq. (24); constraint(ii) can be taken into account by writing
¢j; of Eq. (24) via a Cholevsky decompositiofsee, for ex-
ample, Ref[19]); constraint(iii) is imposed directly on the
resulting parametrization of the operafy.

VI. EXAMPLES

Phase-covariant qubit cloning

Here, we consider the problem of cloning a qubit in a

(column 5.
Space Unnormalized basis (1) S; Flipped
My |0001) -1 T Ms
M, |0000) 0 T Mg
M |1001)+|0101)+|0011) 0 T M,
“ |2002)—]0102), 0 D Mg
’ /1001 + /0102 —|0011)
Ms 11110 3 T M,
M |1112) 2 T M,
My |0110 +]1010 +[1100 2 T M;
|0110 —|1010), 2 D M,
/0110 +3/1010 —|1100
My |1000 +]0100 +|0010) 1 T My
My |0111) +]1012) +[1103) 1 T M
My . |1oocl>f|01oq, 1 D My,
/1000 + /0100 — |0010
[011)—|1011), 1 D My
MlZ

]011D+ 31011 —|1101)

1 1 .
|¢¢>=T¢E[|O>+|l>]=ﬁ[|0>+e'¢|1>]- 31

In other terms, we want to maximize the average “equato-
rial” fidelity

2mwqd
F:L %TWZ@'¢¢><¢«sl0<|¢¢><w¢|>], (32)

which, by covariance, can be written as

F=Tr[1%2@ | o) thol @ (| ho){tho|) "Rc].- (33

Since the equator is invariant even for spin flipping, here we
will require the additional covariance with respect to the
groupZ,, with representatiofl, o,}.

In order to satisfy all the covariance requiremer®s,
must be invariant for permutations, phase shift, and spin flip,
i.e., for products of any of the following unitary operators:

. . . . 3 3
U(1)-covariant fashion, where the group representation is Vel TeTy, o ©d.

given by

. (30

Ty= exp{lng(l— o)

Since the cloning to two copies is already given in R2€],
whereas the general case fdrcopies is very complicated,
here for simplicity we will consider the case Wf=3 copies.

The Hilbert space ©3*1 can be decomposed into sub-
spaces that are irreducible with respect to the joint action of
U(1) and S;. In Table I, we list the irreducible subspaces
with their basis, reporting in the columns 3 and 4 the kind of
representation supported forl) andSy, respectively.

Referring to Table I, one has to group together the sub-
spaces supporting equivalent representations fay &hd for

We want to achieve the maximum fidelity between input andS;. This leads to the peculiar block structure for the matrix

clones, when the input is an equatorial qubit

cj; that we mentioned in Sec. IV. In this example, we find
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TABLE II. Content of the blocks of the matrig;; , chosen in 1
order to haveR. describing the most general CP map fralfi) to B= _3[|100><o| +]010(0| +]001)(0| +|011)(1|+|101)

L(H ®3) that is covariant with respect to permutations, phase shift, \/—

and spin flip.
il X(1]+|110(1]]. 37)

Blocks Content
The fidelity for the 12 case is;+ \/3, as demonstrated in

{1}, {5} a Ref.[20], and it is larger than the present<13 value, since
14}, {8} b the “information” is spread into a smaller number of copies.
2,3, {6,7 cl+v-o Notice that in the general case one could have many clon-
{9.10 di+eoy ing maps attaining the same global maximum of a covariant
{11,12 fl+goy cost function likeF in Eq. (33). These maps can be covariant

or, if not, they are mapped one into the other by the covari-

ance group, whence for a continuous group they make a

that a phase- and flip-covariant cloning map is describeghanifold of maps. However, the noncovariant clonings are
though Eq(24) by a matrixc;; having the following positive  ayeraged into a covariant cloning via the integtap).

diagonal blocks: Therefore, for a linear cost function, every optimal covariant
cloning is just a convex combination of maps giving the best
{1},{2,3},{4},{5},16,7},{8},{9,10:,{11,12. fidelity. In this particular example, the optimal covariant

cloning is an extremal point of the convex set of all the
To ensure spin flipping covariance, the elements;pcon- ~ cloning maps, either covariant or not, leading to a unique

nected by a flip must be equal, for exampig;= c- . optimal cloning.

Finally, to fill the blocks ofc;; in the right way, we need
the parameters,b,c,d,e,f,ge R*, and ve R3, whered Quitrits double-phase covariant cloning
=e, f=g, andc=||v||. Table Il explains how to employ

In this section, we show another example of the use of the
. techniques presented. Here, our target will be the construc-
Yion of the 1—2 qutrit cloning that gives the best average
fidelity on the set of states of the form

them.

the trace-preserving condition defined in Ed0). Within
this parametrization it reads

1 . .
a+2b+2c+d+2f=1. (34) |¢¢a>=ﬁ[|0>+e'¢|1>+e""‘|2>]- (38)
S_ubst_ituting this equation into the equatorial fidelkyde- According to what we said at the end of the last example,
fined in Eq.(33), one has such an optimal cloning can be found among the ones that
are covariant with respect t¢ and 9 phase rotations, and
11 V3 with respect to permutations of the badif0),|1),|2)},
F= §+ §(e—g)+ 3 Ux- (35 which are the equivalent of the spin-flip symmetry of the

previous example. The above are all the symmetries of the

. . . - .. set of input states and of the fidelity.
This quantity can be easily maximized by hand, taking into Our R, will be a positive operator oft ®2** being in-

account the constraint given by @) and the properties of variant for products of any of the following unitary transfor-

the parameters. The maximum fidelity B=2 and is oo
mations:

achieved ford=e=1 and all the other parameters equal to
zero. The valug= =2 exceeds the bound given in R§20] v ®©2 o T ®2 1 %

. . S ®l, T,50T,s, U “@UZ, 39
(see[23]). The optimal phase covariant cloning is thus de- ¢0= 40 i i 39

scribed by the operator whereV is the permutation of the two clone spacés two

copiesV is usually called a “swap), and

ReP'=[0)) (@], (36) _ |
T,0=[0)(0]+e'?|1)(1]+e'?|2)(2],
where
U.liy=|m(i)), VmeS;. (40
_1 Remember that swap invariance malk&sa 1—2 cloning
) \/§[|1OOQ+ 0100|0010 +[011%+]1013) map. The entries of Table 11l correspond to all the phase- and
swap-invariant subspaces. Since they are all unidimensional,
+[1103)]. each is labeled by its generating vector.
Let us define the operato®;, i=1,...,5, onH®2*?
The Kraus decomposition of the optimal cloner Gp) having the following matrix elements with respect to the
=BpB", where basis reported in Table IV:
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TABLE lll. 1 ®?** decomposition into unidimensional invari- the other ones generate only 3 different operators each, since
ant subspaces. The invariant subspaceg are obtalneq by_maklng tiey are invariant with respect to the transposifibj— | 2).
tensor products of any vector from the first column with ety Thanks to these observations, one realizes that these five

1), or [2): the corresponding cell in the table gives the full sym- gperators give rise to five independent families of covariant

metry of the subspace. The first letter denotes the kind of action O(leoning maps described by the invariant positive operators
the swap(symmetric-antisymmetrj¢c the two numbers indicate the

representation fow» and O phase shifts, respectively. Subspaces

having the same greek letter are connected by a permutu@&n

®U* for somemeS;.

RL.= > U,OU,.
TeSy

(42

The positivity constraint for any family simply becom€s

® |0) 1) 2) =0, while the trace-preserving condition leads toOTr
100) S.000 S -1,08 S0-18 =Tr02=Tr03=TrQ4=1/2 e}nd TOs=1/4. '

Any other covariant cloning map can be written as a con-
11D S.2,08 S/ 1,0 S.2,-1.p8 vex linear combination of these five kinds of map in a unique
|22) $0,2p S,-1,2,p8 S0 1la way. Since the average fidelity is linear Ry, we can look
1 S, 1,0,y S, 0,0,y S, 1,-1,6 for the optimal maps among these five families separately.
ﬁ[|01>+|10>] With a little algebra one finds maxg)=1/2 andF;=F,

1 S,0,1,y S,-1,1,8 S,0,0,y =F5=1/3, while maxf,)=2(5+17)=0.76. Thus the op-
ﬁ[|02>+|20>] timal covariant cloning map belongs to th: family; in
1 129+ |21)] S,1,196 S,0 1y S,1,0y particular, it is obtained for the following values of the pa-
ﬁ rameters:
1 A 1,0,y AO007y A1l -1,6
—=1101)-10)] 1 1 1 1
le A0, 1,y A -1,1,6 A00y a=Z(1——). c=b=g| 1+ —=|.
51102-120) V17 V17
1 A 1,16 A0, 1,y A 10y
—[l12)-|21)] ab_ 1
2 d=\5=——. (43)
V2 2 i
a d d which have been determined by maximizing the quantity
e f
d b c 2
A N Ozﬁ(f e)’ Fi=3la+2b+c+2\2Rad)], (44
059, Oy—h, Os—i. (41) within the constraints of trace preserving and positivity,
. . . . 1
These five operators are clearly invariant with respect to a+2b= -,
swapping and phase shifts, as one can see by comparing their 2
expressions with Table Ill. Sums of operators of the form of
the O; and of the form of the operators obtained frady ab=0, |c|<b, |d|>< a(b+c). (45)
with permutations, i.e., by acting on eah with U®? ’ ’ ' 2

®UZ¥ , are swap and phase invariant. One may note that by

permutationsOg generates 3! different operators, whereas Cloning of continuous variables

The parametrization of CP maps given in Sec. Ill and its
specialization to the covariant case are useful tools for engi-
neering measurements. The idea is to “spread” a quantum
state on a larger system with a CP m@pand then to per-

TABLE IV. Vector basis to which the matrix elements of the
operatorsO; are referred.

Operator Ordered basis form a measurement on the spread state. The connection be-
0, 1 1 tween the positive operator valued meas(POVM) {M;}
|OOO>’\/_§[|01]>+|10]>]'EHOZZ}HZOZ}] on the larger spac& and the resulting onéM '} on H is
O, 1 1 given by
ﬁ[|013>*|103>],E[|023*|203] y . T

O; 1 MY =&V(My)=Tr[M;®IR."], (46)
(1210+]120] _

o, 1 where&V is the dual map of, and the symbaT;, stands for
E[|210)—|120)] transposition with respect t& only (see Sec. ).

(o |001) In Ref.[11], the cloning map for continuous variables of

Ref.[21] is used to achieve the optimal POVM for the joint

042308-6



OPTIMAL NONUNIVERSALLY COVARIANT CLONING PHYSICAL REVIEW A 64 042308

measurement of two conjugated quadratigsand X, of  SinceV|0),|0) .= v2/7|1)) andV|0)|0)=|0)|0) (see Ref.
an oscillator moda (whereX,= 3[a'e'*+ae'¢]) by mea-  [22]), one has thaP|0),,,|0),= v2/7|0)|0). Thus Eq.(52)
suring them separately on the two clones. Here, we willholds, and the cloning really achieves the wanted POVM.
briefly show how our general method works on this problem.

Denote byH; the input space and b¥{;,H, the two
output spaces of the oscillator modes a,, anda,, respec-
tively. The cloning is described by Clearly, the universal covariant cloning of Werrét is a
special case of covariant cloning for the covariance group
U(d), d=dimH, of all unitary operators ofi{. Here, for the
sake of comparison to R€ff6], we consider more generally
the cloning fromM to N>M copies. Hence the cloning is a
where P=V|0)(0|®1V', and V is the 50% beam splitter cp mapC from £(H®M) to £(H ®N) such that for anyJ
unitary transformatio®v = exd (#/4)(ala,—a;al)]. cU(d) ando e £(H)

A simple calculation shows that

Universal cloning

1
RCZEP12®1311®(|l>><<1|)23P12®13, (47)

C(U®MU®MUT®M)=U®NC(O.®M)UT®N_ (53)
_2( ®2
P= ;f d*aa){a] ™, (48) The cost function for optimization is th@egative fidelity
. - between clones and input,
where|a)=D(a)|0), andD(a)=e*® ~*@ is the displace-
ment operator generating thi#eyl-HeisenbergWH) group. Z(Rp)=—F=-Tio®Nc(c®M)], (54)
By means of Eq(48), the invariance oR, defined in Eq.

(47) with respect to permutations and displacements can ®&%hereo is pure. Owing to covariance, the fidelifydoes not

ily be verified. : o ;
Using the dual cloning map as in E¢6), we should depeng oru, since any pure state lies in thg(d) orbit of
check that any other pure state. o
The optimal cloning map of Ref6] is given by
1
\V/(E0 w2y _ _ ;
CV(EX®EJ")= 7T|cu)(a|, a=Xx+iy, (49 d(M)

M

Clp)= gy SPe 1M )Sy, (55)
whereES=v) 4 4(v| andX4lv)4=v|v)4. In fact, the last
term of Eq.(49) is the well-known optimal POVM for the where p e L(H®M), S, is the projector on the symmetric
joint measurement of conjugated quadratures, whdfé’ais subspace 2N, andd(N) =dim(# 2N). In our framework
the POVM of the¢ quadrature measurement. Hence identity o nas o " ’
(49) guarantees that the cloning achieves the optimal joint
measurement of the two conjugated quadratures via commut-

) d(M) ~
ing measurements on clones. Ro=——5l, an-m® (| 1)){(1 M+mS 56
Noticing that ¢y T (D)W eormS, (56
0 w2 _ ®2F0 72 ®2t -
Ex® By =D(a)"Eo®EyD(a) B0 \hereS=5y®1°M. It can be easily verified thak, is both
and exploiting the WH covariance, EGi9) reduces to covariant and permutation invariant, as it must be.
1
CV(ES®ED?) = ;|O)(O|. (51) ACKNOWLEDGMENTS
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