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Optimal nonuniversally covariant cloning
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~Received 29 January 2001; published 12 September 2001!

We consider nonuniversal cloning maps, namely, cloning transformations that are covariant under a proper
subgroupG of the universal unitary groupU(d), whered is the dimension of the Hilbert spaceH of the system
to be cloned. We give a general method for optimizing cloning for any cost function. Examples of applications
are given for phase-covariant cloning~cloning of equatorial qubits and qutrits! and for the Weyl-Heisenberg
group ~cloning of ‘‘continuous variables’’!.
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I. INTRODUCTION

The impossibility of perfectly cloning an unknown inpu
state is a typical quantum feature@1#; nonetheless, in the
laws of quantum mechanics there is enough room eithe
systematically produce approximate copies@2# or to make
perfect copies of orthogonal states@3# or of nonorthogonal
ones with a nonunit probability@4#. These possibilities have
been studied in several works@5–7#.

Recently, quantum cloning has entered the realm of
perimental physics@8,9#. Moreover, it has become interestin
from a practical point of view, since it can be used to spe
up some quantum computations@10# or to perform some
quantum measurements@11,12#. All these tasks require a
spreading of the quantum information contained in a sys
into a larger system, and quantum cloning is a way
achieve such a spreading.

In this paper we will see how any ‘‘spreading’’ corre
sponds to a particular completely positive~CP! map. By ex-
ploiting the correspondence between CP maps and pos
operators on the tensor product of the output and in
spaces@13#, we can parametrize all the possible spread
transformations. Then we focus on covariant CP ma
showing that quantum cloning is a particular case of perm
tation covariance. By means of Schur’s lemmas we co
pletely characterize the positive operators correspondin
quantum cloning transformations. By the same technique
characterizeG-covariant cloning transformations, whereG is
any single-copy covariance group.

The parametrization of CP maps, and in particular of clo
ing and covariant cloning, stands at the base of any fur
optimization. In fact, quantum cloning can be used to p
form some tasks on the copies, and, depending on what t
copies will be used for, one defines a ‘‘goodness’’ criteri
for the cloning process and optimizes accordingly.

The paper is organized as follows. In Sec. II, we brie
describe a quantum cloning transformation and its relatio
CP maps. Section III is devoted to the description of
maps in terms of positive operators, while in Sec. IV we tr
the case of covariant CP maps, giving their parametriza
with suitable covariant positive operators. In Sec. V we u
the previously explained techniques to deal with cloning
timization, focusing on the covariant case.
1050-2947/2001/64~4!/042308~8!/$20.00 64 0423
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II. CLONING TRANSFORMATIONS

In a quantum cloning transformation, the input stater
PL(H) is processed in order to produceN output clones
@throughout the paperL(H) will denote the vector space o
linear bounded operators on the Hilbert spaceH#. This re-
quires a ‘‘spreading’’ ofr into the joint stater8PL(H ^ N)
of N identical quantum systems. The most general setup
such purpose is the following. Initially,r is encoded in a
quantum systemS1, while N21 equivalent systemsSi , i
52, . . . ,N, are prepared in a fixed stateuv& (N21) . An aux-
iliary systemE is provided in a stateue&, in order to make the
whole system isolated. A unitary transformationU acts on
the overall state producing the output

L5U r ^ ~ uv&^vu!(N21)^ ue&^eu U†. ~1!

By taking the partial trace ofL on the auxiliary system, we
get the joint stater8 of the N output systemsSi . This state
will eventually support the clones. Upon calculating the tra
with respect to a chosen basis$u j &E% for HE one has

r85 (
j 51

dim HE

E^ j uLu j &E5 (
j 51

dim HE

AjrAj
†8E~r!, ~2!

whereAj5 E^ j uUuv& (N21)ue&E .
The mapr→E(r) in Eq. ~2! is a completely positive and

trace-preserving linear map fromL(H) to L(H ^ N). Trace-
preserving CP maps generally describe the evolution of o
quantum systems. To understand the general feature
quantum cloning and for the sake of optimization, it is co
venient to treat these maps at an abstract level: a realiza
theorem guarantees that any CP map can be achieved
unitary transformation on an extended Hilbert space@16,17#,
similarly to Eq.~1!. CP maps will be briefly reviewed in the
next section.

III. CP MAPS AND POSITIVE OPERATORS

A linear mapE:L(H)→L(K) is completely positive if its
trivial extensionE^ IH8 to L(H^ H8) is positive, for anyH8
@IH8 denoting the trivial map onL(H8)#.

Here we recall a convenient notation@14#. Fixing two
orthonormal bases$u i &1% and $u j &2% for H1 andH2, respec-
tively, any vectoruC&&PH1^ H2 can be written as
©2001 The American Physical Society08-1
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uC&&5(
i j

ci j u i &1u j &28uC&&, ~3!

where C5( i j ci j u i &1 2^ j uPL(H2 ,H1) is a linear bounded
operator fromH2 to H1. The following relations can easily
be verified:

A^ BuC&&5uACBT&&, ~4!

TrH2
@ uA&&^^Bu#5AB† PL~H1!. ~5!

For every CP mapE:L(H)→L(K) we define the positive
operatorRE in L(K^ H)

RE8E^ I~ u1&&^^1u!, ~6!

whereI denotes the identical map over the extension sp
H, and for the vectoru1&&PH^ H we used the notation~3!
for C51, the identity matrix with respect to a fixed basis o
H. The action ofE on rPL(H) can be expressed as

E~r!5TrH@1^ rTRE#, ~7!

where the transpositionr→rT is performed with respect to
the same fixed basis. In fact, substituting Eq.~6! in Eq. ~7!,
one has

TrH@1^ rTRE#5TrH@1^ rTE^ I~ u1&&^^1u!#.

Then it is possible to take the factor1^ rT inside the CP map
E^ I, since they act independently on different spaces.
applying Eq.~4!, one obtains

TrH@1^ rTRE#5TrH@E^ I~ ur&&^^1u!#,

and thus, commuting the partial trace withE^ I and using
Eq. ~5!, one finally gets Eq.~7!.

The operatorRE is the only one for which Eq.~7! holds
true. In fact, supposeRE andR8 give the same CP mapE by
means of Eq.~7!; then

TrH@1^ rT~RE2R8!#50PL~K!, ;rPL~H!.

Since an operatorOPL(H^ K) is null if ^vuOuv&50
PL(K) for all uv&PH, it follows that RE5R8. Thus, the
correspondence from CP maps to positive operators
‘‘into.’’

SinceRE is positive, it can be written as

RE5(
i

uAi&&^^Ai u, ~8!

where there are many different choices of the vectorsuAi&&,
which are not necessarily eigenvectors ofRE , and generally
are not normalized. Substituting this relation in Eq.~7! and
remembering thatAiPL(H,K), we find

E~r!5(
i

TrH@1^ rTuAi&&^^Ai u#5(
i

AirAi
† , ~9!
04230
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thus recovering the result that any CP map admits differ
Kraus’s decompositions@16#, depending on the choice of th
vectorsuAi&& in Eq. ~8!.

Clearly, Eq.~8! holds for any positive operatorR on K
^ H. The map defined byR through Eq.~7! is completely
positive, since it can be expressed in the form of Eq.~9!,
which trivially gives a CP map. Thus the corresponden
from CP maps to operators is also ‘‘onto.’’

Concluding, Eq.~7! defines a one-to-one corresponden
between CP maps fromL(H) to L(K) and positive operators
on K^ H. By exploiting this correspondence, properties oE
can be translated into properties ofRE . For example, the
trace-preserving condition forE,

TrK@E~r!#515TrH†rTTrK@RE#‡,

for all rPL(H) such that Tr@r#51, becomes

TrK@RE#51PL~H!. ~10!

In the following, it will be useful to consider the dual ma
E ~ of a CP mapE, namely, the transformation in the Heise
berg picture versus the Schro¨dinger picture mapr→E(r).
The dual mapE ~ is defined by the identity

Tr@rE ~~O!#5Tr@E~r!O#, ~11!

which must be valid for all operatorsOPL(K). In terms of
the operatorRE one has

E ~~O!5TrK@O^ 1RE
TH#, ~12!

whereTH denotes partial transposition on the Hilbert spa
H only @15#.

In the next section, the correspondenceE↔RE will be
applied to the covariance condition for a CP map, wh
turns out to be the key idea for ring deal with cloning a
covariant cloning.

IV. COVARIANT CP MAPS

To talk about covariance, we must first give some imp
tant definitions~see, for example, Ref.@18#!. A unitary ~pro-
jective! representationU of the groupG onH is a homomor-
phism associating any elementgPG with a unitary
transformationUgPL(H) in such a way that the compos
tion law of the group is preserved under the corresponde
i.e.,

Ug1
Ug2

5v~g1 ,g2!Ug1g2
, ~13!

where uv(g1 ,g2)u51 are the so called cocycles, and th
satisfy the following restrictions:

v~g1g2 ,g3!v~g1 ,g2!5v~g1 ,g2g3!v~g2 ,g3!,

v~g,g21!5v~g,e!51. ~14!

A unitary representation isirreducible ~UIR! if there are no
proper subspaces left invariant by the action of all its e
ments. TwoG representationsU on H and V on K are
8-2
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OPTIMAL NONUNIVERSALLY COVARIANT CLONING PHYSICAL REVIEW A 64 042308
equivalent if there exists an isomorphism~a one-to-one and
norm-preserving linear correspondence! I :H→K, such that
IU g5VgI for any gPG.

The most important result for a UIR is the so call
Schur’s lemma: letU onH andV onK be irreducible unitary
G representations, and letBPL(H,K) satisfy

B Ug5Vg B, ;gPG. ~15!

If U andV are equivalent thenB is proportional to the iso-
morphismI connecting them, otherwiseB is null.

Now we will use these tools to deal with covariant C
maps. LetE:L(H)→L(K) be a CP map, and letG be a
group with unitary representationsU and V on H, and K,
respectively.E is G covariant with respect toU andV if

E~UgrUg
†!5VgE~r!Vg

† , ~16!

for any rPL(H) andgPG.
By means of Eq.~7!, the covariance condition becomes

E~r!5TrH@1^ rTRE#[TrH@1^ rTVg
†

^ Ug
TREVg^ Ug* #.

~17!

From the uniqueness of the operator associated with a
map, we conclude thatE is G covariant if and only if

RE5Vg
†

^ Ug
TREVg^ Ug* , ;gPG, ~18!

or equivalently

@RE ,Vg^ Ug* #50, ;gPG. ~19!

Thus,G covariance of a CP mapE is equivalent toG invari-
ance of the corresponding positive operatorRE .

Group invariant operators

The G representationW5diag(V^ U* ) on K^ H, de-
fined asWg5Vg^ Ug* , is generally reducible, i.e., the spac
can be decomposed into a direct sum of minimal invari
subspacesMi ,

K^ H5 % i 51Mi , ~20!

eachMi supporting a unitary irreducible representation
the group. Given this decomposition one can look at a
operatorO on K^ H as a set of operatorsOj

i in L(Mj ,Mi),
so thatO5( i j Oj

i .
Due to irreducibility of the subspacesMi , Wg will be

decomposed as follows:

~Wg! j
i 5d i j Tg

j ,

whereTj is the UIR supported byMj . Two UIR’s Ti andTj

are equivalent,i; j , if they are connected by similarity, i.e
through an isomorphismI j

i PL(Mj ,Mi) such that Tj

5(I j
i )21TiI j

i .
The invariance equation~18! becomes

Rj
i Tg

j 5Tg
iRj

i , ;gPG,
04230
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so that, by Schur’s lemmas, one finally has

Rj
i 5ci j I j

i , ~21!

where, if i;/ j , thenci j 50, and, if i; j , ci j can be different
from zero.

Since equivalent representations are related by simila
in any invariant subspaceMi one can choose the bas
$u i ,l &,l 51, . . . ,dimMi% so that fori; j

^ i ,l uTi u i ,m&5^ j ,l uTj u j ,m&; ~22!

hence

I j
i 5(

l
u i ,l &^ j ,l u81j

i , ~23!

and finally

R5(
i j

ci j 1j
i . ~24!

In order to have a positiveR, the matrixci j must be positive,
since takinguc&&5( i( l 51

dim Mic i l u i ,l & one has

^^cuRuc&&5(
i j

(
l 51

dim Mi

c l i* ci j c l j .

Recalling thatci j 50 if i;/ j , and reordering the indices of th
representations by grouping the equivalent ones, the ma
ci j assumes a block diagonal form, different blocks cor
sponding to inequivalent representations, each block inc
ing all representations equivalent to the same one. In
way, each block has dimension equal to the multiplicity
the representation. Positivity ofR implies positivity of each
block of matrixci j . This structure ofci j is reflected onR by
means of Eq.~24!.

V. OPTIMAL COVARIANT CLONING

A cloning map is just a CP mapC from L(H) to L(H ^ N)
with the output copies invariant under the permutations
the N output spaces. This is equivalent to a particular co
riance of the CP mapC for the group of permutationsSN ,
namely, it corresponds to the invariance of the positive
eratorRC under the representationW5diag(V^ I ), whereV
is the representation ofSN permuting theN identical output
spaces, andI @corresponding toU in Eq. ~16!# is the
SN-trivial representation on the input space. One has

C~r!5VpC~r!Vp
† , ;pPSN . ~25!

Notice that permutation covariance does not imply that
output state has support in the symmetric subspace of
output spaceH ^ N.

As explained in the previous section, Eq.~25! determines
a peculiar block structure for the operatorRC associated with
the mapC. Such a structure is strictly related to the deco
position ofH ^ (N11) into invariant subspaces forVp ^ 1. Any
possible cloner is described by anRC with that structure and
8-3
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G. M. D’ARIANO AND P. LO PRESTI PHYSICAL REVIEW A64 042308
satisfying the trace-preserving condition of Eq.~10!. In this
way, one classifies all possible cloning maps through
decomposition into irreducibles of theSN representationV on
H ^ N.

In addition to permutation invariance, in this paper w
will consider covariance under a group of transformationsG,
with representationT on H. This corresponds to the follow
ing identity:

C~TgrTg
†!5Tg

^ NC~r!Tg
†^ N . ~26!

One can choose a cost functionJ(RC) related to the us-
age of the clones. Covariant cloning is suited toG-invariant
cost functions, which satisfy

J~RC!5J~Tg
^ N

^ Tg* RCTg
†^ N

^ Tg
T!. ~27!

A typical example of an invariant cost function arises wh
one is interested in cloning a restricted covariant family
states$TgrTg

†% given with a covarianta priori probability
dp(g), maximizing the average input-clone fidelityF(RC)

2J~RC![F~RC!

5E
G

dp~g!Tr@1^ N21
^ ~TgrTg

†! ^ ~TgrTg
†!TRC#

5Tr@1^ N21
^ r ^ rTR̄C#, ~28!

wherer is the seed of the covariant family, andR̄C is the
covariant counterpart ofRC obtained by group averaging,

R̄C5E
G

dp~g!Tg
^ N

^ Tg* RCTg
†^ N

^ Tg
T . ~29!

Clearly for aG-covariant cloning one hasRC5R̄C .
The optimal cloner minimizesJ(RC) vs RC with the con-

straints forRC : ~i! invariance under permutation andG; ~ii !
positivity; ~iii ! trace preservation. The constraint~i! leads to
Eq. ~24!; constraint~ii ! can be taken into account by writin
ci j of Eq. ~24! via a Cholevsky decomposition~see, for ex-
ample, Ref.@19#!; constraint~iii ! is imposed directly on the
resulting parametrization of the operatorRC .

VI. EXAMPLES

Phase-covariant qubit cloning

Here, we consider the problem of cloning a qubit in
U~1!-covariant fashion, where the group representation
given by

Tf5expF i

2
f~12sz!G . ~30!

Since the cloning to two copies is already given in Ref.@20#,
whereas the general case forN copies is very complicated
here for simplicity we will consider the case ofN53 copies.
We want to achieve the maximum fidelity between input a
clones, when the input is an equatorial qubit
04230
e

f
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ucf&5Tf

1

A2
@ u0&1u1&] 5

1

A2
@ u0&1eifu1&]. ~31!

In other terms, we want to maximize the average ‘‘equa
rial’’ fidelity

F5E
0

2p df

2p
Tr@1^ 2

^ ucf&^cfuC~ ucf&^cfu!#, ~32!

which, by covariance, can be written as

F5Tr@1^ 2
^ uc0&^c0u ^ ~ uc0&^c0u!TRC#. ~33!

Since the equator is invariant even for spin flipping, here
will require the additional covariance with respect to t
groupZ2, with representation$1,sx%.

In order to satisfy all the covariance requirements,RC
must be invariant for permutations, phase shift, and spin fl
i.e., for products of any of the following unitary operators

Vp ^ 1, Tf
^ 3

^ Tf* , sx
^ 3

^ sx* .

The Hilbert spaceH ^ 311 can be decomposed into sub
spaces that are irreducible with respect to the joint action
U~1! and S3. In Table I, we list the irreducible subspace
with their basis, reporting in the columns 3 and 4 the kind
representation supported for U~1! andSN , respectively.

Referring to Table I, one has to group together the s
spaces supporting equivalent representations for U~1! and for
S3. This leads to the peculiar block structure for the mat
ci j that we mentioned in Sec. IV. In this example, we fin

TABLE I. H ^ 311 decomposition into U(1)-S3 irreducibles.
U~1! acts on each subspace as a phase shifteinf, wherenPZ ~col-
umn 3! labels inequivalent representations.S3 acts trivially ~T! on
one-dimensional subspaces, whereas on bidimensional ones i
as the defining representation~D!. Spin flipping connects subspace
~column 5!.

Space Unnormalized basis U~1! S3 Flipped

M1 u0001& 21 T M5

M2 u0000& 0 T M6

M3 u1001&1u0101&1u0011& 0 T M7

M4

u1001&2u0101&,
1
2 u1001&1

1
2 u0101&2u0011&

0 D M8

M5 u1110& 3 T M1

M6 u1111& 2 T M2

M7 u0110&1u1010&1u1100& 2 T M3

M8
u0110&2u1010&,

1
2 u0110&1

1
2 u1010&2u1100&

2 D M4

M9 u1000&1u0100&1u0010& 1 T M10

M10 u0111&1u1011&1u1101& 1 T M9

M11
u1000&2u0100&,

1
2 u1000&1

1
2 u0100&2u0010&

1 D M12

M12
u0111&2u1011&,

1
2 u0111&1

1
2 u1011&2u1101&

1 D M11
8-4
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OPTIMAL NONUNIVERSALLY COVARIANT CLONING PHYSICAL REVIEW A 64 042308
that a phase- and flip-covariant cloning map is descri
though Eq.~24! by a matrixci j having the following positive
diagonal blocks:

$1%,$2,3%,$4%,$5%,$6,7%,$8%,$9,10%,$11,12%.

To ensure spin flipping covariance, the elements ofci j con-
nected by a flip must be equal, for example,c235c67.

Finally, to fill the blocks ofci j in the right way, we need
the parametersa,b,c,d,e, f ,gPR1, and vPR3, where d
>e, f >g, and c>uuvuu. Table II explains how to employ
them.

The parameters must satisfy another constraint given
the trace-preserving condition defined in Eq.~10!. Within
this parametrization it reads

a12b12c1d12 f 51. ~34!

Substituting this equation into the equatorial fidelityF de-
fined in Eq.~33!, one has

F5
1

2
1

1

3
~e2g!1

A3

3
vx . ~35!

This quantity can be easily maximized by hand, taking in
account the constraint given by Eq.~34! and the properties o
the parameters. The maximum fidelity isF5 5

6 and is
achieved ford5e51 and all the other parameters equal
zero. The valueF5 5

6 exceeds the bound given in Ref.@20#
~see@23#!. The optimal phase covariant cloning is thus d
scribed by the operator

RC
opt5uF&&^^Fu, ~36!

where

uF&&5
1

A3
@ u1000&1u0100&1u0010&1u0111&1u1011&

1u1101&].

The Kraus decomposition of the optimal cloner isC(r)
5BrB†, where

TABLE II. Content of the blocks of the matrixci j , chosen in
order to haveRC describing the most general CP map fromL(H) to
L(H ^ 3) that is covariant with respect to permutations, phase s
and spin flip.

Blocks Content

$1%, $5% a

$4%, $8% b

$2,3%, $6,7% c11v•s

$9,10% d11esx

$11,12% f 11gsx
04230
d
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B5
1

A3
@ u100&^0u1u010&^0u1u001&^0u1u011&^1u1u101&

3^1u1u110&^1u#. ~37!

The fidelity for the 1→2 case is1
2 1A 1

8 , as demonstrated in
Ref. @20#, and it is larger than the present 1→3 value, since
the ‘‘information’’ is spread into a smaller number of copie

Notice that in the general case one could have many c
ing maps attaining the same global maximum of a covari
cost function likeF in Eq. ~33!. These maps can be covaria
or, if not, they are mapped one into the other by the cov
ance group, whence for a continuous group they mak
manifold of maps. However, the noncovariant clonings
averaged into a covariant cloning via the integral~29!.
Therefore, for a linear cost function, every optimal covaria
cloning is just a convex combination of maps giving the b
fidelity. In this particular example, the optimal covaria
cloning is an extremal point of the convex set of all t
cloning maps, either covariant or not, leading to a uniq
optimal cloning.

Qutrits double-phase covariant cloning

In this section, we show another example of the use of
techniques presented. Here, our target will be the const
tion of the 1→2 qutrit cloning that gives the best averag
fidelity on the set of states of the form

ucfq&5
1

A3
@ u0&1eifu1&1eiqu2&]. ~38!

According to what we said at the end of the last examp
such an optimal cloning can be found among the ones
are covariant with respect tof and q phase rotations, and
with respect to permutations of the basis$u0&,u1&,u2&%,
which are the equivalent of the spin-flip symmetry of t
previous example. The above are all the symmetries of
set of input states and of the fidelity.

Our RC will be a positive operator onH ^ 211 being in-
variant for products of any of the following unitary transfo
mations:

V^ 1, Tfq
^ 2

^ Tfq* , Up
^ 2

^ Up* , ~39!

whereV is the permutation of the two clone spaces~for two
copiesV is usually called a ‘‘swap’’!, and

Tfq8u0&^0u1eifu1&^1u1eiqu2&^2u,

Upu i &8up~ i !&, ;pPS3 . ~40!

Remember that swap invariance makesRC a 1→2 cloning
map. The entries of Table III correspond to all the phase-
swap-invariant subspaces. Since they are all unidimensio
each is labeled by its generating vector.

Let us define the operatorsOi , i 51, . . . ,5, onH ^ 211

having the following matrix elements with respect to t
basis reported in Table IV:

t,
8-5



t
th
o

t b
a

ince

five
ant
rs

n-
ue

ely.

a-

its
ngi-
tum

be-

of
nt

i-
g

-
n
e
es

e
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O1→S a d d

d* b c

d* c b
D , O2→S e f

f eD ,

O3→g, O4→h, O5→ i . ~41!

These five operators are clearly invariant with respect
swapping and phase shifts, as one can see by comparing
expressions with Table III. Sums of operators of the form
the Oi and of the form of the operators obtained fromOi

with permutations, i.e., by acting on eachOi with Up
^ 2

^ Up* , are swap and phase invariant. One may note tha
permutationsO5 generates 3! different operators, where

TABLE III. H ^ 211 decomposition into unidimensional invar
ant subspaces. The invariant subspaces are obtained by makin
tensor products of any vector from the first column with eitheru0&,
u1&, or u2&: the corresponding cell in the table gives the full sym
metry of the subspace. The first letter denotes the kind of actio
the swap~symmetric-antisymmetric!; the two numbers indicate th
representation forf and q phase shifts, respectively. Subspac
having the same greek letter are connected by a permutationUp

^ 2

^ Up* for somepPS3.

^ u0& u1& u2&

u00& S, 0, 0,a S, 21, 0, b S, 0,21, b

u11& S, 2, 0,b S, 1, 0,a S, 2,21, b

u22& S, 0, 2,b S, 21, 2, b S, 0, 1,a

1

A2
@ u01&1u10&]

S, 1, 0,g S, 0, 0,g S, 1,21, d

1

A2
@ u02&1u20&]

S, 0, 1,g S, 21, 1, d S, 0, 0,g

1

A2
@ u12&1u21&]

S, 1, 1,d S, 0, 1,g S, 1, 0,g

1

A2
@ u01&2u10&]

A, 1, 0, g A, 0, 0, g A, 1, 21, d

1

A2
@ u02&2u20&]

A, 0, 1, g A, 21, 1, d A, 0, 0, g

1

A2
@ u12&2u21&]

A, 1, 1, d A, 0, 1, g A, 1, 0, g

TABLE IV. Vector basis to which the matrix elements of th
operatorsOi are referred.

Operator Ordered basis

O1
u000&,

1

A2
@ u011&1u101&],

1

A2
@ u022&1u202&]

O2 1

A2
@ u011&2u101&],

1

A2
@ u022&2u202&]

O3 1

A2
@ u210&1u120&]

O4 1

A2
@ u210&2u120&]

O5 u001&
04230
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the other ones generate only 3 different operators each, s
they are invariant with respect to the transpositionu1&↔u2&.

Thanks to these observations, one realizes that these
operators give rise to five independent families of covari
cloning maps described by the invariant positive operato

RC
i 5 (

pPS3

UpOiUp . ~42!

The positivity constraint for any family simply becomesOi
>0, while the trace-preserving condition leads to TrO1
5TrO25TrO35TrO451/2 and TrO551/4.

Any other covariant cloning map can be written as a co
vex linear combination of these five kinds of map in a uniq
way. Since the average fidelity is linear inRC , we can look
for the optimal maps among these five families separat
With a little algebra one finds max(F2)51/2 and F35F4

5F551/3, while max(F1)5
1
12(51A17).0.76. Thus the op-

timal covariant cloning map belongs to theRC
1 family; in

particular, it is obtained for the following values of the p
rameters:

a5
1

4 S 12
1

A17
D , c5b5

1

8 S 11
1

A17
D ,

d5Aab

2
5

1

2A17
, ~43!

which have been determined by maximizing the quantity

F15
2

3
@a12b1c12A2 Re~d!#, ~44!

within the constraints of trace preserving and positivity,

a12b5
1

2
,

a,b>0, ucu<b, udu2<
a~b1c!

2
. ~45!

Cloning of continuous variables

The parametrization of CP maps given in Sec. III and
specialization to the covariant case are useful tools for e
neering measurements. The idea is to ‘‘spread’’ a quan
state on a larger system with a CP mapE, and then to per-
form a measurement on the spread state. The connection
tween the positive operator valued measure~POVM! $Mi%
on the larger spaceK and the resulting one$Mi

~% on H is
given by

Mi
~5E ~~Mi !8TrK@Mi ^ 1RE

TH#, ~46!

whereE ~ is the dual map ofE, and the symbolTH stands for
transposition with respect toH only ~see Sec. III!.

In Ref. @11#, the cloning map for continuous variables
Ref. @21# is used to achieve the optimal POVM for the joi

the

of
8-6
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measurement of two conjugated quadraturesX0 andXp/2 of
an oscillator modea ~whereXf5 1

2 @a†eif1ae2 if#) by mea-
suring them separately on the two clones. Here, we
briefly show how our general method works on this proble

Denote byH3 the input space and byH1 ,H2 the two
output spaces of the oscillator modesa3 , a1, anda2, respec-
tively. The cloning is described by

RC5
1

2
P12^ 1311^ ~ u1&&^^1u!23P12^ 13 , ~47!

where P5Vu0&^0u ^ 1V†, and V is the 50% beam splitte
unitary transformationV5exp@(p/4)(a1

†a22a1a2
†)#.

A simple calculation shows that

P5
2

pE d2aua&^au ^ 2, ~48!

where ua&5D(a)u0&, and D(a)5eaa†2āa is the displace-
ment operator generating theWeyl-Heisenberg~WH! group.
By means of Eq.~48!, the invariance ofRC defined in Eq.
~47! with respect to permutations and displacements can
ily be verified.

Using the dual cloning map as in Eq.~46!, we should
check that

C ~~Ex
0

^ Ey
p/2!5

1

p
ua&^au, a5x1 iy , ~49!

whereEv
f5uv&f f^vu and Xfuv&f5vuv&f . In fact, the last

term of Eq.~49! is the well-known optimal POVM for the
joint measurement of conjugated quadratures, whereasEv

f is
the POVM of thef quadrature measurement. Hence iden
~49! guarantees that the cloning achieves the optimal jo
measurement of the two conjugated quadratures via com
ing measurements on clones.

Noticing that

Ex
0

^ Ey
p/25D~a! ^ 2E0

0
^ E0

p/2D~a! ^ 2† ~50!

and exploiting the WH covariance, Eq.~49! reduces to

C ~~E0
0

^ E0
p/2!5

1

p
u0&^0u. ~51!

Substituting Eq.~46! into this last equation, and taking ma
trix elementŝ i u•••u j &, one finally must check that

0^0up/2^0u^ i uRCu0&0u0&p/2u j &5
1

p
d i0d j 0 . ~52!
04230
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SinceVu0&0u0&p/25A2/pu1&& andVu0&u0&5u0&u0& ~see Ref.
@22#!, one has thatPu0&p/2u0&05A2/pu0&u0&. Thus Eq.~52!
holds, and the cloning really achieves the wanted POVM

Universal cloning

Clearly, the universal covariant cloning of Werner@6# is a
special case of covariant cloning for the covariance gro
U(d), d5dimH, of all unitary operators onH. Here, for the
sake of comparison to Ref.@6#, we consider more generall
the cloning fromM to N.M copies. Hence the cloning is
CP mapC from L(H ^ M) to L(H ^ N) such that for anyU
PU(d) andsPL(H)

C~U ^ Ms ^ MU†^ M !5U ^ NC~s ^ M !U†^ N. ~53!

The cost function for optimization is the~negative! fidelity
between clones and input,

J~RC!52F52Tr@s ^ NC~s ^ M !#, ~54!

wheres is pure. Owing to covariance, the fidelityF does not
depend ons, since any pure state lies in theU(d) orbit of
any other pure state.

The optimal cloning map of Ref.@6# is given by

C~r!5
d~M !

d~N!
SN~r ^ 1^ (N2M )!SN , ~55!

where rPL(H ^ M), SN is the projector on the symmetri
subspaceH 1

^ N , and d(N)5dim(H 1
^ N). In our framework,

one has

RC5
d~M !

d~N!
S̃1H ^ (N2M ) ^ ~ u1&&^^1u!H ^ (M1M )S̃, ~56!

whereS̃5SN^ 1^ M. It can be easily verified thatRC is both
covariant and permutation invariant, as it must be.
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