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           1.2 EXPERIMENTAL CHARACTERIZATION OF THE TRANSFER
MATRIX OF A QUANTUM DEVICE

It is unquestionable that the current main technological
focus is related to the problem of handling the information,
either in transmission, processing, storing, or computing.
The marriage of Quantum Physics and Information
Technology -originally motivated by the need for
miniaturization- has recently opened the way to the
realization of radically new information-processing
devices, with the possibility of guaranteed secure
cryptographic communications, and of tremendous
speedups of some computational tasks. The scientists have
thus learned the lesson that the uncertainty that is intrinsic
of Quantum Mechanics -which has always been
considered just as a major limitation- can be actually turned
into a powerful horse, which we can harness and ride.
Among the many problems posed by the new information
technology [1] there is the need of characterizing the new
quantum devices, making the “radiography” of their
functioning. Again, Quantum Mechanics, on first sight
seems to make things more difficult, but at the end it
provides us with a powerful tool to achieve the task easily
and efficiently: this tool is the so-called quantum
entanglement, the basis of the quantum parallelism of the
future computers.
How do we usually characterize the operation of a device?
Actually, here we are interested only in linear devices, since
quantum dynamics is intrinsically linear.  Any linear device
–either quantum or classical (examples are: an optical lens
or a good amplifier)- can be completely described by a
transfer matrix which gives the output vector by matrix-
multiplying the input vector. Now the problem is: how to
reconstruct the full transfer matrix of the device? This can
be done by running a basis of possible inputs, and
measuring the corresponding outputs.  In quantum
mechanics the inputs are density operators, here denoted
by ρ, and the role of the transfer matrix is played by the so-
called quantum operation of the device, here denoted by
E. Thus the output state ρout (a part from a possible
normalization) is given by the quantum operation applied
to the input state as follows

ρout = E(ρin ).

Here we don’t use the usual matrix-multiplication notation,
since the linear transformation E corresponds to
multiplication both on the right and on the left. Also,
technically, the set of states ρ actually belongs to a space
of operators: this means that if we want to characterize E

completely, we need to run a complete orthogonal basis
of quantum states |n〉 (n = 0,1,2…), along with their linear
combinations       (|n’〉  + ik|n’’〉), with k = 0,1,2,3 and i
denoting the imaginary unit. However, the availability of
such a set of states in the lab is, by itself, a very hard
technological problem. For example, for an optical device,
the states |n〉  are those with a precise number n of photons,
and, a part from very small n -say at most n = 2- they have
never been achieved in the lab, whereas achieving their
superposition is still a dream for experimentalists,
especially if n 〉〉 1 (a kind of Schrödinger kitten states).
The quantum parallelism intrinsic of entanglement now
comes to help us, running all possible input states in
parallel by using only a single entangled state as the input
[2]. We need to prepare two identical systems into an
entangled state, say |Ψ〉 , and input only one of them into
the device, leaving the other system untouched as in Fig.1.

This setup leads to an output state

Rout = E ⊗I(|ψ〉〈 ψ|)

where I denotes the identical operation. It is a result of
linear algebra that Rout is in one-to-one correspondence
with the quantum operation E, as long as the state |ψ〉 is

Fig. 1
General experimental scheme for measuring the transfer matrix
of a quantum device. Two identical quantum systems are prepared
in a (maximally) entangled state |ψ〉 , one of the two systems
undergoes the quantum operation E of the device, whereas the
other is left untouched. At the output one makes a quantum
tomographic reconstruction of the states by measuring jointly
two   random observables from a quorum (see the text).
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full-rank, i. e. it has non-vanishing components on the
whole state-space of each system, such as, for example, a
so-called maximally entangled state. Now, the good news
is that full-rank entangled states can be easily generated
in Quantum Optics by parametric downconversion of
vacuum (full-rank states of qubits can be generated by
means of networks of controlled-NOT gates).
Therefore, the problem of availability of all possible input
states is solved: we just need a single entangled state |ψ〉 ,
which works as all possible inputs in a sort of quantum
parallelism!
Now, how to characterize the entangled state Rout at the
output? We obviously need to perform many measurements
on an ensemble of equally prepared quantum systems,
since, due to the no-clonining theorem [3] we cannot
determine the state of a single system.  For this purpose a
technique for the full determination of the quantum state
has been introduced and developed by our group since
1994. The method, now generally called Quantum
Tomography [4], has been initially introduced for the state
of a single-mode of radiation -the so-called Homodyne
Tomography- and thereafter it has been generalized to any
quantum system. The basis of the method is just performing
measurements of a suitably complete set of observables
called quorum. Therefore, for our needs, we just have to
measure jointly a quorum of observables on the two
entangled systems at the output, in order to determine the
output state Rout , and hence the quantum operation E.
A computer simulation for measuring the transfer matrix
of a quantum device in the quantum optical regime is given
in Fig. 2.
Here the device is a field amplitude displacer, and the
input entangled state comes from parametric
downconversion of vacuum. All experimental parameters
are the same of the experiment in Ref. [5]: however, for
the tomographic reconstruction of the quantum operation,
the control of the pump-phase of the downconverter must
be improved with respect to the original experiment. A
sketch of the setup of the experiment is given in Fig. 3.
This research has been carried out within the project:
Quantum Information Transmission And Processing:
Quantum Teleportation And Error Correction, cosponsored
by the Italian Ministero dell’Università e della Ricerca
Scientifica e Tecnologica.

Fig. 3
A sketch of the setup of the experiment in Ref. [5]. NOPA: non-
degenerate optical parametric amplifier; LOs: local oscillators;
PBS: polarizing beam splitter; LPFs: low-pass filters; BPF: band-
pass filter; G: electronic amplifier. Electronics in the two channels
are identical.

Fig. 2
Computer simulation of an homodyne tomographic experiment
for measuring the quantum operation E of a device that displaces
the amplitude of a radiation mode in the complex plane by z = 1,
i.e.  E(ρ) = D(1)ρ D(1)† . The real part of the diagonal elements
〈n|D(1)|n〉 is plotted, with error bars, compared to the  theoretical
values (thick red line).  Similar results are obtained for all upper
and lower diagonals of the quantum operation matrix D(1). The
reconstruction has been achieved by using an entangled input
state |ψ〉 corresponding to parametric downconversion of vacuum
with mean thermal photon number n = 5 , and quantum efficiency
at homodyne detectors η = 0.8 (1.5x106 data have been used).
The experimental parameters are the same of the experiment in
Ref. [5].
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