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FOREWORD

This is the first book produced as output of one of the activities
promoted by the Institute for Scientific Interchange I.5.I. in Torino,
Italy. The LS.I. is an institution, supported primarily by the Regional
Government of Piedmont, devoted to the encouragement, support and
patronage of science, in the broadest, indifferentiated sense of the word.
It is meant to provide the scientific community both a direct intellectual
support and a source and reservoir of high quality forces through the
promotion of interchange activities at different levels, bridging those gaps
which are unavoidable in the traditional modalities of the international
seientific cooperation.

Its primary purpose is to bring together a small number of scholars,
working on a variety of related problems, so as to provide the visit-
ing members with an exacting ambient where they could feel however
their own intellectual development and growth as one of the principal
purposes, and the local community with an accessible environment as
lively and stimulating as rich and fertile, comparable with the most
advanced similar institutions in the world.

The inevitable (and desiderable) limitation on the size of the in-
stitution programs naturally promotes the tendency to focus, with spe-
cial emphasis, on disciplines and topics which have in the Region and
the City some confirmed tradition of fruitful activity. The scientific
programs are designed to have as one common characteristic continuity
in time, attendance and disciplines, and are based on the presence in
Torino of distinguished scientists, visiting for variable periods of time,
to give sets of lectures, conduct seminars and lead research projects.

Together with them a group of scientists active in the same field,
desirably young promising researchers, take part in the seminars, both
providing an active audience and acting as the medium of a proficuous
interaction between the scholars and the whole scientific community.

M. Rasetti
T. Regge



[NTRODUCTION

The number of exactly solved models in the Statistical Mechanics of
classical two-dimensional systems has grown to be relatively large. The
field has had its successes uniformly distributed in the period between
1944, when Lars Onsager so ingeniously solved the two-dimensional Ising
model, and 1980 when Rodney Baxter produced the solution of the hard
hexagon model. In between ice-type models, vertex models and some re-
lated models, such as the Ashkin-Teller, Potts or the hard square models,
were either solved, or partially dealt with, very often by not so different
techniques. Thus recently, the attention of mathematical physicists has
been focused more and more on the connection between the different
methods of solution, in the effort to understand the relevant underly-
ing structure and to try to extend it eventually to higher dimensional
systems. Also the equivalence of several of such classical models with
quantum ones, living in one-dimensional space, has played a relevant
role, raising the hope to find in the methods characteristic of quantum
mechanics and field theory a way out of the often formidable difficulties.

Finally the exact solvability has been related, or — better — people
have tried very hard to connect it, with integrability in the customary
sense of mechanics; namely with the existence, in the thermodynamic
limit, of infinitely many conserved quantities. In ihe latter context,
new dinamical features such as the existence of soliton-type solutions
have entered the picture. Conventionally, one talks about exactly solved
model whenever some physically significant quantity, such as the free
energy or an order parameter or some correlation function have been
worked out analytically into a mathematically closed manageable form,
or at least their calculation has been reduced to a problem of classical
analysis - such as the evaluation of an integral or the solution of a
differential (or integral) equation etc — . There is plenty of discussions
going on about the physical relevance of such solutions, indeed of the
models themselves. Some claim that they are unphysical to the point
of being useless. Others believe that the mathematical tools one has Lo
resort to in order to find these solutions are far too complicated to justify
the effort. The fact is that on the one hand some of these problems have
induced as a feedback a wealth of good results in mathematics (such
as the theory of infinite dimensional Lie algebras, the combinatorial
topology, the theory of non-linear differential equations). On the other
hand even when not strictly corresponding to realistic systems, the exact
solution of the models has permitted to check more general theorems and
conjectures in statistical physics (such as the Lee-Yang theorem in the
theory of phase transitions for which the solution of the two-dimensional
Ising model has played a crucial role of refercnee; or the concept of



universality of the critical exponents, which has been usefully forced
by the results of Lieb and Baxter; or, yet, the famous Bethe Ansatz,
which has allowed a deeper comprehension of quantum excitations in
one dimensional systems and has lead recently to the exact solution of
the Kondo problem).

Finally both classical two dimensional and quantum one dimen-
sional systems do exist in the real world; and the agreement between the
output of the models and those of the measurements in the laboratories
is very often exceptional.

The reduction of the different methods of solution to a unique
global general method has also had unespected successes. The most
instructive instance is that of the ice model, of different ferroelectiric
models, of the discrete lattice gas or the Ising model; all included as
particular cases in the eight vertex model, defined by Fan and Wu and
solved, in its whole generality, by Baxter.

The logical steps lead from the dimer covering technique, through
the introduction of Grassmann wvariables, to the Pfaffian method, and
from the latter, by the very general procedure of the transfer matrix, to
a quantum one dimensional problem.

Thus the equilibrium configurations of classical two-dimensional
systems with nearest neighbour interactions were shown to exhibit a
stricl topological analogy with the space-time trajectories of a dynami-
cal system in one spatial dimension. It is a somewhat simple, though
surprising, extension of an idea due to C. N. Yang, exploited when he
was dealing with the thermodynamics of a one dimensional chain of
hard-core bosons, the unbelievably deep fact that the integrability of the
transfer matrix (and that of the dynamical system) is connected with the
existence of ternary relations among micro-transfer-matrices. Such rela-
tions are remarkable realizations of subgroups of the permutation group
(braids), and imply the existence of one-parameter families of mutually
commuting transfer matrices (whereby the integrability follows). Also
Yang's method foreshadows the inverse seattering technique thoroughly
developed by Faddeev, which links the symmetry conditions with those
ol periodicity, beautifully setting in operatorial form Bethe’s Ansatz. It
18 therefore in 2 way no more surprising thaf Zamolodchikov’s factoriza-
tion equations for the S-matrix, representing the conditions which are
necessary to factorize a multi-particle scattering matrix into two-particle
ones, coincide with Yang’s equations and Baxter’s "triangle” equations.

This book stems out of a set of lectures delivered in Torino (with
the exception of Zamolodchikov, who could net attend, but submitted
one of his papers, to be reprinted as his contribution to the collection)
in the spring and summer of 1984. Organized by 1.5.1. the lectures were



meant to review the state of art on the subject of integrable systems
in Statistical Mechanics, both elassical and quantum, and to give a
thorough updating on the most recent results as well as perspectives
in the field. The lectures were taped, then rewritten by the editors and
finally submitted to the authors, to whom the editors want to express
their gratitude for the careful and patient correction of the manuseript,
The accurate and beautiful typing is due to the passionate and dedicated
work of Andrea Leone to whom the editors convey their deepest thanks.
Finally, we acknowledge Csi-Piemonte for making available the TEX
system with which the typing was done.

Torino, january 1985

Giacomo D’Ariano
Arianna Montorsi
Mario Rasetta






Exactly Solved Models

in Statistical Mechanics
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INTRODUCTION

The first exact solution in statistical mechanies of one-dimensional
models was for a hard core gas (” Tonks” gas }[1]; Ising then solved in 1925
the famous "Ising” model [2]. Later on a "hard core with exponential
attraction” model (HCEA) was solved by Takahashi [3].

Unfortunately all these models have no phase transitions, according
to Van Hoove [4] theorem (1950) which says that no phase transitions can
oceour in short range one-dimensional models at a non-zero temperature,
unless the interaction involves infinitely many particles.

Hovever the "infinite dimensional” models, as the mean-field one
[5] and the Bethe one [] can be exactly solved showing phase transitions.

Here it’s useful to define the dimensionality d of a lattice as the
exponential of the power law N? describing the asymptotic growth of
the number of N-neighbours of a certain site visited in ¥ steps; the
system is infinite dimensional when the number of neighbours visited
grows faster than any d.

In the mean-field model every particle interacts equally with all the
others.

The Bethe model is defined on a lattice which is the Cayley tree
infinitely far from the boundary, in the termodynamic mit N — co. A
Cayley tree is the graph shown in fig. 1.

3

q

fig. 1

One starts with a certain site (¢) and connects it with g sites; then
each of these g sites is connected with (g — 1) sites, and so on. Such a
graph contains no circuits. The same holds for the Bethe Iattice which
is deep within the Cayley graph and can be thus thought of as a lattice
of coordination number g.



The HCEA mode] as well is an infinite dimensional model exhibiting
hase transitions, if one solves it in the limit of weak and infinitely long-
range attraction [7].

All these infinite dimensional models satisfy the scaling hypotesis

nd have classical exponents (see following).

 This is not completely true for the spherical model (solved by
Berlin and Kac in 1952 [8]), which is not infinite dimensional but involves
cssentially infinite range interactions and has phase transitions for d >
9 Jn three dimensions however the exponents are not classical, while
they are for d > 4. The two dimensional lattice models that have been
solved are few; in these lectures we’'ll discuss mainly these.

Generally they have phase transitions with exponents which are
not classical. These models are also interesting because they describe
real systems, as thin films or crystals with anisotropic interactions.

It’s worth specifying that by the phrase ezactly solved we don't
mean rigorously solved. Infact ezactly applies to the results, while rig-
orously applies to the way you get it. Exact results can be obtained by
an applied mathematician derivation which is not properly a rigorous
proof, For instance one can multiply and diagonalize infinite matrices
without demonstrating that matrix products are convergent, believing
that this is true and that the results are exactly correct.

Exact results can also be obtained by a conjecture; for example
De Gaunt in 1967 obtained by a guess the correct value of the critical
activity of a hard exagon model and this value was then verified in 1979
by Baxter [9].

In table 1 are listed the main exactly solved models in two dimen-
sions:

MODEL SOLVED
Ising Onsager, 1944
Dimers Kasteleyn and Fisher, 1961 3
B-Vertex KDP Lieb, 1967
Vertex F Lieb, 1967
8-Vertex Baxter, 1971
3 Spin Baxter and Wu, 1980
| Hard Hexagons Baxter, 1980
table 1

[10] The Ising model in two dimensions was solved by Onsager in 1944



Kasteley and Fisher solved indipendently the dimers problem in
1961 [11,12]; it then turned out to be equivalent to the Ising model. In
the dimers problem there is a lattice on which one can put dimers, i.e.
objects that cover two sites at a time (like diatomic molecules), with the
constraint that they are hard-core and so one site cannot be covered by
more than one dimer; the problem is to count how many ways there are
of covering the lattice with such dimers.

The dimer covering is an alternative appreoach to the Onsager
solution of the Ising model; the fundamental trick consists in the one
to one correspondence between the dimer covering and the elements of
the Pfaffian of an antisymmetric matrix.

The six-vertex model was solved in 1967 by Lieb [13, 14,15]. He
solved three specific cases: ice type, KDP and I' medels. The ice mode]
18 a special case of the I model.

Six-vertex model are all specific cases of the more general eight-
vertex model, solved by Baxter in 1971 [16,17]; the 8-vertex model
contains as a special case also the 3-spin model [18].

Finally a recent result is that even the hard exagon model can
be identified as an eight-vertex model; it can infact be recognized as a
six-vertex decorated model.



{. CRITICAL EXPONENTS

For all these models we calculate of course the free energy, but we
are also interested in their critical exponents (table 2) to describe their
behaviour around the critical point:

[ MODEL 3 @ 8 I 6
Ising I 0 1 1 15

| Dimers z 0 %— 1 15
6-Vertex KDP iy 1 15
B-Vertex F 0 —00 0o o0 15
8- Vertex 00— 2— % T ﬁ 15
3-Spin i B ! 5 15 |
Hard Hexagons 2n = 5 2 14

table 2

Typically in these models there are temperature (T') and field (H)
variables. The free energy is a function of them; generally one finds that
it is an analitic function of H and T except for the line T =0 and T
from zero to T, in the (T, H) plane. Really the first derivative of the
free energy has a discontinuity crossing this cut, but the very signilicant
singularity is at the critical point (H =0,T = T,).

At this purpose one may note that for example the Onsager’s
solution of the Ising model was just along the line H = 0, and that
is not too much useful beecause this line is not typical of the whole plane
at all. And infact it is not typical but it is the most interesting line one
can look at.

Anyway the two dimensional Ising model with H & 0 is still
unsolved: we know only numerically it’s behaviour off the axis and in
F?art this is due to the fact that we know the exact solution on the line

= ().

50, if one fixes = 0 and looks at the free energy f as a function
of T, f normally shows a singularity in 7' = T, which goes like a power
{2_ — ) of (T — T,); note that if o is positive then il characterizes the
divergence exponent of the specific heat (i.e. the second derivative of the
free energy)

Similmi}r} looking at the spontaneous magnetization, one gets another

-X]?Onent 2 of a function vanishing coming {rom below to Lhe critieal
Point.,
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One can also define the interfacial tension, which is the contribu-
tion to the free energy from two ordered domains in contact with one
another.

Actually the last exponent ¢ is defined just along the line T =
T,; as the magnetization is a funetion of H, so H is a function of the
magnetization.

One can test on table 1 the scaling hypotesis, which is really
built in the renormalization group theory; in two dimensions the scaling
predictions are:

20 =2—n
6 =—1+(2—a)/B

In particular for the hard exagon model p is obtained using these predic-
tions, 8o as § for almost all models.

Before going further let’s say something about what such exponents
are for these solved models (table 2).

Omnsager found for the Ising model that « is zero: this just means
that the specific heat diverges logaritmically. In this model § is obtained
independently from the scaling predictions, so that the scaling for § has
been actually tested on the Ising model.

For the KDP model & = 1 corresponds to a first order transitions,
while it is a bit harder to define § and g because the system is frozen in
it's ordered phase.

The F model hag an infinitely weak singularity for the free energy:
all its derivatives exist and are continuous buf nevertheless the function
is not analytic.

Before the solution of the eight-vertex model it was generally be-
lieved that all exponents of all models were universal.

Universality says that critical exponents shouldn’t depend on the
details of interaction. Of course they will depend on something, specifical-
Iy on the dimensionality and on the symmetries of the system. That’s
certainly true for the Ising model: if we take this model with interaction
in both horizontal and vertical directions and make those interactions
different, we don’t change the critical exponents at all. Besides we know
that for the Ising model H = 0 is a special symmetry line, for which
there is a critical point at T' = T,: out of the cut-line H =0, 0 < T <
T, in the (H, T) plane, we have no singularity.

Universality 18 a very actractive idea becaunse it means that real
interactions can be modeled by very simple ones if we just want to know
critical exponents: for example knowing the critical exponents of the
three dimensional Ising model one would know them for an alloy such
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4 bronze. Nevertheless when we look at the eight-vertex model, we
have to introduce a parameter f (laying between 0 and m) which is just
defined by the details of the interaction: varying ¥ means to vary o, f
and 2 (not ¢). It is now appreciated that there are indeed such models in
which critical exponents are not universal: even the square lattice Ising
model with ferromagnetic nearest and antiferromagnetic next-nearest
neighbours interaction has non universal exponents.

The three spin model as well as the hard exagon model are special
cases of the 8-vertex model corresponding respectively to ¥ = Zr and
e %JT. It is now possible to draw a sort of 7 line and consider the
yarious model on it (fig. 2):

g paans "
| '| [ ! |
F Ising 3-spin KDP
hard
hexagon
fig. 2

Interactions round a face model

All these exactly solved two dimensional models can be defined as
special cases of a very general model, called the interaction round a face
model (IRF).

Take a square lattice of N sites (fig. 3); on each site (z) put a
Spin o; which has some set of possible values (for most of these models

0y = +1 or —1, while for hard exagons it’s more natural to put o; = +1
or 0).
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|

—’09'--“&-
499
5 e o o s

fig. 3

For the whole lattice one defines a hamiltonian which is a sum over
all faces of the lattice of a face energy being some function ¢ of the four
spins around that face:

Hie= z E(U{,G‘jjcrhm] (1.1)
f:ii:s

Then the partition function is:

In=3 Y = (1.2
oy e

If each spin has two possible values, then there are sixteen possible
values for the argument of the function ¢, so there are sixteen degrees
of freedom; actually some of them are redundant because if we add an
energy to one side of the square face and subtract the same energy from
the other side we don’t change anything at all.

One can define a Bolizmann weight function of a face w(a, b, ¢, d),
where a, b, ¢ and d are the four spins around that face:

—1
w(a,b,c,d) = exp {K 7 e(a, b, ¢, d]}
B

Then (1.2) becomes:

Zn = Z z ]:[ 0'”0‘:,',0';“0';] (_1'3)

o Jaces
(£,4,k,1)

For our next calculations we are also interested in the free energy per
sife f,
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f=-KpT lim N7'lnZy (1.4)

and in averages, where for example the average of a single spin o; sitting
gomewhere in the middle of the lattice is:

<oy >=Z§ ) > o1 || wlowoj0n0) CL8)
& ar

faces

It is certainly true that all the models we have described before are
special cases of this IRF model. Let us see it more precisely.

Nearest neighbour Ising model
In that case the hamiltonian is:

H=-J Z cr,;-:r,-—J’ Z 050k (1.6)

kortzontal vertical
edges edges

{t.:J.] {J'--"i‘:}

where 01,...,0p, = +1 or —1.

fig. 4
The minus sign before the interaction coefficients J, J' means we
have ferromagnetic interaction. Infact with these signs, when two spins
h‘ave the same value the energy is negative, when they have opposite
SIENS it's positive; as negative enmergy is preferred to positive one, the
system prefers equal spin.
That’s the nearest-neighbour Ising model that Onsager solved; it

€8l be incorporated into a more general IRF model by merely sharing
out edge energies between adjacent faces:

e(a, b2, d) = M%J(ab + ed) — %Jf['f}c + ad) (1.7)
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Note that this is not one of the special cases solved by eight-vertex model,
while next nearest-neighbour Ising model is.

Nezt nearest netghbour Istng model

The hamiltonian is:

H=-J >  oox—J" )Y, ojo (1.8)
NE-—-SW NW-3SE

diagonale dingonale
(£.k) (7:4)
where again ¢q,...,0ny = +1 or —1.
This model can easily be recognized as an IRF model, the interac-
tion being all inside the square:

e{a,b,¢c,d) = —Jac— J'bd (1.9)

The next-nearest-neighbour Ising model factors into two independent
and equal nearest-neighbour models. [nfact dot spins interact diagonally
only with nearest neighbours doi spins and the same is true for cross
spins. So for the free energy for site we have:

fﬂﬂxtﬂﬂ{“r! J—F) —== frz n('j1 ‘-’ﬂ)

Eight- Vertez model

In next nearest neighbour Ising model the hamiltoman has two
sublattice spin reverszl symmetries. The most general model which has
those symmetries and interactions only within a face is the eight-vertex
madel,

Obviously it’s an IRF model:
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e(a,b,c,d) = —Jac — J'bd — Jyabed (1.10)

The six-vertex model can be thought as a special limiting case
of this model in which —J,J',—J4 tend to infinite, the appropriate
differences remaining finite. Under this limit, twelve of the possible
values of w(a,b,c,d) remain finite and non zero while the other four go
to zero.

Three-spin model

It is defined over a triangular lattice which actually can be drawn
as a square lattice with one set of diagonals (fig. 6):

.

B

fig. 6

So there are two types of triangular faces (upper and lower). The
hamiltonian is then:

H=-—J Z gidjop = —J Z (o001 + ajor00) (1.11)

all EqUATCH
triangular 5,5k
faeew

(4,7,0) and(j,k,{)
Again this is an IRF hamiltonian, with:

ela,b,c,d) = —J(abd + bed) (1.12)

As formulated, the three-spin model is quite different from the ordinary
Ising model. Infact there the hamiltonian is left unchanged by reversing
all the spins while that’s no more true for this model. Nevertheless we



16

have a stronger symmetry, as can be seen dividing the triangular lattice
into three equivalent sublattices (fig. 7):

S S

4

|

fig. 7

Here every single triangle consists of three sites belonging to the
three different sublattices (squares, circles and triangles); reversing all
spins of any two of the sublattices the hamiltonian is left unchanged.
This can be done in three different ways; so Lhere are three sublattice
spin reversal symmetries.

Eight-vertex and three-spin models look very different beeause of
their different symmetries but they have the same number of ground
states.

Infact for the three-spin model there are four ground states:

ET- G". O"
+ — -
- = =
= _’_ .
~ - +
as well as for the eight-vertex model:
(o305).s (oi05).
+ o+ + =+
+ + o | e

- - + +

It turns out that one can actually transform the three-spin model
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into a special case of the eight-vertex model; that transformation changes
most of the sping but leaves all the spins within a certain diagonal row
unchanged (which also means that the order parameter of the models
are the same).

So the three-spin model is a special case of the eight-vertex model in
the sense that they have the same spontaneous magnetization, the same
free energy and the same spin correlation within a given diagonal row.

Hard hezagons model

Again we have a triangular lattice, on which we put a lattice gas: so
instead of spins on sites we have particles on sites. No two particles can
sit on the same site nor they can sit on adjacent sites. It’s called hard
hexagons because gluing the six triangules surrounding a particle they
form a hexagon and no two such hexagons can overlap (they're "hard”).

O
/ /f"/

fig. 8
We want to calculate the number of ways of putting n particles on

N sites, g(n, N), the maximum number of particles we can put on such
a lattice being of course /3. So the partition function is:

N/3
Zn = Y 2"g(n,N)

n=r(
where z is the activity.
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Hard hexagons model can be thought as an interaction round a face
model (fig. 9).

First let’s go from this grand-canonical way of talking about position
of sites to the canonical way where we talk about sites. This can be done
associating to each site (7) an occupation number

5. — 4 0 if site (i) is empty
Tl L i site (i) is full

The total number of particles is then just the sum of the occupation
numbers and the partition function becomes:

‘?N"_Z Z T+ toy H ETC-"_?

edgea

== Z Z ]:[ Unﬂ-‘f;akrgi) [113}
on foces
! ]
fig. 9

In (1.13) we see that the contribution to Zy is zero if any two
occupation numbers on a triangular face are zero. Besides w(a,b, ¢, d)
clearly is:

w(a, b, ¢, d) = zletbtetd/n(] _ gp)(1 — be)(1 — cd)(1— da)(1 — db)(1 — ca)

(1.14)
The (%) in the exponent of z is necessary as site (a), for example, belongs
to four different squares.

Table 3 is a list of all these exactly solved IRF models.
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Model Value of a,b, ¢, d e(a, b,c, d)

n.n. Ising +1,-1 —1J(ab + cd) — £ J'(be + ad)
n.n.n. Ising +1,~1 —Jac— J'bd
8-Vertex +1,—1 —~Jac— J'bd — Jyabed

+1,—1 —Jac— J'bd — Jyabed
B-Vertex +1,-1 with —J, J', —J; — 400,
differences finite
3-Spin +1,—1 —J (abd + bed)
Hard Hexagons 0,—1 —KBT]og{inbfﬁi[l — ab) -
(1 — be)(1 — ed)(1 — da)(1 — bd)}

table 3

Really those are not all the exactly solved IRF models but they are
the most significant. For example a six-vertex model with an external
electric field has been solved: the solution leads to a linear integral
equation.
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ORDER PARAMETER

Two models are equivalent if they have the same free energy and
the same order parameter. For the Ising model the order parameter is
the spontaneous magnetization My, the zero denoting that it’s evaluated
for zero applied magnetic field. There are various way of defining it.

One way is to consider the Ising model in a field H, with a certain
magnetization M(N,H); first one takes the thermodynamic limit of
M(N, H) and then the limit for H — 07

My = lim lim M(N,H)
H—0+t N—oo

However we shall use the following definition. Take a finite square Iattice
and fix all the boundary spins to be up (fig. 10):

+ + + F++++ + + +

+ - - +

+ =2 e ¥
E iy ! Y e O T

+ - e +

+ - +

+ =l T = +
£ S s PN Bl N

- - - - +

o — -- +
+ + + + 4+ + ++ + ++

fig. 10

Now look at the centfer site on some site deep in the middle of the
lattice, say (1). The expectation value for o is then:

Etan_f o1 e"ﬂf‘f
Econf gl

The hamiltonian of the Ising model (as that of the eight-vertex model)
is unchanged by reversing all the spins, so if there are free boundary
conditions or cyclic boundary conditions then < oy > is zero. Infact to
every term in the numerator sum corresponds, by reversing all spins, the
same term with opposite sign as o) changes sign while the exponential

Lo>= (2.1)
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factor remains unchanged. But we have not given cyclic boundary
conditions and it’s certainly true that for ferromagnetic systems there
are states for which these averages are positive.

This for finite lattices. Now let’s consider the case when N, the
number of sites of the lattice, goes to infinite. It may be argued that, as
the boundary goes away from oy, boundary effects shouldn’t matter so
we should obtain the same result as if we have cyclic boundary conditions
and < o1 > has to decrease as N — oo. This is infact true for
sufficiently high temperatures while for T less than a certain temperature
T. that’s no more true and the system in o; remembers the boundary
conditions (long range ordered system): < oy > as N — oo tends to a
positive value that we call spontaneous magnetization (fig. 11):

T T

fig. 11

The critical exponent # tell us the way in which My vanishes at T..
For the Ising model 8 is £ so that curve looks almost like 2 step function,

That's one possible definition of the order parameter of the Ising

and the eight-vertex model.
For three-spin and hard hexagon models one uses a different definition.
In every case it’s useful to look for something that would be zero if there
were cyelic boundary eonditions in a finite system but is expected not to
be zero if one perturbs the boundary conditions.

In the ordered states of both three-spin and hard hexagon models
there is a breaking of translational invariance as, depending on the
boundary, the particles prefer onme of the three sublattices of the tri-
angular lattice; the order parameter then is an expression of that. We
could caleulate the expectation value of oy (a spin in the middle of the
lattice), which will now be the local density of particles at site one;



setting p; as the density on sublattice (¢} (£ = 1,2,3), we find that t,,
sufficiently high activity (z > 2;) p1 depends on the sublattice on which
oy is. If sublattice (1) for example is favoured at the boundary, for » ~
Z. then py > py, ps while ps = p3. So one can naturally define the order
parameter 2 to be:

B =p1—ps {_2.2}

We can plot R as a function of z (fig. 12):

i

fig. 12



MAT

HEMATICAL METHODS

[n table 4 we illustrate how these models have been solved.

TESR— Commuting| Matrix | Corner
Model Pfaffians | Fermion| Bethe l Transfer Inversion] Transfer
Algebra| Ansats Maltrices Trick Matrix
- ® | o®] o & & | ®
[ Dimer D P | D
6-Vertex O & D ®
g-Vertex S5 &b S2) X
3-Spin EB @"
Hard Hexagons & 53¢

@ : First method used for free energy
@ : Later method used for free energy
& : First method used for order parameter
& : Later method used for order parameter

table 4

As there is a simple trick for getting the free energy of all these
maodels, the matriz tnversion trick, so there is a simple trick for getting
the order parameter, the corner éransfer metriz trick.

In these lectures we’ll talk about the last three method listed in

table 4.
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Matriz tnverston trick for caleulating free energy

We have to introduce the transfer matrix. There are many ways
of doing it as there are many ways of drawing a lattice. We choose to
draw it diagonally, on a cylinder or on a thorus (fig. 13).

fig. 13
[.et’s look at a particular row of faces on the latlice, say those one
shaded in fig. 13; now look at the spins on the upper and lower segments

(fig. 14):

fig. 14
The Boltzmann weight of that row of faces is just the product of
the Boltzmann weights of the faces:



V{Ulr"'iﬂ'ﬂ [UIIJ"'JU:;}z
n/2

== H {w(agj-_j,Ugj:ﬂ'zj—hlf5*2;')5(5’21'—1!"}2.#1]}
j=1

Let’s consider series of such rows (fig. 15, a e b)

fig. 15 (a) fig. 15 (b)

Here the partition function is:

Z = z HW{G;,J,-,U:;,W) (3.2)

interior facece
spineg

e Xi(ol by 0%) for fig. (a)
Yler-vi0s) for fig. (b)

There is of course a relationship between X and ¥:

Vi< ion) = . Viopiby (o -0 )X (01 0,) | 133)

r /
YO

That equation may be writien as 2 matrix equation. First define:

¢={‘711--*JJH} qﬁr:{gir-":ﬂ';}

0 (3.3) becomes:
Y(g) =D V(¢ |¢)X($)
éf

Now set:
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X = vector with elements X(¢)
Y = vector with elements Y (¢)
V= matrix with elements V{4 | ¢')

Then we obtain for (3.3):

Y=VX (3.4)

The matrix V is the diagonal transfer matrix. It has 2™ X 2" elements
because each ¢ in all these models has two possible values so each ¢
has 2 possible values. When we add the next row we use almost the
same procedure but now everything is shifted of one column and the row
transfer matrix becomes:

Wior; 0P | ohyovgl = Vies,.. 5 00,64 | ohn o intlesiod)

and (3.5)
Z=WY =WVX

where Z(0q,...,0,) is the partition function with one more row added.
If we now keep up multiplying alternatively by V and W we can build
the whole lattice; fixing top and bottom rows to have values (+ 1), the
partition funetion turns up to be:

In =<+ | VWVW.. VW | + > (3.6)

or, using cyelic boundary conditions:
| B ¥

Zn = Te(VWVW-. VW) = Tr(VW)™ (3.7)

where 2m is the number of rows, n the numbers of columns and N = mn
the number of sites.

If we introduce the eigenvalues of VW, say Xy, .. .y Agn, (3.7) be-
comes:

i
Zn=), ()" (3.8)

r=1

In statistical mechanics one usually works with large systems; it means
that one has to consider the limit as m,n tends to infinite. Let’s first
consider the limit m — co, keeping n fixed: the sum in (3.8) will be finite
and it will be dominated by the biggest cigenvalue No:
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s oo TR )

Note that for m large but finite the maximum eigenvalue is effectively
unique, according to Frobenius theorem for matrices with only positive
entries {as V and W}[19].

In the thermodynamic limit, as the partition function becomes
infinite, one wants to know the partition function per site, which 1s the
Nt root of Zp:

I
KpT

So we are interested in calculating the maximum eigenvalue of VW. V
and W can both be expressed in terms of the face transfer matrices Uy,
whose elements are:

b= {-—2Lob=zmr =2 (3.9)

Uido | ¢') = 8(o1,0%) --8(0im1,0:{) -

3.10
- w(0:0341070i1)6(0i1,0541)- - 8(0n, 07,) bl

This U; definition corresponds to add a single face to the latfice (fig.
16).

o) On
@ e----0
Oy On

fig. 16
Using (3.10) we have for V and W:

V=0,U, U,
W = UIUB' : ‘Un.—1

Note that: UU; = U,U; if |1 — 7| > 2. U; for each row has only two
non zero entries, i.e. two values for the set ¢ which contributes; infact
or for | £ ¢ must be equal to o} and for [ = 1 can assume the values
(£1).

Clearly the same is true for each column. Then we can rearrange
these rows and columns to put U; in a block diagonal form with 2 X 2
blocks. In this form it’s particularly easy to invert Uy, as one has only

(3.11)



to invert 2 X 2 matrices; the inverse matrix U; turns out to be of the
same form as U;. The only difference is in the weight function @; from
the equation

U;U; =1

the relation between w and % must be:

Y " w(a,b,c,dVola, d, ¢, d) = 6(b, d) (3.12)
dar
for all a, b, ¢ and d.

The transformation w — W inverts ¥V and W and generates a
similar transformation for the product VW, so it inverts the eigenvalues
Aiy--.,Aew, taking the biggest to the smallest. But we need some
definition which fixes the attention on a particular eigenvalue. So let’s
define Ay as the eigenvalue of VW with eigenvector corresponding to all
positive entries; inverting VW inverts the eigenvalues but doesn’t change
the eigenvectors. Then this definition of A is the same as before for the
weight function w while the value of g is inverted when we replace w
with .

Using (3.9) we obtain for the free energy the inversion relation:

k(w)k(T) = 1 (3.13)

We now need two statements that for solved models appear to be true:
(i) in some sense k(@) is the analytic continuation of k(w);

(ii) if one rotates the lattice of 90 degrees the partition function
and then k(w) don’t change,

The property of symmetry (ii) with the inversion relation (3.13)and
the property of analyticity (i) are enough to determine the free energy
of the system.

As an illustration let’s look at the szero-field Ising model. From
(1.9):
w(a, b, ¢, d) = exp (Kae + K'bd)
o / J!

K = .
KpT KgT
Now using (3.12):
—4 Vg
D= —Bact (K T )0 b
w(a,b,c,d) T (3.14)

It is a real number because of the factor ¢"¥% that’s just +1 or —1.
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Multiplying w by a the partition funetion is multiplied by o™V : this
corresponds to simply multiplying the partition function per site by .
We obtain:

k(ew) = ak(w)

Now use this relation and the inversion ones (3.13) and (3.14):
ki<, K k( — K, K + %) — 921 sinh 2K/ (3.15)
Besides the symmetry relation (ii) for our model is:

k(x,K') = k(' K] (3.16)

As we want to do a low temperature expansion it’s useful to introduce
the variables 1 and «' defined by:

and the function A(u, u') defined by:

k(K, K') = "5 Afu, o)

In the low temperature limit u and u’' become zero and A is just 1.
Now we can express (3.15), (3.18) in terms of A, u and u':

) =1-u (3.15 bis)

A, u') = Alv, u) (3.16 bis)

Letting u be arbitrary we’ll find a low temperature expansion in powers
of u'. This means to perturb the ground state with all spins plus fixing
first one arbitrary spin to be minus, then two and so on. Finally:

s un'?

P i i 3.17a
5 4) 1——u+{l—u)3+ { )

¢ o
uf uﬁuhﬂ.

_l*fs_w(l-u]:*

AG, o) =1 Pl (3.178)
These expansions are true for u(1) less than 1. By formally replacing in
(3.17 a) u by L omne can see that (3.17 b) is just the analytic continuation
of A(u, u') throught the point w = 1, according to the statement (i).

Substituting (3.17) into the left hand side of (3.15 bis) one obtain
the correct result to the available order:
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A, A, o) = 1 —of + O(u?)

It wouldn’t be difficult, even if one didn’t know anything about the
Onsager solution, to go on with the expansion (3.17). Let’s suppose the
following to be the general form of that expansion:

crlis
Alu, o) =1+ Z a _(u“ ; (3.18)
r=1

where ¢.(u) is a finite degree polynomial in u. (3.18) may be considered
as an assumption about the analytic character of the solution. This
assumption together with (3.15 bis), (3.16 bis) determines the coefficients
c1(u), ca(u), ..., ecc. We’ll give an inductive proof of this fact, supposing
that ¢;(u), ca(t), ..., ¢,—1 (%) are known and determining c,(u), which
has to be a finite polynomial:

cr() =0+t + -+t Fyu” 4 (3.19)

For (3.16 bis) if we know the first (r — 1) coefficients in the expansion
in powers of ', by symmetry we also know these coefficients in the
expansion in powers of u, so that we can know ~g,...,7,—;. Then
substituting (3.18) for A(u,u’) in the inversion relation (3.15 bis) we
obtain by comparing the coeflicients of u'":

20 cr(2)

(I—wupr-1 " [1— L)1 = known
That multiplied by (1 — u)*"~! becomes:
er{u) — e ( ) = known

Using (3.19) we can rewrite this expression and by comparing coefficients
with equal powers of u we’ll obtain equations for «, — Nr—1s Vb1 —
Vr—2y -y M2r—1 =70, V2r; Y2r+1, - - -; bub we know ~q,...,7, 1, 50 we can
know 7, %r41,.... We have then proved that once ¢;(u), ..., ¢,y (u) are
given we can calculate c.(u) for successive r and obtain for the Ising
model with zero-field the free energy.

One can think to calculate with the same procedure the free energy
for the Ising model in a field. In that case there is another variable, due
just to the field H, which enters into the partition function through
= F}IT We deﬁne u and «' as before and in addition we introduce u:

p=ce
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It’s now possible to write the free energy per site k using A(u, u', p):
B EK+|‘<’+-‘¥A(“J ufj ﬁ)

We still have an inversion relation:

A(u‘s u'lj ,ﬂ]ﬁ.(-]-_-, U', l) =1 u' [320&)
' p
and a symmetry relation:
Alu, o, p) = Alv, u, p) (3.200)

Let’s look at the low temperature expansion for A(u,,u), still up to

the second order in «':

AMu, v, p) =

Tt

pur’ | ( pru(l 4 pul WPt 4 ug) 4 + Oul?)
1— pu (1 — pu)?(1 — p2u) 1 — pu

It we now use this expression of A{u,u’, ) in (3.20 a), (3.20 b) we

no longer have enough informations to determine the coeflicients of

e

However it’s a good method and perhaps introducing in some way
other relations (duality, extrasymmetries, . ..) one can think to determine
the free energy of a three-dimensional model.
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Commuting iranafer mairices
The way to get not just the free energy but also the order parameter
is to use commuting transfer matrices, and so the eight-vertex model was

originally solved by Baxfer.
Introduce an ordinary square lattice with m rows and n columns

(fig. 17)

11 eIV L
m-t —_———
Eoatie! [ PR |
L |
2 L
1 TR
T 2 3 n-1 n
fig. 17

A typical row looks now like in (fig. 18}):

i

gy O3

G; Oy

fig. 18

The transfer matrix has elements:

w
Vilogeoion | e pob )= H w(o;,0541,005,1,0%) (3.21)

gl

As usual set: ¢;= all spius on row (i).
Then the partition function is:



33

In =3 > V(g | $p2)V($s | a)-- V(em | $1) =

‘#’1 Q‘-"E ¢'m (3.'22}
=Y (V™pyp = TV
é

Pictorially this equation means:

at ¥
=
v
®
L= e = Tr V%
®
3 V
2 V
| 14

As an example let’s look again at the Ising model. Set K —
I
g‘l’;—% K'= pLp. Then:

V = V(K,K")

What Onsager himself noticed is that two transfer matrices V(K , K')
and V(L,L') commute if the four parameters K,K' L, 1 satisly the
relation;

sinh 2K sinh 2K’ = sinh 2L sinh 2/ (3.23)
We set;

X = (sinh 2K sinh 2K')™!

Equation (3.23) then says that two different transfer matrices with the
same value of X commute. We can draw the line X = const in the
K K! plane. Any two matrices on this line will then commute.

Let’s now go back to the general IRF model and let’s consider iwo
models, one with a weight function w and a transfer matrix V, the other
with a different weight function ' and a different transfer matrix V7.
An element of the product YV’ can be expressed as:
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(‘f V ](,.1...% &gl T Z V(G"l"‘ﬂ"n | Tl'”Tn)V'(ﬁ" “Tn "7!1”"7:1} T

TL*Tn

i
Ts T : !
=5 vl daold )=
S AR 7 T+

r1Te j=1 d

(3.24)
c,YJI]'. {ﬂ:! GJn
i) w' | w' w' |w'
w | w w |w
oy O Tn

This, as can also be seen graphically, is the partition function of
a two row lattice. We may write (3.24) in a simpler way if we suppress
the ¢; and o indices and set:

Sl Teqn) = W(;j o ) w( % g{fﬂ) (3.25)

Oj+1 5 Tyl

Then:

{" v )a;_---a‘n[a"l---a'L g E Sl(Tl,Tg)"'Sn{Tn,ﬁ] = TI'S[S,-; (326)

Tty
where each S; is just a 2 X 2 matrix with elements S;(r, 7). Similarly:

(V'V)o, ot at, = Tr8;- 8,

where 8 is §; with w and @' interchanged.
We want 'V and V' to commute, i.e.:

VV = V'V

A sufficient condition is the existence of n 2 X 2 matrices My,...,M,,
such that:

S; = M,;S'M;}, Sl in
ie. S;Mj41 = M;S (3.27)
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8, is a function of o, o;41, 0%, o, while for satisfying (3.27) it is
sufficient that M is a function of ¢; and o7
So define:

J J

o= (% 3)

This last definition together with the one (3.25) of the elements of §;
allows us to write down explicitly (3.27) as:

Bl el gt el )=

o1 JJ+1 J+1s

o2 T rald ! I r
= w' | wi 95 Zit1 3.28
g ™ o} Tj. Oj+1 s P G5)
Let’s simplify the notation. Set for the external spins:

T:Uj:aj'-l*lrrl:g;'-f-hﬂ'} = a’:brcrd:eJ f

and for the internal spin:
=y
Besides define the rotated form w! of w':

il =)

When we do that (3.28) becomes:

e g b d
Sol; i P D=} ) () )
(3.29)
Graphically it means:
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These equations have to be true for all values of the six external
spins, so there are 2% ( = 64) equations Lo be salisfied.

For the Ising model these equations reproduce the star triangle
relations and the Onsager’s commutation relations. Infact for this model,
as we've seen (1.9):

d @ '
w( ) — K actK'bd
a b

and similarly for @' and w"; so (3.29) reads:

o catliaek Mico oouh (Kb 4 L Md) —
e g FEAL W mb] cosh (K1 + Le + Ma)

and these B4 equations factor into two sets of 8 equations:

2cosh (Kl + Le + Ma) = A K catLiaet M ee
2 cosh (Kb + Lf + Md) = AeX Fd+1/bd+MbS

Graphically:
2
K/ ° !
a M d : A a M'
L C K} o

These are just the star triangle relations.

We are looking for a solution of (3.29), w being given. A trivial
one is:
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' S nf & ey
W =1; w (a b)_ﬁ[a,c}ﬁ(b,d)

but we’re not interested in it as this solution only implies that V com-
mutes with itself.
Anyway we know the form of w for the eight-vertex model (see

(1.10)):

e(a,b,c,d) = — Jac — J'bd — Jyabed

d) — Re/<oc+Lbd+ Mabed (3.30)

w(a,b,e,

Clearly for w!. and w" we can suppose the same form:

af ((1 B d) :_R!Ef‘;’ra.c—E—L'bd—i-M’ahcd
r s Ehei Wt 3

: 1 1 T
‘t.U"{\ﬂ.: b, ¢, fi) :Rﬁ EK ac+ L' bd4+ M abed

Star triangle relation are now:

gloatLliactLlee oo (Kb+K'f+ K"d+ Mcba+ M'afe+ M"edc) =

— LFATLIHLSS ook (Ke + K'e + Ko+ M fed + M'deb + M"baj)
(3.31)

for all values (£ 1) of a, b, ¢, d, ¢, f. I K, L, M are given we have only
six parameters K', L', M', K", I/, M" at our disposal for solving all
these 64 equations! Fortunately there are many simplifications because
of the symmetry properties of (3.31). Infact negating a, ¢, e leaves the
equations unchanged; the same is true negating b, d and f. So we're left
with 16 equations. Further interchanging a with d, b with e and ¢ wilh
f just changes the two sides of (3.31) and the 18 equations reduce to six.

Now choose M = M' = M" and the six equations reduce to three:

ar! 2" cosh (K + K'+ K" — M)
€ cosh(—f{ 4 KT L KMo M]
srrssr _ cosh(K + K+ K" — M) (3.32)
cosh (K — K' + K" + M) p
2L+2L! cosh (K +K'+ K" — M)
J cosh(K + K'— K" + M)

It we introduce A(K, L, M),

A(K, L, M) = —sinh 2K sinh 2L, — tanh 2M cosh 2K cosh 2L (3.33)
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Then eliminating in (3.32) K", L' we find:

A(K,L,M)= AK', L', M)

This means that two transfer matrices commute if they have the same
value of M and the same value of A. But we have to fix four parameter,
a, b, ¢, d, so, apart from a normalization factor, we are left with one
degree of freedom which permits to construct a class of transfer matrices
commuting with each other.

Now we want to parametrize a, b, ¢, d, and so w, in terms of elliptic
functions, i.e. functions of two variables: the nome g and the argument
u. Usually ¢ is regarded as a real constant, 0 < g < 1, while u is a
complex number. We can also introduce the modulus «, related to g

”_4‘?%[[( 5 1)
n==1 ]+qﬂ
and set:

1—x?
2

= (A2 — 1) cosh (2M) (3.34)

Note that so we can distinguish the two cases k%2 > 1, k2 < 1:

Al < 1 disordered phase
|A] > 1 ordered phase

with transition at |A| = 1. As a special case when K, L, M > 0 and
A < —1 we have the ferromagnetic ordered phase, with 0 < & < 1.
Now define:

1 e qln ’L’u){l o | qﬁnt,—gu-)
(1 Zé qQﬁ—lFEu)( qznﬂ-l H-—’Zu}

snh (1, g) = 2¢* sinh u H

n=1

— snh (1)

(3.35)
This is a double periodic function (fig. 19), in the sense that:

snh (u + 7i) = —snh (u)
snh {u- S 27‘} — snh {‘U-} : g = BT
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. |
i ' |
= _T._..-. _+. —B- —b-—8—
| ® : zero
l |
i 1 @ : pole
G +——-l—+-—-0—
0 |2Tl 4T Complex
u-plane
fig. 19

If one knows such a function within a period rectangle, one knows
it at any point in the complex plane.
If we parametrize:

e 2K — snh(u,q) (3.36a)
e 2L = snh (A — u, q) (3.36b)
e2M — anh (), q) (3.36¢)

then A, given in (3.33), turns out to be a function of only A, g.
In terms of these variables the ordered ferromagnetic phase dis-
cussed above corresponds to the assumption:

B it = Xt P

Now regarding g, ) as fixed and u as a variable the transfer matrix is:

V = V(u)

and as M, X\ are also fixed we obtain:

V(u)V(v) = V() V(u)

for all complex numbers © and v.
Let’s look at the inverse weight function defined by (3.12). As w
has the form (3.30), using the inversion and symmetry relations:
k(w)k(w) = 1
k(w) = k(w,)

We may write W as:
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W= Eﬂf&c—-}-'ﬁbdﬂ*ﬁ?mbcd (337)
where a
K=K+ 1:-2“1 M=M :

EEI iy 3—21’ Sliﬂh (2K — EM)
~ °  Sinh(2K + 2M)’

—4
R+/4sinh (2K — 2M)sinh (2K + 2M)

with these relations we can easily verify that:

R =

A=AK,L M) =AK,L M)= A (3.38)

But A is a function of ¢, » only, so (3.38) means that: 7, » = ¢, \.

Besides for (3.36 a) and for the definition (3.37) of K it turns out
that:

= —u

i.e. negating u takes w to @!

We can now demonstrate that all weight functions are entire fune-
tions of 1.

First choose & in (3.34) so that:

w(+, +,+,+) = Be"* M = s H(0\)8(1)8(\ — u) (3.39)
Hiu) = gqi sinh (u) ﬁ (l s qZREEu)(l . qi!ne—ﬁu]
n=1
o) = J[ (1 - 1e)(1 -2 te2¥)
n—=1

Then (3.35) becomes:

snh (u) = %

For w(+, +, +,—) we now obtain:

W{_I_J +1 _f", '—) — RE,K_"L—M e ‘i'ﬂ'("‘f', +: _,’_’ _'_]E—EL—*QM =z

a0 - 95 )

= pB(N\)B(u)H () — u)
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where we’ve used the parametrization (3.36 b,e) for e~2L—2M  Gimilarly,
e from R to p:

D(+, +, +,+) = R M — 5H(NO( — 1)8() + u)
Then:

7 = (h(x — w)h(x + u))~
h{u) = ©(0)H (u)B(u)

We now rewrite the inversion and symmetry relations together with
the periodicity and analyticity properties in terms of this parametriza-
tion:

(i) Inversion: k{p, u)k(7, —u) =1
Define k(u) = k(L, u), so that k{p, u) is:
k(p,u) = pk(u) and k(u)k{ —u) = 5 = h(h —w)h(X +u)

(ii) Symmetry: k(u) = k(\ — u); infact interchanging K and L
merely replaces u by A — .

(iii) Periodicity: In&(u + 7i) = ln k(u)

(iv) Analiticity: In k() is analytic in the strip 0 < Re(u) < X
(fig.(20)). Omne may control this property for example on
the first few terms of the low temperature expansion.

¢% *
%

o/

z
7

fig. 20

_ While (i),(ii} and (iii) are rigorous properties, (iv) is like an assump-
lon, Anyway if we accept all of (i)...(iv) we have enough information
to determine the free energy k(u).

Infact from (iil) and (iv) we can obtain a Fourier expansion of In k(u):




42

o0

In k{u) = Z e (3.40)

re=—00
Then we use this expression in the symmetry relation (ii) and have:

ey = e2™¢,

Finally we take logs of the inversion relation (i) and consider the series
(3.40) both for k(u) and for k( —u). Note that so analyticity must apply
not only to the right side of the immaginary axis (see figz. 20) or to
the axis itself, but has to continue a little bit into the left side, say for a
distance € (¢ € 1); once again that is consistent with the low temperature
eXPansion.

However through this procedure we get all the information we need
to determine the coefficients eg, 1, e—1, .... Then we put them back
into (3.40) and obtain the following expression for In &(u):

Ink(u) =In (q*@[ﬂ)e}‘) e

This is the solution for the free energy of the eight-vertex model. Similar
arguments work for the hard hexagon model: it. has the same free energy
as a particular eight-vertex model.

The caleulation could be done much more rigorously. One has infact
to write down the equations for the eigenvalues of the transfer matrix
and take the limit as that matrix becomes infinitely large; anyway we
gef, the same results.



Corner transfer motriz

In the star triangle equations (3.29) w, w', w" with the parametriza-
tion (3.36) are functions of g,  and u, the first two being fixed parameters
while u is a variables such that:

w = w(u)

0 =) (3.42)
w” = W(U”)

u''=u —u

Later on we’ll nced this property which is very closely related to the
transformation to a different kernel that is used in the Bethe Ansatz of
the six-vertex model solution.

We now introduce the corner transfer matrix, which can be defined
for any planar lattice model with finite range interactions; for definiteness
we consider an IRF model.

Draw a lattice as that in fig. 21 and associate to each site (1) 2 spin
o; which assumes values +1 or —1.

0j O O3
01 ==
O2 — +
O3 — +
i |
! |
Gm b &
| l | il
+ 4+
fig. 21

One can think this lattice as the bottom-right corner of a bigger
lattice with fixed spin up boundary conditions, according to a possible
ground state.

Woe define the corner transfer matrix as:
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Alorom |0y -aly) =blo1,0h) Y. [ wlei,05,00,0) (3.43)

internel faces
apins

For a given value of the matrix indices we can think of A as the partition
function of the corner lattice; oy and o being both the upper left corner
spins, the matrix is defined as zero unless o9 = o). Set:

T s S A R

so A can be written as A(¢ | ¢'). Now if we consider the full lattice (fig.

2 a] we have to introduce three other corner transfer matrices which

are similarly defined (fig. 22 b, ¢, d).

@l
Alg | ¢) . B(¢' | ¢")

fig. 22 (a) fig. 22 (b)

Dwm * rﬁ] C(qﬁ" 1 ¢|Hf]
¢ (ﬁ”
fig. 22 (c) fig. 22 (d)
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C(¢" | ") B(¢' | ¢")

+ @ll

D" | 4) o Alp | #)

+ -+

fig. 22 ¢
Then the partition function of the full lattice is (fig. 22 e):

Zy= Y_ || wloio500,0)=

all all
spins faces (3_44)

=3 3D A1 4B | 90" | #7)D(#" | 4)
&

¢,f 1;6'” ¢,¥H’

In a matrix notation,

A= {Al$|¢)}

and similarly for B, C, D, we have:

Zn = TrABCD

The summation in (3.44) is over all spin scts ¢---¢" subject to the

1

restriction that oy = ¢ = o = o/'. This can be taken into account
writing A, B, C, D in the following block diagonal form:

e ) ”
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and the same for B, C and D.

Magnetization of eighl-vertez model

We are interested in the mean value of the central spin, i.e.:

1
< 0O >= Z_ Z 71 H 'HJ((T{, Q'J',Uk,m)
N all all
gping faces
This can be rewritten using the corner transfer mtrices A, B, C and D
in their block diagonal form (3.45):

Tr SABCD
= 3.48
<€ >= SR ABCD 2:40)
A s
B (U I)

Note that the position of 8 in the numerator product is irrilevant because
it commutes with each of A, B, C and D.

The value of the magnetization < o1 > (3.46) is unchanged by
multiplying the corner matrices by scalar factor and also by similarity
transformations:

Al =PAQ!
B.’ = QBR_]'
¢ =RCS™!
D! =8SDP ™

That last property is very useful as it makes possible to use diagonal

form for the corner matrices.
We can choose the scalar factor for A, B, C and D so that:

A=(++F|++--+)=1I

and similarly for B, C and D; we also arrange the eigenvalues in decreas-
ing order (the maximum being equal to one).

We work in the termodynamic limit (m — oo}, using infinite dimen-
sional matrices and eigenvectors and also infinite eigenvalues. In this
limit the eigenvalues of the corner transfer matrix form a discrete set,
while for example those of the row to row transfer matrix constitute 2
bond, i.e. they tend to a continuous set.

We compute, by means of the approach discussed before, the-
magnetization of the eight-vertex model.



47

Star triangle relations for the Boltzmann weights ensure that there
are several symmetries for the corner transfer matrices. As A, B, C, D
can be parametrized in terms of g, A, u, we can set:

A = A(u) B = B(u) C = C(u) D = D(u)
Then:

C = A =A(u)
D =B =A(\ — u)

Infact the bottom right and the top left corner transfer matrices are the
same and so are the bottom left and the top right; besides we know that
replacing u by (A — u) merely rotates everything of 90 degrees (it’s the
property (ii) of symmetry). We can use these symmetries of the weight
function because the boundary conditions we gave (all spins up) don’t
break them; however, at least in the antiferromagnetic case and in the
hard hexagon case these symmetries may be broken.

Using (3.47) the magnetization of the eight-vertex model (3.46)
becomes:

(3.47)

Tr SAZ(u)A%(\ —u)
Tr A?(u)A% (X — u)
In this formula we've already used the fact that A(u) and A(M\ — u)

commute; it can be deduced in thermodynamic limit by means of (3.42).
Infact because of it it's certainly true that:

Mﬂ =< g >= (348]

A(u)A(v) = secalar X X(u + v) (3.49a)
Alu)A(v) = Av)A(u) (3.496)

Then, as we supposed in (3.48), A(u) and A{v) commute each other
and with X(u + v): they can then be simultaneously diagonalized by
a transformation which doesn’t depend on # or v and also normalized
S0 that their top left elements (in this case the maximum eigenvalue)
becomes one:

=i
Adlu) = 0

We can then rewrite (3.49 a) in a diagonal form. The § = 1 case tells us
that the sealar is 1; for 1 > 2 we have:



ag(t)eg(v) = z:(u + v) (3.50)

These equations must be Lrue for all complex numbers © and v in some
domain. They constitute a very strong condition on e;(u) and infact it
turns out that its gemeral form has to be:

ilu) =-me Y (3.51)

where m;, r; are constants to be determined.

We have so gained with this approach much more informations
about the eigenvalues of the corner tansfer matrix than in the case of
the row to row transfer matrix, where from the commutation relations
we obtained the eigenvalues as very complicated functions of u.

Now put in the magnetization (3.48) the diagonal form (3.51) of A

AF Y Simie 2ritp2 e iniA—u) 3. Simie—2r
0= - = =
Y miem it mZe=2rid—u] S mie=2ra
S;=#+1 (3.52)

First one notes that u cancels out, which is the same result that was
obtained using row to row transfer matrices.

We now determine m,. Indeed it’s generally true that when u = 0
Afu) is a diagonal matrix and for the ferrromagnetic eight-vertex case
A(0) is just the identity (multiplied by some scalar factor); so in this
case m; = 1.

Besides w enters the weight function only through snh 4, i.e. through
an infinite product of factor involving e**; so the weight function, being
an analytic function of u, doesn’t change incrementing u by 277 and
the same is true for the corner transfer matrix. That is a property of
periodicity:

Al + 2ri) = A(u)

We also need a;(u) to be an analytic function of u in the strip between
zero and A in the complex plane of u. Because of this assumption r; now
must be integer. That’s very interesting as we can ealeulate r; in the
low temperature limit and, r; being continuous for T < T, and being an
integer, the result must be true for all T < T,.

So let’s consider the low temperature limit. a(u) is certainly a
product over all faces of the bottom right corner lattice of face’s weight
functions. We immagine to construct this product beginning with the
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top left corner face; since the interaction has a pratically diagonal form
giol: ~ {0, 0%) in the low temperature limit, the corner latiice can be

drawn as in fig. 23.

'U'-" 'ﬂ'z ﬂ.a ﬂ‘ Grs

e PERIEER) & ) T T
» G |05 10
O— e o
4 0'5 :Gﬁ
{, i e
5
FAt e

fig. 23
Then:

f— Moros+2osoi+ o Fmog o
H w0, 041,04 05-1) = ce (105420204 m Tmtz)
all
faces

It is rather obvious now that a(u) in the low temperature limit turns
out to be:

ai{u) = exp {—u(o10s + 20204 + - - + MO O 42}
Om4+l — Om2 — +1

Thus:

r; = 0103 + 20004 + +++ + MO, Ty teo (3.54)
Finally we set:
S: = o
Spontaneous magnetization then becomes:

Eﬂ 0.13—23\{0105+26264+---+m0m0m+2]
1 Tm

ﬁ"{u ot E: E—Ek{dlag+‘2rrzr.r.1+---—f—mr!,,.rrm+zjl
LA el

T
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The expression (3.55) suggests that the partition funection is really like
that of a one dimensional model but with interaction coefficients increas-
ing with position. To compute the sum in (3.55) one has only to go from
the set of spins {o} to 2 new set of spins 7 defined by:

T} = 0504542 R P

Fy —= M T3 -"T,;m

Then:
— 2N+ 2t mr,)
E ooy TLTET ShmG
My = = » . . (3.56)
E e—2Mr1+2r2+ -+ min)
T1°" T
This sum now factors into a sum over r; fimes a sum over 73 ... and so

on. The even terms in the numerator and in the denominator cancel out
and one is left with the odd terms; setting z = ¢~ 2> we find:
8 1] — b 1 410
C 1+2% 14+28 1420

My (3.57)
In the limit m — co this expression converges very nicely. This infinite
product is just an elliptic function of z.

The result (3.57) was conjectured in 1973 by M. Barber and R.
Baxter [20]. The basis argument was that My had to be indipendent on
1 and also on g; so taking the known result for M; in the Ising model,
which corresponds to g = 2? they were able to write down the general
eight-vertex model. The result was then proved in 1980 [21].

Local denssty for hard hezagon model

We consider again the average of the central spin oy, remembering
that in this case:

G’;:ﬂjl Tt =1} 1 51 f:'_ e [352}
besides we fix: o1 = 0.

We’'ll again use (3.51) with (3.52) but now A(u) for © = 0 is no
more proportional to the identity; it is however still diagonal, depending
only on o;.

Following arguments similar to those used for eight-vertex model
case, we finally find for o(u):

Cti[ﬂ::l = R%afe—*:{u{ag+2cg+'"+[m—1]a'm] (3'5(_]]

To explain the meaning of R let’s introduce two elliptic functions:
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Glz) = [(1—2)1— 21— )1 — )1 =) 1 — 2] (3.60a)

H(z) = [(1 - ) - 21— 21 - )1 - 2L~ 2"%)- ]

(3.60b)
e e"}“
Then R is actually given by:
ﬁ=;§%? (1< 2<0) (3.61)

Now substitute (3.58) into the general formula (3.52) for the local density,
where as for the eight-vertex model §; = oy:

2oy ,—BXh{oz+2oa+-+{m—1)o.)
Eﬂfl - G'1R e

= 7L Y . REeig SN(eztioatt(m 1)) (3.62)
We can compute the sum 1n oy obtaining:
RZF(1)
= - 3.63
F(0) + R*F(1) 80
F(G—I) et Z ng+203+"'+(M“ljdm (3-54)
Tz ey
s 0K

We now calculate, by means of a sort of perturbation approach, the
summation in (3.64), subject to the rule (3.58). Take oy = -+ =@, =
0 as the ground state: it gives a contribution one beth to F(0) and
to F(1). Then allow one of the {o,} to be one and sum over all the
possibilities, remembering that while for /{0) go may be 1, for F(1) the
value 1 isn’t allowed for the rule (3.58). Then allow two of the {a,} to
be one, and so on. With a straightforward calculation one obtains:

F(G}:1+ q | q* AL qU' e
L=g =gl ~4*) " [1 gl {1 =)
2 a 12
B — 1 Ly 1 o il e

1—qg (—g)(1=¢2) ([1=g)(1 =¢3{I—¢°)



B2

In about 1890 Rogers showed that these series are just the elliptic func-
tions defined in (3.60) (Rogers-Ramanujan identities)[22, 23]:

F(0) = 6(q) )
F(1) = H{q)
Substitute these results in (3.63), using (3.81):

H{I){G[zﬁ} — 2 H(zﬁ)}

From another of the Rogers-Ramanujan identities we have:

H(:C)G[mﬂ) At mG(z}H{xﬁ} o _;"(L;?_)
where:
Ple) = [[ (1 o z’zn—l)
n=1

So the denominator in (3.66) simplifies and finally we get the local density
in terms of elliptic function products:

i —zG(z)H (%) P(z3)
P(z)

This result holds only for densities p < p., when g lies between 0 and
1. There are many other phases of the hard hexagon model, in which
however one uses identities like these (there are about 40 identities listed
by Ramanujan).

(3.67)



53

DUALITY

It’s possible to convert the Ising spin model on a square lattice to
a vertex model if the Boltzmann weight is an even lunction of the four

spin round a face:
(af c) (—d —c)
u =
a b —a —bh

In that case instead of specifying w by the values of a, b, ¢, d, one could
specily it by the values of their products along the four edges (fg. 24):

|
a 1 b
A
A= ah 1= be P od T =iy
fig. 24
Then:
w=w\pn,vr1), Aprr =1 (4.1)

Because of this last restriction there are only eight, possible values of X,
B, v and 7; this is the general eight-vertex model in a field, which is an
unsolved problem.

In fig. 24 the dot lines form the dual lattice of the continuous lines.
If we rotate this dual lattice of 45 degrees we obtain fiz. 25 which can
be thought of as a sort of process in which two incoming arrows (A and
1) go into two outgoing ones (r and V).

'\\ // Time
\
/\/
/ \.
—_—
A~ N Space

fig. 25



If we take the axis like in fig. 25 b, that is a scattering process in
1+ 1 dimensions and # from that point of view is a scattering matrix,

say an S5 matriz. Set:
AT R I.«’)
v 5= & 2]

Star triangle relations (3.29) become:

a A £ g 5 p
S SI fr =L
h§u (ﬁ u) (¢ 1)3 (5 V} )
— T‘ i = G’ ‘ﬂ'(;\ T) (‘“ E) i
l";";:,S (.U 'i”) v f 5 N 6

The sum is over all values of X\, u, v subject to the condition that the

product of the edge spins round each vertex is one. There will only

be two such possibilities and one of them being known one can always

oblain the other by negating X\, # and r. So the sum in (4.3) has only

two terms, as originally (see (3.29]) for the sum over the central spin g.
Again we can draw (4.3) pictorially:

N> /°

[
i
g ag
< o

Star triangle relation (4.3) can be recognized in field theory as
the factorizability condition of the S matrix. That is the way, due to

Zamolodchikov [24], to make a contact with the field theoretic point of
view.
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THREE DIMENSIONS

In three dimensions one defines a model analogous to the IRF one
in two dimensions; we now have an interaction round a cube model, on
a cubic lattice. In an obvious way we generalize the partition function:

Hi= Z ];[ w(oy | 0,040, | 0010, | 04) (5.1)
e
Pg:T,8)

fig. 26
Here w is the Boltzmann weight function of the cube (fig. 26) and
depends on the eight spins round the cube. Aseach spin has two possible
values there are 2% possible configurations of spins on the cube, so w
depends on 258 parameters.
To simplify the notation set:

w=w(a | bed | efg|h)

-EI|l IL‘E" h
#
b ’

. We can now generalize star triangle relations in three dimensions:
It is the condition for two layer to layer transfer matrices to commute
_[25]- Star triangle relations become the Tetrakedron relations (note that
both of these terms really apply to the dual system):
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Ew{d | vuw | prg | @)w'(u | gep | zg2 | 8) X
g
Xw"(p| gzw | brs | Wulg | qar [yvzla) =g 5
— Zw""(p | uzy | bed | g)w"(u | ged | gvz | a) X ‘
g
Xw'(d | vgw | bra | y)w(g | ach | zyz | 8)
This relation has to hold for all values of the fourteen external spins
abed, pgrs, uvwzyz, so there are 911 equations. On the other hand
there are only four weight functions, each depending on 2% parameters,
so only 4 X 2% = 2'? equations are unknown.
Let’s give a graphical interpretation of the tetrahedron relations.
We consider for example the left hand side of (5.2) as the partition
function of a graph and the graph looks just like in fig. 27.

fig. 97

Note that considering say the spins azqgsyrv connected with
each other, they form a (distorted) cube whose weight function is w".

For the right hand side of (5.2) a similar graphic rapresentation is
true, in which g instead of being connected to Lhe centers of the faces
(ig. 27) is connected to the vertices.
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We want to solve the 21* equations (5.2), 2'9 of them being un-
known. First we can think to look for a solution that factors into two
distinct sublattices, in analogy to the Ising model case of the eight-vertex
model in two dimensions.

Unfortunately odd dimensions are harder than even. While in two
dimensions each equation factors into two identical equations, in three
dimensions it factors into two equations that are different, one of them
being trivial and the other having a sum on both sides.

Nevertheless Zamolodchikov, using field theoretic intuitions and
the dual § matrix pieture, conjectured a solution to these 214 equations
[26].

He tested it in various ways and did a numerical test of the equa-
tions on computer. Baxter then gave a general proof [27].

The model is specified by table 5:

abeh acfh edgh | W(a|efg|bed|h)
o i + & Pﬁ = GdeQ[}

— - -+ Ry

+ - + Ro

+ + — R

+ = = abPy + cdQ;

- + — acPs; + bd@)o

—~ oz + adPs + beQ)s

= 4 8 Ry

table 5

In this model to fix w is sufficient to specify the values of the
products abeh, acf h, adgh, where as nsual we refer to the cube:




There are 256 configurations, 106 of them having weight function
w(+, +, ), 16 of them having weight function w(—, +,+) and so on.
In this model there are several symmetries:
(i) The weight function is unchanged by reversing all spins:

w(—al—e—f-g|—b—c—d|-h)=
w(a | efg | bed | h)

(ii) The weight function is unchanged by reversing half of the spins
(forming a tetrahedron):

w(—al|efg|l-b—c—d|h)=
=w(a|~e—f—yg|bed|—h) =
= w(a |efg | bed | k)

(iif) If one reverses all the spins on one face the weight function
either remains unchanged or changes sign:

wl—a|—e—f—glbe—d|h)=
— tula | efq | bed | &)

Here the antisymmetry relations mean that the Zamolodchikov
model can have negative Boltzmann weights so it is unphysical
from the point of view of statistical mechanics (perhaps it
doesn’t matter from the point of view of field theory). Even so,
as we’ll see, it is a solution of the tetrahedron relations and any
non trivial solution is interesting. Infact as in two dimensions
corner transfer malrices provide a very powerful method of
developing approssimate solutions of unsolved models, so if we
can understand this model and what for this model are the
analogues of two dimensional corner transfer matrices then
probably we’ll gain some information about unsolved three
dimensional models

(iv) Finally if one interchanges ¢ with p, & with g, ¢ with r, d with ¢
the lefft hand and right hand side of tetrahedron relations are
interchanged too.

So 2'° equations reduce to 224. We now need to specify the twelve
constants Fy,..., P, Bo,...,H3,Q0,...,Q3 (real numbers). Consider
the spherical triangle in fig. 28:
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fig. 28

and define:

1
ey — E(f?l + G5 + b4 —ﬁ')

1
ey = E{ﬂ- +0;—8; — :9';:)

for all permutation 1, 7, k of (1,2,3). Also:

; i g oy =
¢ = an — Cy — co8 — 8By — Sin —
2 2 2

Then Zamolodehikov solution is:

&q

P11 Qo = tot1izls Ry = 7005
; (5.3)
P{ = 't_ftk QJ- = tﬂt: th T coc;Ch

Regarding these equations as defining w as a function of 61, 82, 0z,
Zamolodchikov solution is that if w has angles 81,09, then o', w",
w!" are defined similarly but with angles:

w' w— g, 02, m— 04
' : 05,7 — B3, 7 — 04 (5.4)
At 85, 01,0

where @,...,0g are the six angles of the spherical quadrilateral shown

in fig. 29: five of them are independent while the Btk iz determined by
the rest.
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fig. 29

If Zamolodchikov solution is true each of the 224 tetrahedron rela-
tions should be an identity for all the allowed values of the angles. It
turns out that different equations can be obtained from one another by
permuting #4,..., g, or rearranging the spherical quadrilateral.

Using this, the 224 equations reduce to only two identities and we
have to prove just these two: they are true.

Next step would be to determine the partition function per site
k(01,05,05), that has still not been obtained. Infact we do have an
inversion relation but this determines & only if appropriate analyticity
assumptions are made and it is not obvious what these are. Besides w
doesn’t include a temperature-like variable, so we are not able to check
the analyticity assumption with high-temperature or low-temperature
expansions (as for two dimensional solved models).

Our guess is that the model is always critical and varying 04,8, 6,,
merely moves w around the ecritical surface: 01,02,8;, are irrelevant
variables. The reasons for this guess are exentially the following:

(i) If we look at the two-layer Zamolodehikov model it turns out
that it is equivalent to the two dimensional free fermion model
28], which is critical
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(ii) Baxter and Forester have generalized the Zamolodchikov model
to allow a temperature variable T. From a numerical approxima-
tion they have found that the temperature corresponding to
Zamolodehikov model is at least very near to T, (fig. 30).

ok

! >
TZarn T

fig. 30

(iii) in 2-D, the Potts model can be solved only at criticality.

We conclude these lectures with the convintion that Zamolodchikov
model can actually be written as a three spin model on the triangles
obtained by adding a central spin in the cubes of the cubic lattice and
connecting it to all eight vertex of the cube as in fig. 31:

fig. 31

We have to use only six of the twelve triangles. Then the weight
function of the cube is a sum over the central spin S of the product of
the weight functions of the six triangles, each of them being given by
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(say for the triangle cd s):

FC{T - fF 4T
wﬂe e T AT g

where x i1s the appropriate coefficient.

(5.5)
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1. INTRODUCTION

By "Integrable Systems” we mean two different branches: one is
that of classical systems, i.e. "Non linear partial differential equations”
which are called by physicists "soliton equations”; the other branch is
that of quantum systems, in statistical mechanics and field theory: the
typical example is the Ising model. Specifically we want to emphasize the
role of infinite dimensional Lie algebras, or translated in other words,
the transformation groups of the system (the hidden symmetry group).
In the first part of the paper we will be concerned mainly with the Ising
model and the related monodromy problem [1]; in the second part we
will treat solitons and the trasformation groups theory. To give an idea
of the type of results which we are going to treat, we will show the most
important one, which is related to the 2-dim. Ising model. It is well
known that the Ising model is one of the very few solvable models for
which all the correlation functions are known.

Denoting by < gooprn > the two-point correlation funection on
the lattice, let us take the scaling limit T — T, + 0 (T being the critical
temperature), mantaining the products eM = z; , eN = z, fixed (e =
|T — T,|) then by a proper scaling the correlation function will tend to
a funetion depending on the continuous variables 71, z9:

]' _1.;4 m—— — ; 1.1
T—*liqj:hﬂ € <L OWOMN > ?}(E) g (21 $2_) ( )

Then put:

1 rfz)—
u(z] s, LT T (‘T) T+($}
2 1—(2) + ry(a)
The result is that u(z) satisfies the Sinh-Gordon equation (one of the
most typical examples of soliton equations):

(1.2)

Ay = ginh 2¢ (1.3)

Of course u(z) is only a particular solution of the Sinh-Gordon equation.
It turns out that 7y (z) and u(z) are rotationally symmetric, i.e. functions
only of t = |z| = /2% + z3. From (1.2) we obtain a non linear ordinary
differential equation (NLODE):

&  1d
R ;
(dtz + tdt)u sinh 2u (1.4)

which is equivalent to a Painlevé equation of the 37% kind. This is the
remarkable result of Wu-McCoy-Tracy-Barouch [2,3,4]. This example
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shows all the subjects which we are concerned with: models in statistical
mechanies, soliton equations and the third one, which is the monodromy
problem that we are going to explain.
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2. MONODROMY AND RIEMANN’S PROBLEM

Painlevé is a French mathematician who worked at the beginning
of the century. His most significant work was devoted to classification of
the 2"¢ order NLODE which have the property that the general solution
has no movable branch points. In the case of linear differential equations
(LDE), the singularity of the solutions is automatically determined by
looking at the equation: it derives from the singularity in the coefficients.
On the contrary, in NLDE the singularity may depend on the integration
constants as in the following example:

2uy =1 y=slz—C (2.1)

The example shows a movable branch point, i.e. a branch point which
depends on the integration constants. On the other hand, the general
solution to the 1% order equation

W) =9" — g2y — g3 (2.2)
is given by y = p (2 — C) (elliptic function), whose movable singularities
are only poles.

Painlevé tried to classify also the 2 order NLDE having no movable
branch point and obtained six new canonical types (which we refer to
as PI-PVI) apart from the ones that can be solved in term of elliptic
functions or solutions of LDE. For example, the simplest looks:

' =6y% + 2 (2.3)
which can be compared to (2.2) once differentiated:
" I
y" = By — 592 (2.4)

Painlevé equations have also another origin which at first sight is totally
different from Painlevé’s viewpoint: it is the Riemann’s monodromy
problem. This is related to linear ordinary differential equations (LODE).
Let us consider a system of m LODE;:

1151

a :

—y=Alz)y y=|: (2.5)
Ym

Alz) is an m X m matrix with rational coefficients, z € € ; e.g., in the
simplest case, if A has only simple poles:

A(z) = Z 2 A, = constant matrices (2.6)
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Now let us suppose to have m linearly independent solutions y¥) of
the equation. We take a point zo 2s a reference point and consider the
analytic continuation of these independent solutions along some path ~:
sfarting from z¢ we move around, avoiding the singular points, coming
back to the original point like in fig.2.1:

aq an x-plane

fig. 2.1
Since the coefficients of the differential equations are single valued
functions, the analytical continued solutions should be again solutions
of the equation, but they can be different, so the result is a linear
transformation:

. '}l’ " 3
yW 5 Y yIM (2.7)

=1

or in matrix notation:

Y(z) s Y(2)M, (2.8)

Y(z) = (y“]', TR ,yf-’"'}], M, = (M, i)

M. is a constant matrix: it must depend only on the homotopy class
of the path, i.e. if we change the path slightly, without meeting branch
]?-iﬂints, then the result should be the same. Another property of the mat-
rices M, is that they must satisfy the composition law of the corrispond-
Ing paths: M, M,y = M.,y (ie. if one goes around the path , then
follows another path «/, the analytical continuation should be the same
of the resulting path y+'). This means that the collection of matrices
{M-,r} form a group; this is the "monodromy group” of the equation. In
other words, one has the representation of the homotopy group
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?rl(Pl = {31, veay By OO}, mg)____.‘:‘.,. 9.[.[1%, ¢ ]'
[7] — M
Briefly we say that the monodromy group is a measure of the multivalued
nature of the function ¥ (z). So from a LDE follows a monodromy group.
Riemann’s problem is to ask whether the converse is true: given a matrix

group M = {M.} find the ¥ (z) that has M as its monodromy group. It
is stated more precisely as follows. Having the LDE of the form

dY A
P

Y (2.9)

one can show that its fundamental solution matrix ¥ has the properfies:
()Y is holomorphie invertible for z # a,

(ii)at z = a, it has the form:
¥ (z) = ¥ (2)(z ~ ) (2.10)

Ij'f'v){z) holomorphic invertible at £ = a,

for some L, (v = 1,...,n). The monodromy matrices themselves are
related to the exponents L, as

My p? o (2.11)

where the path ~, starting and ending at zy surrounds a, one time in
the anticlockwise direction. M., are determined uniquely by L, (but
the converse is not true: for instance one can shift all the £, by integers,
the group M = {M.,} remaining unchanged). Riemann’s problem is to
find a ¥ (z) satisfying (2.10) for given Ly,...,L,. One imposes also the
normalization ¥ (zp) = 1. From this definition of Riemann’s problem it
is very easy to see that if the solution exists it must be unique; on the
other hand it is known that at least if all the L, are small the solution
does exist. Riemann showed that the solution necessarily satisfies a LD
of the form (2.9). The argument is very simple: the matrix product
dY /dz - Y= turns out to be single valued and has only simple poles in

Gy AS }ﬁ’(#](z) is holomorphic and invertible at z = a, and the analytic
continuation given by equation (2.8) does not change d¥ /dz - ¥ ! as
the matrices M, and M;l cancel in the product.

Riemann asked also another question: suppose the monodromy
group is fixed (i.e. the exponents I, are fixed) and consider A, as 3
function of L, and a,:
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A, =Aﬂ(ﬂ'1:"':an}L1=”'1Lﬂ)

P G e i (2.12)
Yikey=1¥ (z, Fh .jLn)

What happens by varying ai,- .. ,@n? This is a problem of monodromy
preserving deformation, i.e. the LODE (2.9) is deformed by varying
a1, .- - @n While the monodromy group is unchanged: Schlesinger [5] gave
the following answer to this question. Taking zo = oo, ¥ satisfies two

LDE:

d
—Y = 4 Y
dz % — Ay
- 2 i, (2.13)
¥i== ¥
aay i ('EU
and hence the compatibility condition:
%,
Ll ey (2.14)

da, 8z 3z da,

leads to a non linear system of partial differential equations known as
"Schlesinger equations”:

= A (2.15)

04, {-—'ifi‘i"' (w7 v)
da, EM%V] e (= v)
The equations (2.15) are so the necessary and sufficient conditions for
the monodromy to be preserved, i.e. they are the monodromy preserv-
ing deformation equations. The equations (2.15) are connected fto the
Painlevé equations. In the simplest case the size of the matrices A,
is 2 % 2. If the number of poles is three (including infinite) the hyper-
geometric equation is obtained; if there are four poles (which can be put
a; = 0, ao = 1, a3 = t, ag = o0) after some elimination one can get a
NLODE of the second order with respect to the variable t which is the
Painlevé equation of the VI kind. All the other Painlevé equations (I-V
kind) are degenerate cases of that of the VI kind, in which some poles
degenerate in multiple poles of the matrix A(z).

The Riemann problem has a field theoretical interpretation. Assume
for simplicity that all pole points are on the real line. Take 2 branch cut
as in fig.2.2:
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8p.3 8n.2 8n.q dn

fig. 2.2

Suppose one has the solution to the Riemann problem ¥ (z), and
let. Y, (z) and Y_(z) denote its branches defined in the upper and lower
complex plane respectively. The two functions Y, (z) in the two semi-
planes are connected, via analytical continuation by matrices M.: for
examples ¥4 (z) = Y_(z)M, if the path goes between a¢,—; and a,,
Yi(z) = Y_(2)M,—1 M,, if the path goes between a,_» and a,_; and
so on. On the real axis the two matrices Y, (z) are related as follows:

Yi(z) =Y. (z)M (=) (2.16a)
M(z) = Mi(z)Ms(z)... Mn(z) (2.160)
M, (z) = { fi., Eij{“;ﬁ (2.16¢)

Let us introduce free fermion operators on the real line ¥)(z), " (9 (z):
8= 1 e M

[0 (), "D ()] 4 = 6ij6(z — &) (2.17)

and consider the vacuum expectation value:

< 0] $(2)p D (2) |0 >= 5y >

omi 5 — o + 10 (2.18)

Suppose that a field operator i exists which satisfies the following
defining commutation relations:

¥ () =3 o9(2)(M(2)),; (2.190)
o U (z) = E ¥ O(2)p(M(2)), (2.19)

where the matrix M (z) is that of (2.16 b). The solution of the Riemann
problem can now be given in terms of © and the free fermion operators
as follows:
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< 0] D (2)p O (zo)p |0 >

Ys(2) = —2ri(z — 20) <0l 0>

(2.20q)

< 0] 9 U (zo)ppll(z) [0 >
<0[g|0>

Y_(z) = 2xmi(z — 2p) (2.200)
where Y.(z¢) = 1 From the defining relations (2.19) and the factoriza-
tion (2.18 b), it follows that @ can also be given in a factored form:

o= play; L) ... iplan; L) (2.21)

where each (a,; L,,) corresponds to the Riemann problem with only one
branch point a,,. Explicitly it reads

pla; L) = rexp {ff Z Ri:(z—a; 7' —a; L]y‘;“](z)wx(j}{mr)dm d.z'}:

: T = 1 - —1 iy
Rii{z,2'; L) = —sinwL- ol g~ —————e™ e T
T z—xz' +10 z—z! —to
(2.22)

(:a: denote the normal ordered form of a ).

One can check that (2.20) are solution of the Riemann problem
provided |L,| are sufficiently small (this is done by expanding (2.22) in
a geries). We want to emphasize that the operator in eq. (2.22) -— apart
from normal ordering — is an exponential of a bilinear combination
of free fermion operators. As commutators of quadratic products of
free fermions (or bosons) are again quadratic, they constitute a Lie
algebra: (a; L) looks as a group element corresponding to such a Lie
algebra. The matrices A, are now related to ¥ (z) because it satisfies
the linear equations (2.13): so the solutions of the Schlesinger equations
are constructed as espectation values of group elements via (2.20-2.22).
We can say that this is the "hidden symmetry group” of the Riemann
problem.
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3. ISING CORRELATION

Let us consider a two dimensional Ising model defined by the Hamiltonian:
o — Z("Elaijgi—t—lj —.Egﬂ""jﬂg_f_},l) (3.1}
i.J

where the spin variables ¢;; are dicotomic (o;; = +1) and are given for
every site (4, 5) of a planar square lattice (see fig. 3.1)

Ey J

fig, 3.1
The partition function Z is the sum over all the spin configurations
o of the Boltzmann’s weights:

Z=) ¢fEd (3.2)

The two point correlation function is obtained by averaging the product
of two spin variables on two different sites over all spin configurations:

o

The correlation funciion (3.3) can be evaluated using the row-to-row
transfer matrix V (see Baxter’s paper in this book):

_ tr(oodmn V™)
<OWOMN > = B (N > 0) (3.4)
biy = Vg2V
In egs. (3.4) 67 are spin operators (generalized Pauli matrices). We now

convert the spin operators &; in free fermion operators by means of the
Jordan-Wigner transform:

(3.5)
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Jt is easy to see that p; and g; are free fermion operators, i.e. they
anticommute for ¢ 7 5 and p? = 1; g = —1. It follows that if w and o'
are any two elements of W, which is the linear span of p; and g;, then
their anticommutator is a complex number:

w,v']y =a a€C,YVw,w' W (3.6)

The free fermions w € W generate an associative algebra A(W) which
is a Clifford algebra. The subspace of 4(W) spanned by zll the bilinear
product of free fermions is a Lie algebra, as bilinear products close under
commutation:

I{W) = {Z Cif W5 [ w; EW,eq5 € ¢ } (3.?)

1,5
The corresponding Lie group, called the Clifford group, is defined as
follows:

Gw)={ge AW) | 37, gug™ €W Vuw € W} (3-8)

(It is very easy to check that the Lie algebra of G(W) is exactly I(W)).

In the Ising model both the transfer matrix ¥ and the spin operators
&% belong to the Clifford group G(W): this fact (which constitute the
main result of Onsager’s work in 1944 [6]) makes the model solvable.
Solving egs. (3.5) for the spin operators one obtains:

65 = (p1q1)(p2g2) - - (pj—1 gj—1)P5 (3.9)

The spin operators ¢7 thought of as elements of G(W) operate on W
according to the relations:

&ip:; (65 = {er" (i = J)

Jis J _p,- (1 :} :}'L (3 10)
e RO i +ay (% < j} .
Jiqi(ai] e —q (£ = 7).

The relevance of the Clifford group will become evident in the following.
In general, suppose W is a vector space on € equipped with a
non-degenerate bilinear form:

wew +w-w= (v, VY, w €W (3.11)

The Clifford algebra A(W) over W is defined by imposing the condition
that the product of two elements w,w' € W is reduced to a number
taking the anticommutator. So eq. (3.11) is the defining relation of
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the algebra A(W) (if the bilinear form is identically zero one obtains a
so-called Grassmann algebra). The Clifford group is defined according
to the previous scheme (see e¢q.(3.8)). TFhe linear transformation of W
by G(W) leaves the bilinear form (3.11) invariant:

(Tn(w)r Tﬂ{wr]) = (w, 'wf]

3.12
Ty(w)=gwg™! e W B

So T, belongs to the ortogonal group O(W) of the vector space W, which
is a subgroup of the complete linear transformation group §L(W) of W,
Changing g by a constant factor ¢ = cg/, (¢ £ 0) leaves T, obviously
unchanged 7, = T,;. Conversely it can be shown that for g, ¢’ € G(W),
13 = Ty implies ¢ = ¢g’, (¢ £ 0). So, all the informations are coded in
the linear realization T, of the group elements.

In table 3.1 we list the dimensions of the above spaces.

w____oW) (W) AW)

dim n tnn—1) ilnn-1)+1 gn

table 3.1

The dimension of §(W) is one more than that of O(W) (due to the
invariance property of T, which we mentioned before). The total Clifford
algebra has a dimension which is much bigger than that of G(W): this
makes G(W) very useful in the thermodynamic limit (n — oo} where free
fermions become fermion fields and (W) is controlled by functions of
two variables.

Going back to the Ising model we want to note that in particular
the time evolution of p; and g; by V are linear, so their equation of
motion is also that of free fields (we take the vertical direction as the
time direction and call VZp;¥—7 the time evolution of p; by V).

Let us now take the continuum limit of the Ising model at the
critical temperature, i.e. ¢ = |T — T.| — 0 while fixing ¢ = z! and
¢j = /—1z%. With the above substitutions we obtain a Minkowsky
field theory: the free fermions tend to the free two components Majorana
fermion:

s =) e

These are just the standard Lorentz invariant two dimensional fields
which satisfy the Dirac equation:
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( F+m)(z) =0 (3.14)

Let us consider also the limit of the spin operators from above and from
helow the critical temperature:

e o(z) T—T.+0
g > | ple) =T, —0

(In some cases they are called "disorder variable” and ?order variable”
by Kadanoff et al.).

Now we want to characterize the correlation functions of these
operators by using solutions to some non linear differential equations
like those of Painlevé type: the simplest case is that of the two points
correlation function which is written in terms of the Painlevé function
of the 37 kind as we have already seen in the introduction.

The commutation relations (3.10) in the continuum limit become:

(3.15)

zlola) = +o(a)y (z) (;-:1 < al) '
P(z)o(a) {—t’]’(ﬂ-}‘lﬁi(g} (.21 > ai] (3.18)

In eq. (3.18) z belongs to the space-like cone of a as in fig. 3.2

fig. 3.2

p(a) satisfies commutation relations like (3.16) but with reversed
sign. The u(a)’s can be written as normal ordered exponentials of quad-
ratic forms of fermions:

u(c;)::e‘":“H (p(a) quadratic fermion) (3.17)

while o(a) contains a factor linear in free fermions:

a(a) = ho(z)e”®:  (go(z) free fermion) (3.18)

The explicit forms of p(a) and 1o(z) are given in terms of the Fourier
transform +(u):
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Pu(z) = f gﬂ(\/aﬂu)ﬂ&(u)e-"” (3.19)
e S ol K N
p=|lm 5 g 5 u o0
fe
2y

One has precisely:
Polz) = f du P(u)e™ 7" (3.20)

o ff dudu’ )¢[u) (u)e—ilpte)=

u+u’

Eq. (3.20) can also be viewed as the definitions of the fields #y(z) and
p(z). The variable labels the momentum on the mass shell in the way
shown in fig. 3.3.

fig. 3.3
e - iy o - -~ +
For u > 0 9(u) is an annihilation operator, ¢¥(—u) = ¢ (u), u >
0 a creatlon operator. We want now to computle vacuum expectation

values of products of fields. The simplest case is that of only one field;
we compute the following so called ”wave functions”:

wi(z) =< 0| Yi(x)e(a) |0 >

wl (z) =< 0| o(a)y(z) | 0 > (3.21)

The wave functions (3.21) are living in the Minkowsky space: we consider
also the Euclidean continuation (see fig. 3.4). Due to the annihilation
or creation character of 9 as a function of the frequency the analytical
confinuation can be done as in fig. 3.4:
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I We(X
Euclidean

=
Re X'

Minkowski

fig. 3.4

Consider the analytical continuation around the point a of the wave
functions: we start on the positive z' axis considering !, (z) and going
around in the clockwise direction like in fig. 3.4. On the negative real
z! axis wy and w!, are equal, due to the commutation in (3.16): so
w!,.(z) can be analytically prolonged to wy(z) and then we go back to
—w!, (z) because of the anticommutation relation in (3.16). As a result
going around g along the path in fig. 3.4 we get a minus sign: the wave
functions are not single valued but they change sign going around g; the
commutation relations imply the monodromy property for wy(z). The
particular case of only one field as in (3.21) is very simple: one can give
the explicit form for the wave function (¢ = 0):

L'_e—'Zm]ﬂ -
w(z) _( i *zmlsl) (3.22)

V—Fﬁ

=

Ty + 122 . 0
A e Tog — 1L
2
In (3.22) the monodromy property is due to the square root: it is not
an holomorphic function as it depends on 2,Z and |2| and this is not
completely analogus to the standard Riemann-Schlesinger problem.

In the general case we have to compute wave functions of the form:

Wo(z) =< 0| pu(z)pler)---o(a;) - plas) | 0 > (3.23)

These functions have the following properties:



(i} as 94 satisly the Minkowski-Dirac equation, W must satisfy
the Euclidean version of the Dirac equation:

[ﬁ-l—m}W:D e TN (3.24)
(i)

We~e 2™l 12l 5 oo (3.25)
(iii)

We(z=a,)% 2z ay (3.26)

Eq. (3.26) implies that W changes sign when continued around a,,.
It is possible to show that the properties (i) (iii) almost characterize the
W functions and there are exactly n linearly independent such functions
{n being the number of points a,).

Now we want to characterize these wave functions in the context of
linear differential equations. We remember that W satisfy the Euclidean
Dirac equation (3.24). Let us look for an operator which commute with
the Dirac operator:

F =0 +70 = (g @ (3.27)
5

Besides the trivial ones  and @, one has the rotation operator:

i ] : _
Mp =280 —70 + 37 Y5 = (0 _1) (3.28)

From equation (3.22) (with 2, 7 replaced by » — a, Z— @) one sees easily
in the case of n = 1:

Mrpw = (a8 — ad)w (3.29)

In the general case, suppose that Wi, ..., W, constitute a basis for the
wave functions, and consider the wave function:

MpW; = (bi;0W; — bi;0W; + eij W) (3.30a)
;

or in matrix notation:

MpW = (B8 — B3 + E)W (3.308)
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Here B (resp. B) has ay,...,an (resp. @1,...,Tn) as its eigenvalues,
geperalizing eq.(3.29). Because My commute with the Dirac operator
the functions (3.30) also satisfy the Dirac equation and due to the form
(3.30) they also behave exponentially at infinity and the monodromy
properties must not change. The only change is the power of the growth
(3.26) which is now (z — a,)~% due to the differentiations in (3.30): but
sne can subtract this leading terms by a suitable definition of B and B
getting a function which grows moderately at a,.

Eq. (3.30) is 2 linear condition on the n linearly independent wave
functions W;: the Dirac equation gives only a very weak constraint as -
it means only a functional dependence of W. Oun the contrary the eq.
(8.30) along with the Dirac equation imply finite dimensionality of the
space of solutions: so it gives the characterization of wave functions in
terms of linear differential equations.

Still further we can also derive the wave functions with respect to
Ay’

3 b7 == i
W; = Z(@E-j’aw;- — 3L aW; + O -*wj) (3:31)
7

% i3
da,

(and similarly for the @, derivative).

All we have said of eq. (3.30) is still true for eq. (3.31). If now one
computes the integrability conditions for all equations (3.30) and (3.31)
one gets NLPDE for all the coefficients byj ... IEFE-?} (they are functions of
the a,). For n = 2, the Painlevé equation of the 3" kind is obtained.

In the limit m — 0 everything become very simple: either the z
or Z dependence drop off and all one gets is just the usual functions in
one complex variable. In this case the monodromy is just abelian (there
is only a sign change and one can write the solution in terms of square
roots ete.).

We can now connect these non linear equations to the correlation
functions using the operators expansions of the form:

i9(2)o(a) = 5u(a)(Wolal — Wola]) + (
: : 3.32a)
+ i(—%pﬂ{a}}ﬁ la] — a—z:#(a]wi {n]) + -

W(e)la) = —5o(a)(Wola] + Wylal) +

3.32h)
1L 9 . (
=i W ——g(a)W, [a]
+ m( = o(a)Wyla] + Py o(a)W, [aJ) +
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1 P+ (z)
sl o T B
4™ = 2({1 +a”) P(z) (ﬁ’—(m]) (3.32¢)
The expansions (3.32) are considered in the limit £ — a: ¥(z) satisfyes
the Dirac equations and the expansions are written in terms of solutions
of the Dirac equation:

W;la], W} [a] (F+m)W =0 (3.32)

which behave like:
W;la] ~ ( E: T 2:;:%) (3.34a)
Wila] ~ ( Ezj i Zigii) (3.34)

Now we want to relate the correlation funetions to the solutions of the
differential equations.
More precisely let us define:

< 0| p(z)ulas)--ofa;) - plan) | 0 >
: < 0| ulas)---plag) - plan) [0 >

We can compute the behavior at z = a; (¢ #* 7) by using (3.32 b); we
obtain:

(3.35)

s g .
Vi~ T =2 (Wolas] + Whlad) + - (3.30)
=< 0| plar) - plas) | 0 > (3.37¢)
17 =< 0| plar)--o(a;)---ola;)- - plan) [0 > (3.370)
t7 = .
Pf(z-—) __<0]ofa1) - -o{a.) |0 > (3.37¢)
B T
At z = a; using (3.32 a) we obtain:
1 : e 9 3
Vi ~ o(Wala] — Wola]) + 5(“@"11” Wile]— o lnr - W,y [ﬂa'])

(3.38)
We have already seen that the functions (3.35) satisfy the LDE (3.30),
(3.31) and that the integrability conditions for these equations turn to

be NLPDE for all the coefficients b;; - - - ‘-l-ff-;f! the above expansions put
in the LDE relate these cocllicients to r and 77 which can so be written
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in terms of solutions of NLPDE. In the general case these deformation
equations are matrix non linear equations.

In (3.30 b) let us choose such a basis WWj that B becomes the
diagonal matrix A = diag{a;}, and put B = GAG !, E=F. Then
one has;

{d’F = —[F,8] + [dA,*GAG] + [A, "GdAG] (3.39)
iG — —GO + 8G \
G—=(Gy) F=(Fy) ©6=(8y)
ok . d(a; — a_,-)
B =ity a; — aj

The ratios 7/ /7 are related to G = ¢ *# as

T
(tanhH);; = — (3.40)

T

The logarithmic derivative of r itself can be obtained as:

wzrﬁ( ng ) (3.41)
v/det cosh H

where w is a 1-form given by:

1 2z i
w = —=tr(FO + BGFG™) + tr[d(AR) — G TAGdA — GAG—1dA]
| (3.42)
Of course, the correlation functions correspond to one specific solution

of the deformation equations (3.39). However, if we define w by (3.42),
then we can show that for any solution of the deformation equations:

dw =0 (3.43)

which means that w, at least locally, can be written as:

w=dlnr (3.44)

with some function r (not to be confused with the correlation function
above), we can define the ”r-function” for any solution of the deforma-
tion equations. The situation is quite the same for the Schlesinger equa-
tions; let A, be any solutions of them. If we define:

w= Y trA,A,dln(a, — a,) (3.45)
p=v
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we can show that equation (3.43) still holds.
In general we ean introduce a r function defined by (3.44).
In fact one can show that:

r=<0|pla;; L) - plan; Ly) [0 > (3.46)

in the construction of the first section.

In conclusion we remark that the correlation function for the [sing
model is just the r function of the deformation equations.

We mention, at the end, that McCoy, Perk and Wu [7], using »
more direct approach, construct non linear difference equations for the
correlation functions on the lattice, which in the continuum limit looks
like the above said NLPDE. Their result has two characteristic features:

(i) Most of the equations are also true for totally inhomo-
geneous lattice,
(i) The NL equations are written in a special bilinear form
(called Hirota’s bilinear form).
Their origin will become apparent in sect. 5.
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4. IMPENETRABLE BOSONS AND RELATED TOPICS

Another application of the monodromy idea to a physical problem
is the impenetrable Bose gas. Here also the central point is the com-
putation of the N-point correlation function using some type of NLDE
(which includes the Painlevé equation of the V kind).

We start with the non linear Schrédinger equation in one dimen-
81071

e 1 8% w
'la = —-"z-ﬁtﬁ + ﬂt;ﬁ g‘f’i (41)
Eq. (4.1), as a classical equation, is a very typical example of soliton
equation: on the contrary we will discuss this equation as a quantum
one.
We consider ¢ as quantum field operators satisfying the equal time
commutation relations:

[#(z,t),¢ (2", 8)] = 6(z —2') (4.2)

As is well known, in the quantum mechanical language this is equivalent
to consider an N-body problem. Let us consider a finite box 0 < z < [
(the problem is a non relativistic one). The eq. (4.1) must be reviewed in
the second quantization description, corresponding to a first quantization
problem with an Hamiltonian:

i
=1 1 1<}
which is an N-body Hamiltonian with a delta-function two-body poten-

tial. The exact meaning of this Hamiltonian is that one has an eigenvalue
problem:

1 o 82

=1

supplemented by the boundary conditions:

PN =ty (4.5)
riy=x;+0 zp=z;—I)
(*W’N _ dYn by (3¢N = r?ﬁw) e
8z; Oz, dz; Oz i &=}
i % Ty==xz;40 e %3 z;=z;—0 . #£0

and we must assume that ¥n(z,.. ., z) is symmetric.
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Thé equation (4.1) is so almost a free equation and one can expect
that inside the box the solution has the exponential form:

Dn(zr, - 2N b1, kN e) = 25 Z Ap(k; c)e®rmzittikpanan
Peln
(4.6)
Vz;: 0Lz <--Saznv<L

and in fact Lieb and Liniger [8] showed that eq. (4.6) gives actually a
solution for arbitrary N: Zn is a normalization constant, ky,...,&kn
are costant momenta and the sum is over all the permutations P with
coefficients Ap(k;¢c) given by:

(4.7)

1
Ap(k;e)= ][] [1 ~ —(kp(s) — kriin)
i<y
In order that the boundary conditions be satisfied it is necessary and

sufficient to have coefficients of the form (4.7) up to some proportionality
constant and the k; values are limited by the condition:

(4.8

taking the boundary conditions as periodic too.

It is also known that for repulsive interaction, namely ¢ > 0, the
possible choices of k = (k1,...,kn) give the complete set of eigenvectors
for this problem. Lieb and Liniger constructed the above eigenfunctions
by means of the well known so-called Bethe Ansatz.

We will not study the general case, bul only the very special case
when ¢ = +o00. In this case the boundary conditions (4.5} reduce to only
one equation:

YN =1 (4.9)

ry=z;

We have now a system of bosons which cannot cross each other, i.e. they
are impenetrable. In this case the wave function reduces drastically to
the very simple form:

N = |[¢n Frl
YN FF = wad g (e™s=s) (4.10)

VN /LN
namely it is just an absolute value of a determinant; the condition
(4.9) is obviously satisfyed by the determinantal form, which is actually



87

antisymmetric (i.e. a wave function for free fermions) but turns to be
symmetric talking the absolute value of it. In some sense the problem
reduces to the free fermion problem. Actually this is more apparent in
the language of quantum inverse method (which have been invented by
several groups: Fadeev et al. [9], Thacker [10], Honerkamp et al. [11]).
As already mentioned, the classical non linear Schrodinger equation is
a soliton one and perhaps one of the first examples which have been
solved by means of the inverse scattering technique. This technique
relates the problem to a scattering problem on the real line: the reflection
coefficient, defined in the usual way, becames a functional of the fields
r = 1(k; $,¢" ) Using the Gelfand-Levitan [12] equation one can recover
the ¢ fields in terms of 7. In the quantum case one follows exactly the
same method: the r are now operators which can be formally written
in terms of series involving the fields ¢,¢°. One can show that r satisly
very simple commutation relation which in our case (for any ¢) can be
written as follows:

R L o S
r(k)r(k) = (—i i :{Ez = ;Dr(!ﬁ’)r[k) (4.11)

(In the classical case the time evolutions of the fields is not linear, while
that of the reflection coefficients is just linear: this make the method
very useful). When ¢ = +co the commutation relations (4.11) reduces
to:

[7(k), 7(K')], =0 (4.12)

Le. 7(k) is a free fermion and in fact the formula to recover ¢ and ¢
from r reduces to a sort of Jordan-Wigner transformation, which means
that ¢(z) belongs to the Clifford group [13].

So one could expect that in this example also the monodromy
technique can be used.

The problem is to compute the n-particle reduced density matrix:

pn(zl,--.:ﬂn;ﬂ:‘;,...:z:ﬁc)=
yim < x| (z1,0) -8 (a0, 0)8(z}, 0)- - -¢(2!,, 0) | Pz >
N/L=py: fixed (4.13)

L.e. a 2n point correlation function. %, represent the ground state
Wwave function, po turns to be the density of particles. Of course the
Problem is trivial if py == 0, because in this case 9% is just the vacuum
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and one obtains delta functions. The non trivial case is that of fixed
finite po (which in the relativistic quantum theory corresponds to treat
the filled "Dirac sea”). The full result is known only for ¢ = +o0 (ef.
Creamer-Thacker-Wilkinson, [12], also give an infinite series expression
for finite ¢ and n = 2).

In what follows ¢ = +c0 is assumed throughout.

There are two approaches to this problem.

The first one is due to Vaidya and Tracy [14]. One consider the
XY Hamiltonian:

H=-—

[t

Dol +yozot g +(1—mobol g +2h0%]  (4.14)

m

and then relates this problem in the double scaling limit to the im-
penetrable Bose gas. 4 and h are two parameters: the limit is done for
7 — 0 and A — 1 fixing the ratio o/v/1 — A% = ¢ and then taking g — 0.
Vaidya and Tracy showed that by taking this double limit one gets the
answer for the impenetrable Bose gas. It is also well known that the
XY model is equivalent to a free fermion problem (much as the Izsing
model is) and so, by treating it in this way, it is from the beginning a
free fermion problem.

The second approach is to use the Fredholm integral equation of
the second kind: since the first approach is quite similar to the Ising case
we will concentrate our attention on the second one.

Let us fix the notation. Suppose we have a Fredholm integral
equation of this form:

u(z) — }\/;K(z, ' )u(z')dz' = f(z) (4.15)

(we obviously consider the one-dimensional case).
The Fredholm’s determinant is defined, as usual, as follows:

- o (—k)lf [ II,...,.T[
A;{k)u—[gﬂ B ol Id:cl---dzﬂ{(zh__'m) (4.16)
where we have used Fredholm’s notation:

Byyen, Bt
K(m’i, iy mE) = det (k(z;, E’-’:));',k=1,... i (4.17)

We also write Fredholm’s »** minor determinant:
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SIS B aN
AI(Z{]J"'IZIF}}‘)'—
- (_%)I_Pr T e Tpgd byl
tzu____“—_l!! I... Id:cr-l‘l.--dmr‘{_t}{-(ziof.z'; z,._‘_l.._a:r_l_!)
(4.18)
Now let:
sin(z — 2’
k(z,z") = *?(?—) (4.19)

The Lenard [15] results states that the density matrix with coupling
¢ = -+oo can be written as a Fredholm’s minor determinant of the form
(with the kernel (4.19)):

9
P ' 4= T1;-+-3%n =
B e s e e )= A ' ¢ — 4.20
Pn( 11 R T L B } (_2),,1 I( 2’1:---;3“':& { )
Ty« %n i i F
+ = sgn SEM
' &1 :--50n Arg1y--0y22n
where a1 < ... < @ay is a reordering of T1,...,%n, Th,.-., 2, and [ is

the union of closed intervals (see fig. 4.1):

I = [ay,a2] W [62n—1, 62n] (4.21)

a4 a'z 83 dy 8p-1 an

fig. 4.1
The eq. (4.20) results in the following way.
It is trivial to compute the free fermion density matrix, of course,
and the result looks as follows:

sin(z; — zf)

(z; — zi) ]Mmls,mn

pnrr = ( — )HP=1/2 det (4.22)

Eq. (4.22) is only the first term of the Fredholm minor, by definition:
namely it is the minor with A = 0. The case A = 2/x corresponds, as
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already seen, to impenetrable bosons. (There is a third interesting case,
that of A == 1/x which appears in the field of random matrices).

We will treat now the general case of A and we will derive the
NLDI satisfied by the Fredholm minors and determinants.

To obtain a NLDE first we will consider some linear differential
equation and then study the monodromy structure and finally consider
the deformation problem. So we first construct the solution of the LDE
by means of the resolvent kernel. For the special case of f(z) = K (z, 2"
in eq. (4.15) the resolvent u(z) = E;(z,z") is obtained by means of the
iterated integral equation:

felz, 2 N = Z)\I/;-H/Idzl...dz, k(zo,z1) -+ k(2 2041) (4-23)
l=0n

(20 = zyzi01 = 2")

and the Fredholm minor is related to this resolvent by the formula:

Py g \

.&I( .'1 e 3\) = — )"Ar(N\) det [R,r[mf, ﬂ:;‘._;)x]] (4.24)
SR it

Now we modify this definition slightly in order to get some analytic

function on the complex plane. In eq. (4.23) z and « are arbitrary

complex numbers and the integral runs on the collection of intervals

(4.21).
We change formula {(4.23) by inserting the function:
1 r—a; T — Aop—i
h = 1 .25
I(-’B] 2t n(z—ag T — oy, ) ah)

between the kernels in eq. (4.23) and performing the integrals along the
contour of fig. 4.2

33 34 H"_-; an x

.-'
—— — e ———y -
Cr a4 a,

—— .

fig. 4.2
and putting z and z' outside the contour .
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Next we let 27 — oo and we extract a function only of z:

Ri‘;{:c;)\):Zk‘fu-fT dzy - - -dzy
s, Cr T

ki sin (zg — zl)h;[zl)sm(zl =pald | h}(m_l}sin (Bi—y — zl]h;(a;;]
o — 21 L1 — T2 Ti—1 — I
(4.26)
Further we introduce also:
B i(z;2) = Bur €T & Z }\E/. = f dzy---day
’ =1 G
:I:’eir"(“t'_zl) sin (1 — =2) sin{z;_1 — o) i
; h N v ~h =akd
24(zg — z1) 1(z1) Ti — I3 1(zi-1) T4 — &I (ze)e
(4.27)
Summing (4.27) on the upper indices we obtain:
Ry (%)) = RY f(z;)) + B ;(z;X) (4.28)

In all the above formulas the point z is supposed to lie outside the contour
Cr: the function i7(z) has singularities for z close to a¢ and the function
sin (¢ —=2')/(z—2') is regular for z close to z’. In order to see the behavior

near the a;, we introduce again another function E‘ir r(z; \) which is the
same as R ;(z;\) but with an integration contour Cr including z also:

fig. 4.3
There hold the following relations between the above functions:

T — a1 T — B2n—1

RE!((2;\) = By (z;N) F Ra,1(s; %)% ln (4.29)

r— oz L — dop

(i & ; . : :
Ri:I and Ry ; are holomorphic functions at z — a; and the singularity

structure of RE'; is evident from (4.29). By means of the above function
we define two-by-two matrix functions:
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Ry r(z;)) RI I(m;};))

Y(z =( ’ i 4.30
() B_ r(z; )\) RZ ;(z)) ( )
__{ BLz:N) BRI (zN) |
s ( B ({z:)) RZ (z)) K1)

For z close to a; the function (4.30) has the local decomposition:
Y= B T - 2=t ; (4.32
< il o T — Qs T — Qo :47)

D L0

where 8(z) is holomorphic and invertible (det § = 1) and the power
must be understood as:

gl sline (1 i3 1In a)
0 1

So the singularity structure of Y is completely determined by (4.32) and
we can also compute the monodromy around the points a; (see fig. 4.4)

fig. 4.4
which is given by the matrix equation:

Yo%, vl 4P) (i)

When 2z = 00 Y, has a very simple structure:

co=(ro)(E 8)

The two matrices Y and Y, are connected by the relation:

Y(z) =Ym{:.~:}([1} D (4.35)

By an argument similar to that of Riemann in the usual case these
properties lead to first order ODE with respect to z and PDE with
respect to a;:
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(4.36)

\day T — ay

Eq. (4.36) looks very like the Riemann-Schlesinger equations except now
there is an additional term A.. which accounts for the appearence of
the exponential behavior at infinity.

Changing the variable at £ = oo as x = 1/{ then the first eq. (4.36)
becomes something like:

d K
by (Ao Vv 437
at (tﬂ & ) 4210)

exhibiting a double pole at ¢ = 0: this type of singularity is called
“irregular singularity of rank 1”. In the general theory of irregular
singularity, one supposes to have singularities at z = oo for an equation
of the form:

% —ih e L Y (4.38)
where the series between parenthesis is convergent at z = oco. When r <
0, 1t is Just a regular point. In the case r = 0 it is a regular singularity.
When r > 0 it is called an irregular singularity of (Poincaré) rank k. In
our case r = 1. Now suppose thal the eigenvalues of the leading matrix
A, are distinct.

[n this case one can find the formal series solution in the form:

Y(z) =G+ Yz 4+ .. )22 exp(Tyz +--- + T,z") (4.39)

where D, Ty, ..., T, are diagonal matrices and G, Y; are some matrices.

The serie in (4.39) is not always convergent if r > 1, but it does
represent the solution in the following sense. At the point 2 = oo, il there
is a singularity of rank & there exist 2r number of sectors surrounding
this point (in fig. 4.5 r = 2)
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fig. 4.5

In each of the sectors §; there exist one and only one solution to
the LDE such that it has the serie (4.39) as asymptotic expansion. Now
we have 2r different solutions Y;(z) in each subsector and they may not
be identical even if they have the same asymptotic expansion: this is
called *Stokes phenomena”. But since Y;(z) are solution of the original
equation (4.38) they should be related as follows:

Y;+1(s) = Y,(2)S; (4.40)

where 8; are constant matrices called ”Stokes multipliers”. In this case,
if the rank is r, then one has Yo, = ¥,8,,85,_1-+-8, by surrounding
the point z = oo, so the Stokes multipliers constitute a refined notion
of monodromy in the case of r > 0. Now the generalized Riemann
problem is stated in the following way. We give arbitrary points a,
in the complex plane (possibly including infinity) and at each of these
branch points the rank 7., is fixed arbitrarly too. We have at each point
the notion of Stokes multipliers (if the singularity is regular one has the
notion of exponent of the monodromy) and also we have connections
between the a, points (the theory is purely local), as for example eq.
(4.35), which connect £ = oo to finite points. Given these data can
we find a differential equation corresponding to the monodromy data
themselves? This is the generalized Riemann problem. The problem ean
be solved, at least in some region of the parameters space, and one can
also consider the deformation equation of this problem.

Now the deformation parameters are not only the positions S P, 2
but also the matrices in eq. (4.39) T{["]', ..L,T(,‘:j (1 £ v< n, v=100)
Now let us return to the case (4.36) of the impenetrable Bose gas: the
resulting deformation equations have an hamiltonian form. Let us con-
sider 2n r-functions (r;,7—; 5 =1, ...,n) and introduce the Poisson
brackets:
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{T+j-, T+k} = {t._f} T_k} —1) {T'i'.fl T_k} — 53';: (4.41]

Then let us define the hamiltonian one-form:

1
W = "":1" Z
i<k

The deformation equation is then given by:

T4 T+k|daj — dag
T—j T—k

+4 Y rymgda; (4.42)

1<k

R

dryr—{riwk (4.43)
When n = 2 the equation (4.43) reads in the very simple form:

2 2
(zg) — ——4(3% -1 G’) (zj—z - (j—i) — G’) (4.44)

o(z) = 210 p(2) (4.45)

pifz —z';00) = plz — ') (4.48)

where the density matrix is now traslationally invariant and depends on
one parameter only.

The eq. (4.44) is an equivalent form of the Painlevé equation of the
V —th kind.

Finally we remark that w is related to the Fredholm determinant
in the simple way:

w = dln Ar(X) (4.47)
B vl 4
":“f( 2 ...z',,?)‘) = ( — )" Ar(\) det [Rr(z;, 27); \] (4.48)
r Ll S T.
1 +7 +k :
Tiay—ar) [Ty T—k (5 # &)
iZf{?ék} {ar—ae)? | Ty T—k‘ +irgTer (1 =1k)

(4.49)

So the Fredholm determinant is by definition a r function for

the corresponding monodromy problem: it is also the expectation value

of Cliffiord operators. These are actually the general features of the

deformation problem: in the most general case the r function can be

shown to be the Fredholm determinant of an integral equation which

arises in solving the Riemann problem. Also the Clifford operators

view can be generalized to the most general case of arbitrary number

of irregular singularities. In seet. 5 we shall see that the notion of r
function can be further extended to include soliton theory as well.
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5. SOLITON EQUATIONS AND INFINITE
DIMENSIONAL LIE ALGEBRA

5.1 Introduction

This section is based on a work of E. Date, M. Jimbo, M. Kashiwara
and T. Miwa done in 1981 [16, 17, 18, 19], which is inspired by the work
of M. Sato and Y. Sato [20, 21].

In the previous sections Painlevé and Schlesinger equations have
been studied, which are ordinary (Painlevé) and partial (Schlesinger) non
linear differential equations: both have finite dimensional solutions, i.e.
they depend on a finite number of integration constants.

In this section we will study more general equations, usually called
”soliton equations”, which on the contrary, need boundary conditions or
initial conditions in order to determine the solutions: such conditions are
obviously infinite dimensional. Qur aim is to connect soliton equations to
the representation theory of infinite dimensional Lie algebras by means
of the r function, In this way we will establish an equivalence between
the group orbit of the so called "highest weight vector” and, on the other
hand, the solution space of the soliton equations, the first being the Lie
algebraic view and the second the differential, equation one: the infinite
dimensionality of the Lie algebra bears an infinite dimensional group
orbit and so an infinite dimensional solution space. The most famous
soliton equation is the KdV equation: this will be related to A_gl}, the
simplest Kac Moody Lie algebra. There is another, less famous but
more fundamental soliton equation which is called the KP (Kadomtsev-
Petviashvili} equation: this will be related to GL(o0).

The situation can be compared to that of the previous sections
where Painlevé business was related to Onsager business. As mentioned
before, there is a relation between Painlevé equation and soliton equa-
tion: on the other hand the key point of the Onsager solution was the
introduction of free fermions and Clifford group, that is nothing but the
group corresponding to §L(oo). In the Onsager case one deals with very
particular elements of the Clifford group, i.e. spin operators or transfer
matrices: now we treat more general elements of the Clifford group.

In sect. 5.2 we will first explain two methods of solving soliton
equations: one is the linearization method and the other the bilineariza-
tion method. The first way needs a ”wave function”: the key point
is to infroduce a hierarchy of infinitely many equations (corresponding
to infinitely many Lax pairs). The second way uses another dependent
variable which is nothing but our r function: one of the advantages of
this method is that it is very easy to derive explicit formulas for WV
soliton solutions. Then we will introduce vertex operators, which trans-
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form an N soliton to an N + 1 soliton solution in a very explicit way:
this is the most elementary way to explain the relation between soliton
equations and infinite dimensional Lic algebras. In other words, GL(o0)

and A(lij appear as the Lie algebras of infinitesimal transformations of
soliton solutions.

Sect. 5.3 will be devoted to the sistematic theory, namely we will
introduce a "bilinear identity” which is understood most easily in the
case of quasi periodic solutions. We will show that it is equivalent o
both the linearization and the bilinearization methods, and so unifies
them into one single identity: this will be done using the relation between
 functions and wave functions. Then in sect. 5.4 we will construct solu-
tions of the bilinear identity in terms of free fermions and §L(co) using
the Fock representation (this is called, in physicist language, " boson-
fermion” correspondence). So r or wave functions will be expressed as
expectation values (a very special case was presented in sect. 3 in the
Ising case: here we will treat more general cases). We will also estab-
lish that the bilinear identity is nothing but the characterization of the
above said group orbit. At the end of this sextion we will give some
examples including some affine Lie algebras (which are particular Kac
Moody algebras) and the corresponding soliton equations.
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5.2 Kadomisev-Petviashvili (K-P) hierarchy and vertez-operators

The most famous example of soliton equation is the KdV equation
which is 2 NLPDE in the indipendent variables ¢ and z:

—su———— =0 (5.2.1)

The so called Lax pair is the following system of two linear differential

equations:
2
(-2 - u)w —0
(5.2.2)

(v is related to u).

The variable u is transformed to a new dependent variable w which
satisfies linear equations.

In order to connect seliton theory to group representation theory
it is better to deal with the KP equation:

—_—— — — — — —

410y2 Oz\ ot 2 0z 40z°

The KP equation contains KdV: actually the KdV equation is obtained
by dropping out the y dependence. The KP Lax pair is now given by:

d ik
E—a—m—z—u w=1{

a a° 3 4

2 £ 3
3 0%u d((?u, ¢ du 13 u):__o (5.2.3)

(5.2.4)

The KP equation is the most fundamental soliton equation and almost

all soliton equations can be derived from the KP equation in some way.
The relation between KP and KdV equations is well understood by

considering the corresponding Lie groups as we will explain later.

The inverse scattering method is nothing but dealing with the
scattering theory of eqs. (5.2.2) and (5.2.4): Novikov and Krichever [22]
dealt with quasi periodic solutions and their method was substantially
another linearization method. For our theory the meaning of lineariza-
tion is somewhat different; namely, using linearization we can introduce,
in a natural manner, a hierarchy.

The KP equation contains three independent variables z; = z, s =y,
zz = t. If one introduces infinitely many variables z = (z1, 22, 73,...)
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one can obtain a hierarchy of infinitely many equations in the following
general way.

Let us consider the w function depending on z and on a single
parameter k:

w(z, k) = (1 + wf) £ wi(f] e -)eﬂ%"] (5.2.5)
where:
&z, k)= D k’zn (5.2.6)
n=1

k is considered mear the point at infinity. In eq. (5.2.6) the index n of z,,
is consistent with the power of k in the formal series. Now we require
w(z, k) to satisfy the following LDE’s:

& .
ainw[z, k)= Bn(zj 6—21-)10{3:, k) (5.2.7)
which generalize egs. (5.2.2) and (5.2.4). In eq (5.2.7) By(z, 3%)

contains all the parameters & but the derivatives are only with respect
to z;:

Bo(z,81) = 87 + thnn—207 " + -+ + tng (5.2.8)
3
5'1 — 5;:

The expression (5.2.8) for By(z,d:) does not contain 87! correspond-
ingly to the normalization in (5.2.5). We require now compatibility con-
ditions for the system (5.2.7) of LDE. We differentiate the ntt equation
in (5.2.7) with respect to z,, and then the m'* with respect to , and
then subtract one from the other. The resulting equation contains only
71 differentiations:

{(8nBm) — (OmBn) — [Bn, Bm|}w =0 (5.2.9)

So eq. (5.2.9) is an ODE and the solution space is finite dimensional.
But w contain k as arbitrary parameter which implies that the solution
should be infinite dimensional: so the full operator in front of w must be
rero. These equations give infinitely many constraints on the coefficients
U,p: after infinitely many integrations we relate all the u,p's to a

single parameter u, thus obtaining infinitely many NLPDE for such u
with respect to infinitely many independent variables. The extension
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of the hierarchy does not lose nor get anything, i.e. we have introduced
infinitely many variables but we have imposed infinitely many constraints
and the solution space does not change.

Let us now consider the bilinearization scheme. Instead of u we
introduce a new variable 7. We nced some notation. We write a poly-
nomial D = (Dy,Dg,...) in front of two functions of z = (zy,25,...)
separated by a dot, to mean the following:

P(D)f(z) - g(z) = P(8,)(f(z + v)g(z y))l (5.2.10)

y==i}

For example, denoting by z a single variable, one obtains the Leibniz
rule with the minus sign for the Hirota notation:

zf{z}s' z) = (0:1(2))g(2) + f(2):9(2)

D 1) o(=) = (0.1 f o) - foagtsy D
Hirota introduces the new variable 7 by the transform:
52
U= 2E1HT [5212)

One can recognize a similarity between the last formula and the formula
for the r-function in sect. 3.
KP equation can now be rewritten in the Hirota bilinear form:

(D} +3D2 —4D1D3)r -7 =0 (5.2.13)

The introduction of 7 by (5.2.12) is rather mysterious: it is remarkable
that this transformation can be always done for solvable soliton-type
equations (for example the Sine-Gordon equation, which is far from
linear). The advantage of trasforming non linear equations into Hirota’s
form is the following. One can seek for a solution in the form:

r=1+fi+fa+:- (5.2.14)

7 = 1 is a solution to any Hirota type equation. With the Ansatz (5.2.14)
one obtains linear equations by successively adding f,,. For example, for
a Hirota equation of the form:

PD)r-r=0 (5.2.15)

one obtains for f; the linear equation:

P(8,)fi =0 (5.2.16)



101

The constant coefficient linear equation (5.2.16) can be solved in terms
of & sum of exponentials. If fy is a single exponential one can stop here,
ie. = 1+ fy is a solution of Hirota equation without any further term.
But if one uses two exponential terms, then they alone cannot solve the
Hirota equation and one needs another term with the product of the
exponentials with some coefficient. For any Hirota equation one can then
choose appropriately such coefficients to obtain a solution. The situation
is very different if one starts with three exponentials for f;. Only for
the solvable equations a solution is found in the form 1+ f; + fo + f3.
Then one can go further, i.e. an N soliton solution can be obtained in
this iterative way.

In the above said manner we can construct the general N soliton
solution to KP, which reads as follows:

N
v =1+ Z Z H a; H :t:;'jf X

n=1 "‘_:JIE“EJHEN J-:J.l:“ﬂjﬁ 3.1.?.':-{1:"'13“

i<j' (5.2.17)
xexpq D, (Eps)—Ele qj])}
o= 41 4oy dn
T (ps—ai)lg — pit)

Let us turn now to the representation theory of infinite dimensional Lie
algebras.

Lepowsky and Wilson have constructed the basic representation of
AQ”. Afli} is a Kac-Moody Lie algebra, that is a Lie algebra which is
generated by a set of generators: ¢;, f;, A; (fel: I finite set)with
the following defining relations:

(ki £5] = —aiifi (5.2.18)
[hi, h_,'] = {)

Al—agr oo
(ade;) e; =10 i

({ldf,')l_hq""f fj' = 0
(@¢i)i jer is called the (generalized) Cartan matrix.
The simplest case of such an algebra is A;=~=sl(2, € ) which is finite

dimensional: in this case I = {1} and the Cartan matrix is 1 X 1 and is
equal to 2: one has:
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a=Q D A=0 Y m=( %)  com

The definition of a Kac-Moody Lie algebra is just a generalization of
si(2, € ).
A'E” has the following Cartan matrix:

(ai;) = ( _22 “22) (5.2.21)

The Cartan matrix (5.2.21) is singular so that Aﬁ” Lie algebra is infinite
dimensional.

A more explicit way to say what is Agl} is the following:

Ai(1)=usl(2,C [k, k7)) X C o (5.2.22)

i.e. it is the algebra of 2 X 2 matrices with elements which are Laurent,
polynomials in one variable £ (and this makes it 2n infinite dimensional
Lie algebra) plus some center €' (one effectively needs one more dimen-
sion): there is not a direet sum in (5.2.22), but a suitable central exten-
sion.

The basic representation is generated by a ”vacuum” veetor |0 >
such that:

e |0>=10
hi|0> =6; [0 >

i.e. | 0 > is annihilated by the e; operators and h; act as constant
multiples (it looks very similar to a Fock representation). The word
"basic” corresponds to the particular choice of the eigenvalues of h; of eq.
(5.2.28). Lepowsky and Wilson [23] constructed a more explicit realiza-
tion of this representation. They showed that Ag” contains a Heisenberg

subalgebra, namely an algebra satisfying the usual commutation rela-
tions:

(5.2.23)

A'5K=% en (5.2.24)
J odd
\Hj, Hy] = 76i4+x,0 C (5.2.25)

It is natural to count H; by their degree 5 and only odd numbers appear
in Lepowsky-Wilson’s construction. One can identify the operators H;
by differentiations or by moltiplications:
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o :
>0
H: — {9 J 5.2.28

For the Heisenberg algebra the representation space V is given by the
polynomials in the variables =1, 23, Z5,.. .

V =C [z1,23,%5,...) (5.2.27)

It is true that the basic representation is already irredueible with respect
to the Heisenberg subalgebra X, so that we can construect the complete
representation of .A(lli on this space (this is not true if one considers
higher representations). We now want to find the general expression for
the generators e;, fi, hi acting on the particular space (5.2.27). Lepowsky
and Wilson define a *vertex operator”:

S e e W

X(p) = etlpostpzet )2 e T 5T 3 (5.2.28)

The operator in (5.2.28) acts on the function space (5.2.27) like a shift
operator followed by a multiplication by an exponential (one should
remember the Taylor formula e2%=f(z) = f(2 + a). The basic repre-
sentation of A&” is now constructed in terms of the representation space
(5.2.27) and the vertex operator (5.2.28). Notice the absence of the even
parameters in the representation space (5.2.27): this is in correspondence
to the fact that the KdV equation contains only parameters with odd
indices (we should drop not only the zp dependence from KP, but also
that on all even parameters). Moreover, if one considers the Heisenberg
algebra, one can see that the action of ;?-% corresponds to the function
shift f(z + a), while the action of 21 corresponds to multiplication by an
exponential e*®f(z) (more precisely they are the infinitesimal generators
of these transformations). Note that if:

P(D)f(z)-g(z) =0
then:

P(D)(f(z + ) g(z + @) =0

and:

P(D)(e** f(z) - e*4()) = 0

In this sense Hirota’s equations admits ¥ as a transformation Lie algebra.
The remarkable fact is that the vertex operators of Lepowsky and Wilson
act on KdV 7 functions as infinitesimal Backlund transformations, i.e.
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if one applies exponentials of vertex operators to a solution of KdV
one obtains another solution to KdV. For the KP equation the vertex
operator has the form:

X(p,q) = flzp)—E(2,9) ,~£(B,p™ 1) +£(d,a7 1) (5.2.29)
where:
~ dy 03
0= (31, —*ﬂ"-, ?, <. .) {5230}

The vertex operator (5.2.29) depends on two parameters p,q: requir-
ing p* = ¢* the Lepowsky-Wilson vertex operator (5.2.28) for KdV
is recovered. Again the KP vertex operator (5.2.29) acts on the solu-
tions of KP equation as an infinitesimal Bicklund transformation. More
precisely if one applies the exponential of the vertex operator to an N-
soliton solution one obtains an N + 1 soliton solution, namely:

eﬂx(P‘qJTN = TN41 {5.2.31]

So the general solution can be obtained in the simple way:

N
TN = exp {Z an[pJ-,q_f)} -1 (5.2.32)

Jras1

where a;,p; and g; are the same as in (5.2.17), i.e, an N-soliton solution
can be obtained from the trivial one by applying vertex operators. This
means that, if one can establish that the vertex operators and 1 actually
span a Lie algebra (and this is true), the group orbit of the highest weight
vector (which is 1, in this language) is equivalent to the space of solutions
of soliton equations. In the next section we will explain how this special
form of vertex operator enters the theory by treating the whole theory
systematically.
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5.8 Bilinear identiites

First of all, we will unify the linearization and the bilineariza-
tion methods by means of the ”bilinear identities”. To infroduce this
identities we will show how they work when one considers quasi periodic
solutions: this is the argument due to Cherednik [24]. Let us consider an
algebraic curve I' with genus g and select one point which we denote by co
and let k! be alocal parameter (namely k = oo corresponds to the above

selected point). Moreover let us choose 2g points Py, ..., I, Py P;

so that Py + ...+ P, + P+ P; — 200 is linearly equivalent to the
canonical divisor, namely a one-form # exist such that:

(=P, + - +P,+ P+ +P,—200 (5.3.1)

A M ; s *
i.e. there is a one-form # on I’ which has simple zeros al Py, ..., Pg and

a double pole at infinity (in general, for a given set F,..., F; one can
find uniquely Pi,...,P,;). Then we consider the following meromorphic
functions w(P) and w’ (P) on I' — {oo} normalized at infinity as follows:

wiz, P) = (1 o WIT(E) L .)eﬁfl,fﬂl

' (z,P) = (1 + ﬁfc(jl + - -)e_ﬂl’k!
Eqgs. (5.3.2) have the same form required in the linearization of KP equa-
tion. The poles of w(z, P) are in Py, ..., P, and are simple poles while
w (z, P) is asked to have poles at PI, Lt ,P;. By these requirements
w(z, P) and w {z, P) exist, and are uniquely determined. The following
identity between w(z, P) and w’ (z, P) holds:

(5.3.2)

[w{z, P)w' (', P} =0 (5.3.3)

(5.3.3) can be derived by means of the residue theorem remembering that
the zeros of @ cancel the poles of w(z, P) and w' (z,P). Eq. (5.3.3) is the
bilinear identity for the case of the so ealled ” quasi periodic solution”. We
will show now that such 2 bilinear identity leads to the linear equations
of KP type. One can find a differential operator Bn(z,d1) of order n in
Z; such that:

[8n — Bn(z,81)|w(z, P) = o(%)eﬂ%“ (5.3.4)

Such an operator exists due to the form (5.3.2) of w(z, ), once we note
that the action of 3% and d,, have the same effect ou ef(2:) in that both
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give a k™ factor: this makes it possible to subtract suitably the effect
of the derivatives, leading to eq. (5.3.4) for a Bp(z,8:). If one applies
the operator in square brackets in eq. (5.3.4) to w(z, P) in the bilinear
identity (5.3.3) and then differentiates w"(z', P) with respect to z and
puts z = z', one obtains:

/[a,, — By(z,81)|w(z, P) - 3w’ (z, P)p =0 7=0,1,2,... (5.3.5)

In eq. (5 .3.5) the exponential factors have disappeared in the product of
w and w’: the first factor is so 0(?5) by eq. (5.3.4) while, for 7 = 0, the
rest has a double pole at infinity. Thus the integrand has a simple pole,
but the residue must be zero and so the r.h.s. of eq. (5.3.4) should be
in fact O(fg)ﬁs(z’k). Applying eq. (5.3.5) iteratively for 7 = 1,2 etc. we
see that all the residues for 1/£’*! must be zero, obtaining:

[8n — Bn(z, 81 )|w(z, P) =0 (5.3.8)

In this way we have shown that the bilinear identity leads to the linear
KP hierarchy equations.

We will show now the equivalence between bilinear equation and
bilinear identity. We need the following notation:

=8 — 3 " knpa(x) (5.3.7)

rn=1()

where p,(z) are polynomials:

po(z) =1
p1(z) = 1 :
S an

2:3
p;x(.":) = I3 + ToIq + —;'

By means of pn,(z) polynomials we can actually write all the Hirota
differential equations for the KP hierarchy:

E P;‘( == ZH}PJ'—I-I(-EJz] EXP{Z yEDI;}T[‘T) v T(:IT) =0 (539)

J=0 =1

The hierarchy of KP equations can be obtained from eq. (5.3.9) equating
to zero every coefficient of monomials of the arbitrary variable y. Now
let us introduce the new vertex operators:
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X{k] = gE(IrkJe""'E[I—a,k_!‘] y 3 19
X" (k) = 8z k) 8 (8 (5.3.10)

The two methods, i.e. linearization and bilinearization are connected by
the following relations between w and r functions:

w(z, k) = r ()X (k)r(z)

. . p (5.3.11)
w (z, k) =7 (2)X (k)r(z)
which can be written in a more explicit form as follows:
1 1 1 :
——— o | P e :E,I:
w(z, k) =r (:r.)r(ml — %2 T g T8 %3,...)9 i
(5.3.12)

* 1 1 1
@ (I, k] — :r_ll'_x]:r(ml + ‘;c-, To + Eﬁl’ Ta - 3_k§" . _)E—E[I:H

The bilinear identity in terms of 7 becomes:

I 1 ::—:c'
fk;x, f(zl iR ) f(z; ke ) === *dk = 0 (5.3.13)

(Now we are considering a more general scheme where the parameter
k is considered only locally near infinity: this contains as a special case
that of a curve of genus g for quasi periodic solutions). Fq, (5.3.13) is
nothing but the Hirota equation. If one chooses £ = ', the exponential
in (5.3.13) vanishes: taking the residue of 1/k, which must be equal to
zero, one obtains the equation (although this is a trivial equation):

Dir(z)-7(z) =0 (5.3.14)

In order to ealculate the 1/k term one must differentiate the first r func-
tion in (5.3.13) with minus sign and the second with plus sign so gett-
ing Hirota’s derivation rule. If one first differentiates with respect to '
several times and then fixes £ = z’, then one obtains more complicated
and non-trivial equations of the form of Hirota. Thus both linear and
bilinear methods are equivalent to the bilinear identity (5.3.13), which
then contains the whole theory. In this sense this identity can be un-
derstood as characterization of the KP hierarchy. Now we will show
another bilinear identity which characterizes the group orbit in the rep-
resentation of infinite dimensional Lie algebras. Let us first introduce
free fermions which are indexed by integers, more precisely charged fer-
mions satisfying the usual anticommutation relations:
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[ ¥al, = [$r,90] . =0
[iﬁm: 1!’5:;]_'_ == 5"1:“ [m,,n. o~ Z)

and consider the Lie algebra of the following quadratic elements:

(5.3.15)

[¢M'¢;:¢M’¢;'] s 6ﬂm’¢m¢;f e fsmnf%&mfﬁ{); (5-3.15]

The rule (5.3.16) is nothing but the rule of the following kind of infinite

dimensional matrices:
n

Ut o SOV T on IS IR R (5.3.17)

(matrices in (5.3.17) have only one non zero entry equal to 1).

In this sense we call the algebra of relations (5.3.16) GL(00). One
should be very careful. We have said that in the Lepowsky-Wilson
work on vertex representation of Ag” the crucial point was that it
contains a Heisenberg subalgebra. If we consider only finite sums of
the above quadratic form, we cannot have a Heisenberg algebra because
they are locally finite dimensional and we cannot expect a Heisenberg
commutation relation. So we need infinite sums: but this can be very
dangerous and one can very easily get contradictions. The simplest way
to avoid such contradictions is to fix a representation. To this aim, we
consider the Fock representation, namely we select a special vector [ >
which we call "vacuum”, or ”highest weight vector” characterized (up
to a constant multiple) by the following anmnihilation relations:

Pa|0>=0 n<o
P.]0>=0 n>0

We introduce also a dual vacuum satisfying the complementary relations:

(5.3.18)

<0|¢,=0 n>0
<0|l¢. =0 =n<0

We normalize then as follows:

(5.3.19)

<0]0>=1 (5.3.20)

We introduce also the normal product:

tWmWn t = Yt — < 0| Pratp’, |0 > (5.3.21)



109

Now we consider only infinite sums of the form:
% G Z Cmn :"15;:7;‘%{511 : [5322]
e,

where AN s.t. ¢ =0 if |m—mn| > N. This kind of operators act
on the Fock space ¥ without producing any divergence.
We introduce a "charge operator”:

Hy = Z . #}n‘d’; : {5323)
nef

The Fock space can be divided into "charge sector” subspaces 7:

Fo={veF |,Hyw=lv} (5.3.24)

[ is nothing but the number of 9 operators minus that of ¥ acting on
| 0 > to obtain v.
We now introduce the " generalized vacua™:

Pr_1--+1Po |0 > e ]
[i>=110> _ [ =0 (5.3.25)
P01 |0> <0

with the normalization conditions:

There is an automorphism which shifts charges:

"(#’m-) = Ymt1

) = Pt (5.3.27)
| I1>)=[I+1>

The following commutative dyagram holds:

L

AV4

a t(a) (5.3.28)

W=
i

W
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where ¢ is any element of the fermion algebra.

In this sense nothing is different with different values of [.

The bilinear identity in this scheme ean be writlen as follows. For
an element v in 7:

Y Pav@¢ro=0 (5.3.20)
ned

if and only if
ve |, GL(0) |1 > (5.3.30)

The bilinear identity (5.3.29) characterizes the group orbit of generalized
vacua. We briefly sketch the proof of (5.3.29). First let us consider only
v =| 0 >-vector (we have already said that this is general enough due
to the existence of + automorphism). With this choice (5.3.29) is trivially
true because either 4, or 9., annihilate | 0 > due to egs. (5.3.18):

Y | 0>R9.]0>=0 (5.3.31)
rr.EZ

Now let us apply a Lie algebra element X € GL(co) to the identity
(6.3.31) using the commutation relations:

(X, 4,] = Zwmam (5.3.32)

[x,%.] Z S - (5.3.33)

We obtain the identity:

D] 10>@9,10>+ > $.|0>Q [X, 9] |0>=0
ned n.EZ
(5.3.34)

[iq. (5.3.34) says that the original identity (5.3.31) does not change by
applying exponential of X: so for any vector which is on the group orbit
the bilinear eq. (5.3.29) is satisfied, i.e. we have shown that (5.3.29) holds
if v belongs to the group orbit. To prove that the bilinear identity holds
only if v belongs to the group orbit, fmppo‘-}e vo= ) . (Hivem =
MYy,) With v, £ 0, v, 520, m £ m. we will show that this leads to
contradictions. In general we can assume that m = 0 (vp € F). The
bilinear identity does not change by the group action: so we can shilt vm
by the group to an element of the form v, ==| 0 > 44" 9" |0 > +- -
(the quadratic part can be dropped by the group action).
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From (5.3.31) one has to satisfy the two relations:

Zﬁbﬂum @ ¢;t'm* = { f5335)

T

Y Pt ® Prtm =0 (5.3.36)

In eq. (5.3.35) Yntm 5 0, n > 0 50 9, vy = 0 2nd in eq. (5.3.36)
1!;;:;,,,, # 0, n < 0 850 ¥V = 0: the relations obtained for v, show
that it must be a constant multiple of the vacuum. This argument shows,
in fact, that v belongs not only to some 7 but also to GL(c0) | 0 >.
So in general if one asks a bilinear identity of the form (5.3.29) v should
belong to one of the group orbits of §L(co).

The final task is now to establish the relation between the bilinear
identities (5.3.29) and (5.3.13). Let us introduce the generating functions
of free fermions:

Pk = ) W (5.3.37)
neds

vk =) kT, (5.3.38)
nEZ

By means of (5.3.37) and (5.3.38) the bilinear identity (5.3.29) can be
written in the integral form:

dk : |
jn::m grEt P T 2Rkl | 9 =0 (5.3.39)

Now because of the tensor product, we can apply any vector < ¢ | and
< b | to eq. (5.3.39) as follows:

ak .
k b | o >=0 5.3,
| <l de 0> ® <] (k)]0 (5.3.40
(We obviously choose < a |€ ¥ and < b |€ F_;). The identity (5.3.40)
1S very similar to (5.3.13): the z and 2’ dependence should be contained
in < ¢ |and < 6| in a suitable manner. We will show how to do this
In the following section.
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5.4 Fock and vertez representations

In this section we will show how to connecl the two bilinear identitics:
f dk w(z,fc)w‘(m’,k] =1 (5.4.1)
k=oc

dk . :
gtk 10> Q ¢ (k)g |0 >=0 (5.4.2)

where in the first identily the w-function is related to the r-function by
the relation:

¥ I 1 i ¥
w(z, k) =1 ' (z)7(2y — PP T g .)EE{ k) (5.4.3)
Therefore our conclusion will be that the KP hierarchy, characterized
by the bilinear identity (5.4.1), will be identified with the group orbit in
the Fock representation whose equation is given by (5.4.2).
In the Fock space the echarge [ sector is given by:

o= Btms—rC Ypn, P, Y Vg [ 0> (5.4.4)
My Sy SO SN, < oing

(In eq. (5.4.4) 8 is the number of 7 fermions and r is that of 4" and
their difference is /: the ordering of indices comes from the action of the
fermions on the vacuum and from the antisymmetry of the product).
The first problem is to identify the linear vector space (5.4.4) with
the polynomial algebra. In order to do that, the crucial point is that
GL(co) —~ the Lie algebra of bilinear free fermion products — contains
the Heisenberg subalgebra ¥. The H; spanning ¥ has the fermion
realization:

'”.‘." i Z %bnq:b:;.{,._f (j' 75 0) f5.4.5)
ned

They satisfy the same commutation relations of the differential operators:

H; = {ai{ S (5.4.5)
—J7Z—; 7<0

Now we want to find a linear map between 7 and the polynomial
algebra € [z, 29, 23,...] which is the natural representation space of
the Heisenberg algebra. It is given by taking the inner product with an
clement < u; |€ 7, satislying:
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9; <v |=<w |H; (1>0

grag<el=<u[H; <0

The solution of eq. (5.4.7) is unique and is given by the vector (which
contains, of course, the z dependence):

(5.4.7)

L | =™

H(z) = ) =;H;

=1

where:

< 0|9y [ >0
<ll=4 <0 =0 (5.4.9)
<0 |P_y... 9 <=8

So to any vector in the Fock space 7 we associate a function of the
variables z:

q kit <t|e¥g |l > (5.4.10)

This correspondence between the charge ! sector of Fock space
# and the polynomial algebra C [2:1,22,.,.] is nothing but the usual
"fermion-boson correspondence”. This correspondence is actually an
isomorphism. The proof is very simple. First of all it is "onto” because
the Heisenberg algebra acts already irreducibly, If one counts the degree
one finds that it is also injective. Still it is desiderable to obtain a
more explicit correspondence between these two spaces. In order to do
that we introduce and compute the Schur polynomial, i.e. the character
polynomial.

To this end we recall some basic results from representation theory
of finite dimensional Lie algebras. Let us consider the highest weight
representation of sl(n, € ) (NV is taken to be a sufficiently large number).
sl{IV, € ) can be decomposed into three parts:

siN,C)=n+ PhP n_ (5.4.11)

where the first and third parts correspond to upper and lower triangular
matrices respectively, while the second part h corresponds to diagonal
matrices (it is ealled Cartan subalgebra).

The (irreducible) highest weight representations are constructed by
means of a vacuum vector vy which is annihilated by ny:

nevya =0 (5.4.12)
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vs generates all the other vectors by means of the action of n_, and is
an eigenvector of the Cartan subalgebra:

hvoy = A(R)Jvx  VhehAeh' (5.4.13)

where we denote by h° the dual Cartan subalgebra. We require that A
is integral dominant, namely if A; is a basis for h:

hi=| (5.4.14)

-1
and A; is the cobasis corresponding to by

Ailhi) = 45 (6.4.15)
then A is given by:

A=Y LA (5.4.16)
where [; are non negative integers.
For any such A € h" there is a unique irreducible representation
which satisfies conditions (5.4.12) and (5.4.13),
To each highest weight representation there corresponds a Young
diagram which appears like in fig. 5.4.1

__I_r_ I

fig. 5.4.1
We construct the Young dyagram Y by drawing, in decreasing

order, rectangles whose lenght is 7, namely the index of the weight A;,
and we draw for any 7 so many rectangles as the positive integer l;. For
example:

Ree B fig. 5.4.2
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Now the Schur polynomial is nothing but the usual character, ie.
the trace of the group element in the considered represenmtation. It is
qufficient to consider only the Cartan part of the group. The Schur
polynomial uses the following independent variables:

sk U )
2= — E g em == 2 €h (5.4.17)

m=1

§o for the representation py corresponding to the Young dyagram Y,
the Schur polynomial xy is:

trace py(e®) = xv(z) (5.4.18)

where & = (z,,23,...) and h are given by eq. (5.4.17).
The Schur polynomial can be computed by means of Weyl’s formula:

€=k =Y g, (2)(— k)" (5.4.20a)
Ez, B) =) zak" (5.4.200)
Gk, (%)qk,+1(2),
xy(z) = det : (5.4.20¢)

iy (2)gk: (2)

e k-[ k{

The form of the polynomials xy(z) does not depend on N, for NV
sufficiently large. So xy(z) are well defined polynomials of the form:

X, (B)=2
1 2
XHieal®) = ®2h 52 (5.4.21)
S
X (2) = —z2 + 52}

B 2
Note that £(z, k) is just the expansion introduced in the previous lectures
and that the polynomials g;(z) are simply connected to the polynomials
p;(z) defined in eq. (5.3.7):
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pi(z) = (= Vgi( — =) (5.4.22)
Now we will rewrite Weyl's formula in terms of free fermions: this wil|
give us the correspondence between the Fock space and the polynomig)
algebra. The Schur polynomials constitute a basis of the polynomial ring,
So the Weyl formula in terms of free fermions will be useful in identifying
the polynomial algebra with the Fock space. The most general formul,
can be written in the following way. For given r and s let us consider
the Young diagram of fig. 5.4.3. The character polynomial is then given
by the free fermions expectation values:

xy =( — ]m1+---+m,+{aur](r—-r—1]/2X

X <a=r| e by G-, [0>
(5.4.23)

~m1-1L
-My =
1=F o *

[ ]

fig. 5.4.3
Eq. (5.4.23) is nothing but the formula (5.4.10). We give now a
sketch of the proof of eq. (5.4.23). Let us consider the generating func-
tions of free fermions and their "time evolution” by the "Hamiltonian”

H(z):
e @ gp(k)eH (=) — e&lzk)yp) (5.4.24a)
ﬂHl’:]T’ff‘(k)E_H(I} =t e—ﬂlsk}qp*(ﬁ;} (5424“

(The "time evolution” is diagonalized by the generating functions (k)
and 4’ (k)). The Hamiltonian annihilates the vacuum:

H(z) |0 >=0 (5.4.25)
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Taking this last relation in mind we let the operators in eq. (5.4.24 b)
act on the vacuum, expand the generating function 1" (k) on both sides
and make a scalar product with < 0 | ¥;. The r.h. side of (5.4.24 b)
gives us just the coefficients of &' in eq. (5.4.20 a), so we obtain:

(= Yalz) =< 0| p;e# @, |0 > (5.4.20)

Eq. (5.4.28) can be rewritten by means of the Wick theorem in term of
the following matrix element:

Mi(z) =< 0|1 pyeTEyl opl [0 > (5.4.27)

The matrix element in eq. (5.4.27) is just that of eq. (5.4.23) for r = —|,
g — 0. The general case can be treated as follows: we will explain it
by means of an example. Let us consider the case 8 = r = 1 and the
Young diagram shown in fig 5.4.4:

fig. 5.4.4
One should ealculate the matrix element:

M=<0]| g 1 |0> (5.4.28a)
We can shift charges in the matrix element (5.4.28 a) by —2:

M=<-2|"9p 44 |-2> (5.4.28)
Using the definition of | —2 > we obtain:

M=< 2| e®@¢" 19 07, 0> (5.4.28¢)

In eq. (5.4.28 ¢) ¥—;1 and 'r,f»'__l cancel each other giving a minus sign:

M={(—-)< 2|y g . 10> (5.4.28d)

The general case ean be proved by this same shift argument (it is also
easy to see that the matrix clement corresponds to the same Young
diagram of fig. 5.4.4 using eq. (5.4.23)).

We have so established not only the equivalence but also the ex-
plicit correspondence between the 7 charge sector Fock space and the
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polynomial algebra € [z1,22,...]. So the action of Hy, by multiplying
on the left, can be realized, in this language, by differentiation and mul-
tiplication:

a --
{F?—'}“ L (5.4.29)

=D dndy—— =N TF EL D

nEZ

The natural question is now how the general element of the Lie algebra
GL(oo) is realized on this bosonic space: the answer can be given by
means of the vertex operators. We recall the definition of the vertex
operators:

X (k) = gblz.k) ,—E(3 k)

; 5.4.:
X (k) = ¢ €l=k) &35 (5.4.30)

It is easy to see that there is a simple correspondence between #(k) and
the vertex operator X (k) given by the following commutative diagrams:

{(—1 - G[ZI,EQ,“.}
(k) E1X (k)
v v
A 5 € [21,22;-..] (5.4.31)
" (k) R R
V v
}}—'1 -:.}- ﬂj [xlj :1'.:'2, Ll ’]

Let us briefly sketch the proof of the correspondence between (k)
and the vertex operator X (k) given in the diagrams (5.4.31).
We will consider the particular case:
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7 S © 21,22, ]

P° (k) X (k) (5.4.32)
V4 V
f[; > @[31,39,...]

50 we have to show the following identity:

< 0] 95 (@ pu)t o) 9] [03= o
—X" CeF @)y (). " i -
=X"(k) < 0] $oe" D9 (p1)-- 9" (pa)b(a)- (20} [0 >

We can see that the left side of eq. (5.4.33) represents the action of ¥ (k)
on charge 1 sector; the right side must be identifyed with the action of the
vertex operator on an element of the polynomial algebra (remembering
that < 1 |=< 0 | #5). We will use the same kind of argument used
in the previous section when we considered the quasi-periodic solutions.
Both sides of (5.4.33) are meromorphic in £ except at infinity.

The left side has zeros at ¥ = py,...,p, because there we would
have the square of a free fermion; it has also poles at £ = q,,...,q,
because one has the expectation value:

< #'(B)olg) >= - (5.4.34)
We have to show that the right side of eq. (5.4.33) has the same zeros
and poles. If we shift the exponential e (%) through fermions up to the
vacuum we obtain a product of factors of the form e §(=:P1)e€(2.9¢) 5pg
the exponential ¢”(*) vanishes as H(z) annihilates the vacuum. The
action of the vertex operator on the exponential factor thus obtained is

given by:

e FE(B ™) £ é(2p) (1= i_))ﬂiﬂim}

I 0.4.35
E:':E[a',k_l]e:tﬁ(-'ﬂ,ﬂ] — (1 A E)_IEiE{I!P} { )

k
Eq. (5.4.35) says that also the right side of eq. (5.4.33) has the same
zeros and poles of the left: so they differ at most by a multiplicative
constant, but this can be calculated at & = co where both sides become:
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(BB e o ({ 0] g% (p1)- ¥ (q0) | 0 > +0(%)) X

k=0

; (5.4.30)
X exp {—s(z, ORI EINEDD 5(31@-:-1}

j=1 j=0
We have so identified every sector of the Fock space with the polynomial
algebra C [..':1;, Loy ] and we are able to compute the effect of the action
of the generic Lie algebra § L(oo) element by using the previous formulas:

}'ﬂ' — C [.-"JI,IQ,,.,}

»(p)¥" (q) —L-X(p,9) (5.4.37)
\ Vv
}‘g > C [ZIIZQ,...}

This explains what was said in the first section, i.e. the N-soliton
solution can be obtained by means of the vertex operator as follows:

N
exp{z aJ-X{pJ-,qj)} = T (5.4.38)

J==1
In fact, in this language the r function is nothing but the expectation
value:

r(z) =< 0] =g |0 > (5.4.39)

(9 is a group element; g € §L(00)), while the wave functions are given
by:

w(z, k) =< 1| (kg | 0 >
w (z,k) =< —1|e"=p (B)g | 0 >

Eqgs. (5.4.40) show the equivalence between the two bilinear identitics
(5.4.1 — 5.4.2) which now are summarized as follows:

(5.4.40)
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fﬂfgk < 1| eFEp(k)g |0 >< =1 | @ (k)g |0 >=0 (5.4.41)
So eq. (5.4.41), which characterizes the Fock representation of the group
orbit of G[(oo) gives also the characterization of the solution space of
KP hierarchy.

Before ending we will show how the various types of soliton equa-
tions can be explained in this language, without giving details.

We can obtain several classes of soliton equations by means of [-
reduction and of the Kac-Moody Lie algebra Afl_jl C GL(co) which is

generated by:
gy = Z: szﬂ—l ‘f’ti):‘
n=1imod { (54.‘1—2]

e Z ‘%'f‘:;—L

n=tmod [

It is easy to see that the generators (5.4.42) belong to the kernel of Hy;
[sef- definition (5.4.5)): this implies that thv vertex operators correspond-
ing to e; and f; do not contain z;; or 3— This makes the r function
indipendent of z;;:

dr(z) o drlz)
55’:; B 52!23 2=

=1 (5.4.43)
For the case [ = 2 this is nothing but the condition for KdV, namely one

obtains the KdV hierarchy dropping the dependence on even parameters
in the KV hierarchy:

du 3 P 19%4

I — v e 5.4.4
2 Kd T 2”3&'1 + : G 923 (5.4.44)
similarly for { = 3, A,(z” gives the Boussinesq equation:
6214: d du  O%u
=3 3 == -.4 M 2
[ Bousinnesq Py rf? (ﬁmarl 5'1:%) 0 (5.4.45)

Obviously [ > 2, because for / = 1 one obtains trivially the Heisenberg
algebra.

Then we can go further, considering subalgebras of ziim. In such
a case it is more natural to introduce the following 7 function:
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Ta(z) =< n | f =)y | n > (5.4.46)

For AP] the definition (5.4.46) does not give a new r function because it
contains only a different g and one can shift n to zero. We also note the
invariance property for r:

Thtil2) = ralz) (5.4.47)

For a given subalgebra of AS”, different 7, functions correspond
to different types of soliton equations. From the point of view of repre-
sentation theory of Lie algebras, different vacuum vectors in eq. (5.4.46)
mean different highest weight representations, namely 7, corresponds
to the fundamental representation A,,. We will now consider some sub-

algebras of AI(I]. In particular we will consider involutions of the Lie

algebras corresponding to the up-down involution ¢ of the Dynkin dyagram.
If we consider the invariant part with respect to this involution we

obtain different types of Kac Moody Lie algebras (shown in fig. 5.4.5):

fig. 5.4.5
We want to see the eﬁcct of going to subalgebras in terms of
soliton theory. The case §L(c0) — A[ ) gives the invariance properties

(5.4.43) and (5.4.47). Similarly going lurther to the above subalgebras
one obtains the invariance property:
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Tul2) = To i) (5.4.48)

where o is the involution shown in fig. 5.4.6 and X is obtained [from z
by negating all even parameters:

xX== (zl o, La, . ) (5449)
A= T4
T e
a7
fig. 5.4.6

So different. highest weight representations give different kinds of seliton
equations (that for Aif} was already known to Sawada-Kotera and Kaup
[25, 26]): this gives a systematic scheme of classification of soliton equa-
tions (we refer the reader also to the classification scheme by Drinfeld
and Sokolov [27]).

To include other types of soliton equations we ¢an do another generaliza-
tion. Until now & = oo was a special point, i.e. it was an essential
singularity: this gives a particular form for the "time evolution” (see
for example egs. (5.4.24) showing that ¢(k) has a singularity al & =
00). We can consider more general forms of the time evolution of egs.
(5.4.24), namely we can introduce singularities al finite points. We can
then reconstruct the whole theory in a similar manner with this different
time evolution. If we consider §L(oo) with poles at & = co and & =0
we obtain the two dimensional Toda iattice:

32
dzdy

T R (5.4.50)

{¢nm} =

(@rm: Cartan matrix of GL(00)). If we restrict to A.{ll}, the two dimen-
sional Toda lattice reduces to Sine-Gordon equations: the only difference
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is the "time evolution”. We can also consider a different time evolution
({, m, n discrete variables):

gfi(k) — (1 — ak)“‘(l — b)Y ™(1— nkl_”ef(mﬂsﬁ]-¢v(k) (5.4.51)
B (k) — (1 — ak)' (1 — bk)™(1 — ck)"e~ =0k 4" (k)

(instead of (k) — k™SR HEEET ) ) for Toda lattice).

The time evolution with respect to the discrete variables [, m, n gives
the discrete version of KP hierarchy (this was first found by Hirota: it
is nothing but the KP hierarchy but in a difference equation form).

There is another generalization of the theory: we can consider also
multicomponent fermions with n degrees of isospin:

$9), 9 (k) i=1,...,n (5.4.52)

The natural condition for reduction is to equate the different sets of
fermions. Ior the case n =— 2 a suitable reduction condition gives
again Agl} and the corresponding soliton cquations are the non linear
Schrodinger equations considering the time evolution at & = oo, the
chiral fields for £k = 41 and the Lund-Regge equation for £ = 0, 00.
We can consider also a completely different type of free fermions,
e.g. neutral fermions. Let us introduce these very strange fermions. We

consider an elliptic eurve € defined by:

Cir Wt [~ g =P (5.4.53)
F=ilgkl &0

a and b are constants (in the former case of KP, the curve is just P and
k is the local parameter). Similarly we infroduce free fermions indexed
by the point on the elliptic curve and a vacuum giving the following
expectation value:

1w+ k2 —f — &'

o lf)(P)'Sﬁ(PF) W 9 b+ Kk

(5.4.54)

If we consider the fwo components reduced theory of these free fermions
we obfain the Landau-Lifshitz equation:

a5
ta = 8.8, + I8 .8 (5.4.55:‘1)

§ =8 5% 8%) (5.4.556)
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3_‘ \ Jy
DB CALESR T J:( T )
2

=1

The corresponding Lie algebra is sl(2, C [k, k”l,w}) X € 1 In this way we
can understand most soliton equations in terms of representation theory
of Lie algebras.



126

References

]

2]
3]

o
iy |
e

[20]

[21]

22)
23]

M. Jimbo, T. Miwa and M. Sato, Kakuyugo Kenkyu, Inst.
Plasma Physics Nagoya Univ. 40, Suppl., 45 (1978). I. Date,
M. Kashiwara, M. Jimbo and T. Miwa, Proc. RIMS Sy positm
on "Non-Linear Integrable Systems: Classical Theory, Quantum
Theory”; M. Jimbo and T. Miwa eds., World Scientific Publ.
Co., Singapore (1983); p. 39.

E. Barouch, BM. McCoy and T.T.Wu, Phys. Rev. Lett. 31,
1409 (1973)

C.A. Tracy and B.M. McCoy, Phys. Rev. Lett. 31, 1500 (1973)
T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Phys. Rev.
B13, 316 (1976).

L. Schlesinger, J. Reine u. Angew. Math. 141, 96 (1912).

L. Onsager, Phys. Rev. 65, 117 (1944).

B.M. McCoy, J.H.H. Perk and T.T. Wu, Phys. Rev. Lett. 48,
757 (1981).

E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (19683).

L..A. Takhtadzhan and L.D. Fadeev, Russian Math. Surveys
(Uspekhi Mat. Nouk)34 5, 11 (1979).

H.B. Thacker, Rev. Mod. Phys. 58,.253 (1981).

J. Honerkamp, P. Weber and A. Wiesler, Nucl. Phys. B152,
266 (1979).

D.B. Creamer, H.B. Thacker and D. Wilkinson, Gelfand-Levitan
method for operator fields, FERMILAB preprint Pub. 79/75
THY (1979).

H.B. Thacker and D. Wilkinson, Phys. Rev. D19, 3660 (1979).
H.G. Vaidya and C.A. Tracy, Phys. Rev. Lelt. 42, 3 (1979).
A. Lenard, J. Math. Phys. 7, 1268 (1966).

M. Kashiwara and T. Miwa, Proe. Japan Acad. 57A. 342
(1981).

E. Date, M. Kashiwara and T. Miwa, ibid. 57A, 387 (1981).
E. Date, M. Jimbo, M. Kashiwara and T. Miwa, J. Phys. Soc.
Jpn 50 3806, 3813 (1981).

E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Physica 4D,
343 (1982); Publ. RIMS, Kyoto Univ. 18 1077, 1111 (1982).
M. Sato, Soliton equations as dynamical system on infinite
dimensional Grassmann manifolds, RIMS Kokyuroku 439 30
(1981).

M. Sato and Y. Sato (Mori), On Hirota’s bilinear equations I,
II, RIMS Kokyuroku 388, 183 (1980), 414, 181 (1981).

IM. Krichever, Russ. Math. Surveys 32, 185 (1977).

J. Lepowski and R.L. Wilson, Commun. Math. Phys. 62, 43



127

(1978).

1.V. Cherednik, Funct. Anal. and Its Appl. 12, 195 (1978).

K. Sawada and T. Kotera, Prog. Theo. Phys. 51, 1355 (1974).
I. Koup, Stud. in Appl. Math. 62, 189 (1980). [27] Y.G.
Drinfeld and V.V. Sokolov, Dokl. Akad. Nouk USSR 258, 11

(1980).






129

Potts models and dichromatic polynomials
PAUL P. MARTIN

Department of Physies
Queen Mary College
Mile End Road
London E1 4N§, England

1. Introduciion

Most exact work in Statistical Mechanies concerns Ising-like models
(i.e. those having Z valued spin variables). It is important from a physi-
cal point of view, however, that a wider class of models eventually be
addressed. To this end we will discuss the exact information presently
available for the Q-state Potts model. In particular we will give evidence
for a part circle distribution of zeros of the partition funection in the com-
plex exponentiated coupling constant plane clese to the phase transition
point.

It will be helpful to start with a briel review of existing work
(an extended survey may be found, for instance, in [1]). The partition
funetion for the @-state Potts model may be written:

Z—=1) e:{p(k, S 5[0;,05]) (1)

configurations o T -
{m}
where:
1 if oy =0y
§(os,05) = T
0 otherwise

and o; takes @ distinci possible values on each vertex 1 of a lattice (the
first sum is over possible configurations of these vertex spins on the 1a1’f,ic’e
and the second sum is over edges on the lattice). Putting v = ¢* — 1
then:

z2=Y [T (@+vilos,00)=>_ @' =2(Q,k) (2)

o} <if> o

where the sum over graphs G represents a sum over all possible choices
of 1 or v on the edges < 17 >. Because of the della functions all sites
connected by v's in a given graph must have the same o, so ¢ is the
number of distinct clusters of such connecied sites and [ is the number of
v's in a graph. This dichromatic polynomial is difficult to obtain for any
given lattice because ¢ is non-local. However it may be rewritten with
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local weights as a vertex model. Specifically, it can be shown [1, 2] that,
the Potts model partition function is equivalent to an ice-type model with
different vertex weights on alternate sites of a medial lattice (constructed
from the original lattice as shown in figure 1). The vertex weights may
be written:

Vertex T 2 3 4 D 6
PR e o ot
type 1
weight(w;) 1 1 Z 1 1+ Lz, 14z, /L
lype 2
weight (i) Ta ) 1 1 zo + L zg +1/L

where L is given by /@ = (L+ 1/L) and z = (1//@)(e* —1). The type
1 weights are used at odd sites (corresponding to horizontal bonds of the
original lattice, say) and type 2 at even sites (vertical bonds).

The partition function then becomes:

T 5 ([[ w,-m;)(l]:[ m-ﬂ) 3)

confige. “add ter el
{w} arbes aites
L

(¢ refers to an even site paired with the odd site 7). The sum over
configurations is a sum over possible arrow coverings of the bonds of the
medial lattice and:

g 1 for clockwise arrows
—1 otherwise.

With all weights of type 1 such a model can be solved [1]. In the
present case it cannot. However, putting zo = 1/z; and multiplying
all type 2 weights by z; we recover the solvable model. Now, 7o =
1/z¢ also gives the fixed point of the Potts model duality transformation
for @ integer [3,4] so al the dual point the Potts model reduces to a
solved homogeneous model. This model turns out to be in its eritical
sector [1]. Furthermore, all eigenvalues of the transfer matrix for the
(J-state model may be related to those [or the mixed weight model [5].
We thus anticipate that the Potts model be critical lor zo = 1/zy. In
homogeneous Polts model notation:
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S ed (4)

Similar arguments reveal one other set<of critical values:

eFe = —14/1-@Q (5)

=1

(see [6]).

2. Global analytic structure of the partition funciion

Existing methods of solution for the Ising model make such speeific
use of its symmetries that they cannot be generzlised to other Potts
models. However, there are some properties of the partition funetion
which may be generalised. Now a convenient way to exhibit properties
of a partition function is through the distribution of its roots in the
complex exponentiated coupling constant plane. We will see that this
procedure manifests similarities between different Potts model partition
functions — in their global analytic structure.

We will illustrate what is meant by “global analytic structure” by
the example of the Ising model. In this case [7]:

In Zn S =g
lim nNN ~ /f ln(g(y—i———g——--— +y)—(cos z +cos z))dﬂ:d;r

N —oc

(6)
where y = ¢~ %. Then the global analytic structure is given by the locus
of points for which the argument of the log on the right hand side is
zero (the circle of centre —1 and radius V2 and the circle of enetre +1
and radius v/2 in the complex y plane). Points corresponding to real k
on these lines are the ferromagnetic and antiferromagnetic phase transi-
tion points. The zeros thus provide boundaries between the ordered and
disordered phases (so that order parameters cannot be analytically con-
tinued) and may be thought of as responsible for t hermodynamic ceritical
behaviour [8]. Infact, given that the boundaries arc single lines, we could
have construeted this picture without solving the model. This is because
the zeros of the partition function must transform into each other under
duality. There is only one ferromagnetic (and one antiferromagnetic)
{ransition and the partition function is the limil of a real polynomial.
Thus the line of zeros associated with the ferromagnetic transition lies
on the inversion cirele of the duality transformation:

11—y
LR i (@ — Dy Q
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i.e. the circle in which (8) inverts the complex plane:

1 .
y(f) = T Q(l + \/@&"9) for 0<8<n
The additional symmetry of the partition function under:
1
B (8)
¥

then implies the circle associated with the antiferromagnetic point.

A sccond (trivial) example is the @ = 1 case. Here there is only
one configuration and all the zeros lie at y = oo (exp (k) =0), It is
interesting to note that Baxter’s critical points (equations (4) and (5))
for @ = 1 include this point and also the critical point of the percolation
model (see later).

Now regarding the Ising model result as an [ee-type model with
() = 2 we can envisage changing Q smoothly so that the loci of zeros
move towards a description of other Potts models (at least on a fnite
latlice). In particular we know that the ferromagnetic line intersects
the real axis at the dual point and continues to be a boundary between
ordered and disordered phases. This suggests that the zeros of the
partition function lie on the inversion cireles (forii=3 4.5, ...

A rigorous proof of this result is not presently available. However,
there is much evidence that the zeros of finite Iattice partition func-
tions accumulate on or close to the thermodynamic limit boundaries for
sufficiently large lattices [7,9,10]. There is again no rigorous way to ex-
trapolate from such finite lattice results. However, since we only have to
recognise a simple geometrical pattern (a cirele), the finite lattice result
should be sufficient.

The distribution of zeros in exp(k) ( = 1/y) for an & X 10
Iattice @ = 3 state model are shown (for example) in figure 2. The
discrepancy from a square lattice is associated with the (non trivial)
construction of self-dual boundary conditions. The inversion circle for
() = 3 has centre +1 and radius /3 in the exp (k) plane and in this
case the zeros associated with the ferromagnetic transition indeed lic
exactly on the circle (the zeros are obtained from the exact partition
function by a Newton Raphson technique iterated to within about 15
decimal places, and are well separated on this scale). We will discuss
the remainder of the distribution (asociated with the antiferromagnetic
transition at exp(k) = 0 and its dual, exp(k) = ~2) later. Similar
results are obtained for the other lattice sizes (presently up to 130 sites)
and boundary conditions. In particular figure 3 shows the same plot for
a 10 x 12 lattice 3-state model with periodie poundary conditions in one
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direcetion and free (kK = 0) boundaries in the other. These boundary
conditions are not self-dual, so we see that deviations due to such finile
size effects are already small.

8. Finite lattice dichromatic polynomials

Similar results are also obtained for @ > 3. It is particularly
instructive to consider the dichromatic polynomial (equation (2}), im
which ¢ appears as an explicit variable, for a finite lattice (figure 1). As
a polynomial in exp (k) the order is unchanged for any ), so we may then
follow the paths of the finite set of zeros. The results are algebraically
complicated but there are many ways to check them (series expansions
for €),u; direet enumeration for @ = integer ete.).

The dichromatic polynomial is associated with many interesting
combinatorial problems. For example we observe that Baxter’s equation
(5) gives real solutions for negative Q. There is no equivalent Potts model
and the relevant ice-type model does not have positive weights. However
this mixed weight model is equivalent to a critical homogeneous model at
two points. For @ = —2 these points are indicated - [ and Il — in figure
4, together with the roots of the finite latiice dichromatic polynomial.
In this case (and infact for general negative ) we sce that the roots of
the dichromatic polynomial seem to be accumulating on lines consistent
with the critical points formally given by Baxter’s eritical curves (and
no others).

In general the inversion circle associated with the duality trans-
formation (7) is given by:

y(8) = ﬁj{l + V/Qle™) for 0<8<nm (9)

with yauar(f) = y(A—0) (where ¢ = Q/|Q]). From this we find that the
reros of the § = negative polynomial do not lie on or near the inversion
circle. Thus we cannot deduce the exact locus of points in this case.
For @ > 2 we again find evidence that the limiting distribution
of zeros associated with the ferromagnetic transition lie on the inversion
circle. Figure 5 shows the trajectories of zeros in exp{ — k) as ¢ is varied
from 2 to 5, and figure 6 shows @ = 2,3,4,5,6 for a larger latiice.
Notice from equation (9) that the radius of the inversion cirele decreases
with @ in the exp( — k) plane, and infact the trajectories on the right
hand side of figures 5 or 6 reproduce this behaviour. The finite lattice
boundary conditions used in these cases are not exactly self-dual so the
rerog lie close to but not on the circle (as above this could be rectified
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for integer € by a more complicated set of boundary conditions). The
reros assoclated with the antiferromagnetic region are more sensitive
to finite size effects (in particular the frustration of antiferromagnetic
¢round states by lattice boundaries}. No geometrical sh ape is suggested
for their distribution (and of course we have not vet identified a likely
candidate on symmetry grounds).

It is interesting to note in passing that the line separation of zeros
for a given @ yields an approximation to the limiting line density and
hence the a critical exponent [8,10,11]. Our discussion of the shape
of the phase boundaries has relied on the symmetries of the partition
function under transformations of the global coupling constant. As such
it provides no information on the line density. However by plotting the
finite lattice line separation against the distance from the critical point
for a sequence of different lattice sizes we find a roughly fixed power law
dependence (with an overall density increase with lattice size). The result
Is consistent with the known a exponent for @ — 3,4 [11]. However we
expect severe finite size effects for @ > 4 since the a exponent changes
discontinously in @ at @ = 4. This requires a " phase transition in Q” in
the dichromatic polynomial, which is a thermodynamic limit effect (for
finite lattices the polynomial is of finite order in Q).

For @ = 1 we have already remarked that the Potts model (and its
transfer matrix) is trivial. However, Baxter’s caleulation for the critical
points is sensitive to the full ice model transfer matrix {which is larger
for @ = 1). One of the critical points obtained in this way is associated
with the percolation problem critical point (equation (4)). Infact the
quantity:

a L3 O
(sgh 220 i 1B -

which gives the average over all graphs of the number of disconnected
components, is non-trivial for the finite lattice dichromatie polynomial
(p = v/(1+v) is the probability of a link being "occupied” in percolation
terminology, see [1] and references therein). The roots of the numerator
are again collected on lines which approach the real axis close to the
solutions to equations (4) and (5).

4. An interesting ezercise

The argument of the log in the Ising model partition function,
equation (8), is proportional to the lowest order polynomial which has the
invariance properties (up to overall factors) of the full partition function.



135

The fact that this is only quartic in y explains why the locus of zeros
is deseribed by the inversion circle (i.e. to satistfy the symmetries under
duality and complex conjugation simultaneously). Observing that other
models have this properiy we might conjecture that their partition fune-
tions can also be written as integrals over simple invariant polynomials.
By establishing the full invariance properties of partition functions we
might then construct these polynomials and hence obiain the full global
analytic structure.

Such polynomials are not easy to construct because the generalised
form of transformation (8) maps out of the homogeneous coupling plane.
The transformation is usually thought of as a consequence of the global
Z5 symmetry of the Ising model. However it may also be obiained from
the inversion properties of the transfer matrix as follows.

Baxter has shown that the cigenvalues of an appropriate Ising
model transfer matrix are inverted by the transformation:

1

(E’JC) il ("" C!E} {_“_)

where b and ¢ are the generalisation of 1/y for different horizontal
and vertical bond strengths respectively (see [l] and lectures in this
volume). When the Boltzmann weights are positive it is the largest
cigenvalue which gives the infinite lattice partition function [12]; un-
fortunately the inverting trasformation breaks this condition. Repeating
the trasformation to restore the original ecigenvalues also restores the
original weights. However, by using another symmetry of the model,
that of 90 degrees rotation, between two inverting transformations, we
obtain the invariance under (8). The inverting transformation may be
generalised to (J-states whereupon (8) becomes:

L e [g__;_

1
3]

b=~ (12
This maps out of the § = ¢ plane for @ £ 2. However the general
(inhomogencous) partition funetion must be invariant under (12) and this
puts some restrictions on the form of the homogeneous lattice function.
For example the lowest order invariant under all the known symmetries
of the partition function is given by:

b=t c—a\fc—t b— 38
(b—shtc—t)(c—s_tb—l‘)

where ¢t and s are the fixed points of (12):

2 £ 28 \°
F [ R |

b==c: Q) =3
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t,azl—%:b\/@(@ﬂ’i)

Substituting into an expression of the form of equation (6) we obtain
the following sero distribution in the complex exp (k) plane — a circle of
centre +1 with radius \/51 and a circle of centre —1 with radius 1. This

should be compared with the @ = 3 state finite lattice resuli in figures
3 and 4.
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Figure 1. The medial lattice (dashed lines} associated with a 5 X §
original lattice (solid lines).
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Figure 2. Zeros of the partition function plotted in the complex é* (=
1/y) plane for the seli-dual 8 X 10 lattice three state model. The real
axis (of unit length) is indicated.
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Figure 3. Zeros for the 10 X 12 lattice three state model:

a) plotted in ef;
b) plotted in e~F.
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Figure 4. Zeros of the dichromatic polynomial associated with the lattice
of figure 1 for @ = —2, plotted in y { = e~*). Solutions to equation (5)
for @ = —2 are also indicated (I,II).
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Figure 5. Trajectories of zeros of the dichromatic polynomial in ek as

Q is varied from @ = 6 (innermost ends) to @ = 2 or @ = 2.01 (marked
* see below). The plot is obtained by considering many intermediate
Q values. Since the dichromatic polynomial is of finite order in @ it is
easy to see that (neglecting the vicinity of a multiple root at @ = 2,
e~* = —1) small changes in @ produce small changes in the positions
of zeros.
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Introduction

Ii has been shown by M. Jimbo and T. Miwa [1] in a section of
this book that the Backlund groups (i.e. the groups of transformations
of solutions) for soliton equations are infinite dimensional Lie groups
whose Lie algebras of infinitesimal generators are Kac-Moody algebras
of infinite-order differential operators, called vertex operators. They
have also shown that if one realizes the space of the complex polyno-
mial algebra in terms of a Fock space of charged Fermions, writing the
differential operators in terms of Fermi operators, the soliton equations
become nothing but the defining differential equations of the group orbit
of the highest weight vector in an infinite dimensional Fock space.

We will show that this algebraic treatment of soliton equations has
a nice quantum mechanical interpretation: the solutions of the soliton
equations can be viewed as quantum coherent states of an harmonic
Fermi gas and the soliton dynamical evolution is thus mapped into a
quantum hamiltonian evolution. The latter, which is coherence preserv-
ing, ean be mapped back once more into a classical hamiltonian flow
which corresponds to a succession of infinitesimal Backlund transforma-
Lions.
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Coherent statee

One can define abstractly quantum coherent states associated to o
Lie group G as follows [3,4].

Let U a unitary irreducible representation of the Lie group G acting
on the Hilbert space § of the states of the dynamical system. For every
fixed "origin vector” | w >€ § the manifold M, of the coherent stateg
is identified with the G-orbit of the vector |w > in §:

My =U(G)|w>C S (1)

By definition one has:

Mo ~ G/ Ky (2)

i.e. the coherent states | w >, are labelled by points of the left coset
space w € §/K,, where K, is the stability subgroup of the vector | w >.
In general it is convenient to enlarge the unitary representation U
lo a holomorphic representation T of the complexified group G°.
If M, is compact cne has;

G°IKG ~ §/Ke (3)
where K¢ is the stability subgroup of | w > in G°. There follows that:

Mo=T(5) |w>C S (4)

Eq. (4) can also be interpreted as the definition of the coherent state
manifold for the complex Lie group G°.
I'or a semisimple Lie group G° the characterization of the stability

subgroup is very simple if one chooses as origin vector the highest weight
vector | X >. In this case one has [5, 8]:

K5 =t (5a)
ky =h &gt Doy (56)
G;: o span{a:_a €0« I o & ‘&+J (CI, }‘} = ﬂ} {5(‘)

where exp 1s the exponential map, h is the Cartan subalgebra of ¢ =
Lie(§°), 97 = BPaeca+ 9« is the positive root-space subalgebra and o~
is the subalgebra of negative root-spaces whose roots are orthogonal to
the highest weight X (A™ is the positive roots sublattice). The stability
subgroup K§ is thus isomorphically identified with a parabolic subgroup
of §¢ as it contains the Borel subgroup B = exp (2 @ ¢*) and coincides
with the latter only when A belongs tothe interior of the dominant Weyl
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chamber (i.e. (A, e) > 0 Va; € IT = simple roots set). The above
construction gives a local chart in € ¥ for My

| ¢ >5=exp( Z LT A (Ga)
aé!\;

to € dar M= {2 €AT [(a,)) > 0} (6b)

ce={"teC?¥ N =|n] (6c)

(In the following we shall drop the index X\ of the ket | ¢ > whenever
not. necessary).

Thus My is an almost complex manifold: indeed it is a Kaehler
manifold with metric given by:

de® =2 g zdc* dt? (7a)
CI.'-HS
B2 F .
gﬁg == (7{]]
d¢= 3"
Fl¢,5)=Ih <¢[¢> (7¢)

(The function F is positive definite as a consequence of Schwartz’s in-
equality

<elem> e X 2PN x>=1)

The physical content of the above algebraic definition of coherent states
lies mainly in their dynamical behaviour.

The quantum propagator between two (normalized) coherent states
can be written as a path integral of the form [7]:

et =y EX}J{—‘LH[ —t’)jﬁ] ¢ >=

i /D exp{ } (8)

where the action functional is given by:

skto) = [, 1= [ <colmo-Hiso>a  ©

with the Lagrangian:
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=2 (0K - PP} -7 (10

ae.-'x L%

H(¢,T) denotes the diagonal element < ¢ | H | ¢ > of the system
Hamiltonian /. Finally the measure in (8) is:

I duts@) (11)

ettt

dp(¢) = exdet(g, }Aﬂehdg‘ Aode
d m=]
j;n #(s)

where ¢) is a normalization constant.

The stationary phase approximation (65 = 0) of eq. (8) leads to
the Kuler-Lagrange equations for the trajectory ¢{t) which can be put in
the Hamilton’s form:

(12)

¢
Aehy
N, e B G
I e BB g0
BEA, i

Thus My is interpreted as a curved canonical phase space for the system
with metric given by (7 b). Also eq. (9) shows that the coherence
preserving Schrodinger evolution of the quantum state coincides with
the classical lagrangian flow on the phase space. Infact, if one computes
the variation of the action one gets, after an integration by parts:

58 :./,;: { 6 < ¢(t) |](£ﬁat-fif] | ¢(8) > + < ¢(t) | (ur.iﬁ“d_t—f{}{ ¢(t) >H
(14)
where:
dim T
§<s(t)|= D 6fls(®) < k| ) =<g¢lk> (19
k=1

| £ > being a complete orthonormal set of vectors in §.
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Tt is clear from eq. (14) that if the time dependent coherent state | ¢(t)->
gatisfies the Schrodinger equation, the f{irst variation of the action is zero.
In other words, if the Schrédinger evolution, starting on the manifold
My, remains on the manifold for every time £, the trajectory of the
representative point on M, coincides with the classieal Iuler-Lagrange
trajectory. Furthermore it is possible to characterize in algebraic terms
the coherence preserving hamiltonian [5,6]: it should be an element of
the algebra g =Lie(§), if the latter is semisimple, whereas it can belong
to a Levi extension (by a semisimple algebra) of g if this is solvable.

In summary, the given definition of coherent states permits to
interpret also in the generalized case the coherent state manifold as
the canonical phase space and moreover it implies that the quantum
coherence-preserving time evolution coincides with the classical lagran-
glan one.

Summary of main results of 7-function theory
For the sake of simplicity we refer to the KP (Kadomtsev-Petviashvili)
[8,9] hierarchy, which is also the most basic.

The KP equation reads:

Btyy — (41 — Buse, —14,,,), =0 (16)

The whole hierarchy involves of course an infinity of variables that we
denote 2z = {z;} (with 21 = £, 23 = y, 73 = t). Hirota’s bilinearization

technique [10] ~ upon setting u = 2(In 7)., — allows writing (16) in the
form:

(DL +3D2 —4D,D)r-7=10 (17)

where Hirota’s bilinear differential operators are defined, for any poly-
nomial P by:

BB, D D) = P00y 8)

[f{ﬂ: a5 z.'ry =+ Tflii_fh ﬁ’)g‘(ﬁ = m!?y_ yinf 7= tfﬂ
TI=y'=t'=0
(18)
The Lie algebra of the infinitesimal Béicklund transformation generators
for eq. (7)is given by [1]:

A = span{Zy;(z,8)} @ € (19)
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where the generating function of the differential operators Z;;(z, ) writes:

Z(p,q) = E q{exp [Z r" = Q“}zn] exp [— S ;1;(13‘“ = t}'""]%]}

ne=1 re==1
Z(p,q) = Y Zij(z,0)p'q
ijel
(20)
where 8 = {3/08z,}. For example the transformation:
7(2) — 22 (P 1(2) acC (21)

is 2 Backiund transformation for the biiinear KP hierarchy which maps
a solution of eq. (17) to another solution.

The Lie algebra 4 is isomorphic to GL(oo), i.e. the Lie algebra of
the infinite dimensional sector diagonal matrices (that is, there exists an
integer NV such that the matrix elements a;; = 0 for |[¢ — j| > N).

The above description of the KP r-function can be cast into an
algebraic language. Consider the ”vertex operators” [11] out of which
(20) is constructed:

X(k) = exp(z zﬂk“) exp(—- Z %E{;—k"") (22)

n=1 n=I

and its formal adjoint:

X (k) = exp (— Z zuk"‘) exp( %E‘z—k_“) (23)

=1 n=1

The above operators realize a correspondence between the space of the
polynomial algebra € [z| and the Fock space F of charged Fermions
{4:,9;}, i € Z, by the Clifford algebra module isomorphism generated
by the identification:

bi=X: V=X (24)
where the X’s and ?,- 's are defined in the following way. Upon setting:

X(k) = X8k
icZ

X(k) =) _ Tz 0k
el

(25)
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consider copies {Vi} of € [z] Then for fi(z) € V;,

A

Xi:Vi—s Vi fild)— > Xialz,8)1(2)

e : (26)
Xy Vp——o Vi1 f;(z),,____} X{—t+1{zs ) fi(z)
The Lie algebra (19) is now realized as follows:
= span{:¢;¥f:} B C (27)

where : ¢ denotes the usual normal ordered product defined according
to Wick’s theorem, the linear span is done in terms of §L(oco) matrices
and C is the center, spanned by the identity I and the non-trivial element

Ho = Z ="Pf¥£’ [28)
e/
It follows that the representation of 4 on the Fock space is reducible
and the Fock space is decomposed into eigenspaces of Hp, the "charged
subspaces”:
7= @n?n (29)

Eqgs. (28) define then an isomorphism between V, and 7,. Furthermore
A has an Heisemberg subalgebra &:

£ =span{H,,Ln¢c Z —{0}} (30)
H, = Z :TIJ)!:E{-—!—n: ) n ?g 0 (3]-)
ick

with commutation relations:

[ il = 8 1 (32)

The existence of such a subalgebra enables to construct an explicit
realization of the isomorphism between the vector spaces V,, and 7, and
between the algebras of operators acting on them. The isomorphism is
realized by the following map:

}.:@n}.n—}' VZ@HVﬂ
(= M S N @n{nhm"]am}

oo

H(z)= Y z.H. (34)

yre==|[

(33)
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where a is an arbitrary operator of the Clifford algebra, | 0 > is the
vacuum vector, |[n >CE F (|n >=tp_1.. % [0 >, n > 0; | n >=
P ®W_; | 0 >, n < 0) is the vector of charge n sclected as highest
weight vectors for the irreducible components of the representation of
A on F. We ean now use the above isomorphism Lo write the space of
r-functions for the KP hierarchy. As the Bicklund group is transitive
on the space of solutions and 7 = 1 is a solution, the r~functions
manifold can be identified with the Biacklund group orbit on the constant
function r = 1. The orbit can be written in algebraic terms using the
isomorphism (33) for a fixed copy V,, of the polynomial algebra as follows:

faldin) == ﬂ,[eH[“"}an > v € exp(A) (35)

T-funciton theory in the coherent states language
Comparing eq. (35) with the definition (4), it appears clearly that
the r-functions are nothing but coherent stales representatives associated
to the Lie group § = exp (A):
N =Valta) = n< ¥le>n  ¢€C
n< o |:< n 1 ﬁHl:z;' [36)
| ¢ >n: coherent state for § = exp(4)

The characterization of the stability subgroup of | = > is very similar to
that for a semisimple Lie group. The subalgebras &, g* of 4 = GL(o0)
are given, in the charged Fermion representation, by [1]:

g" = gen{e; = P19}
g =gen{fi = ¥i¥.} (37)
i i span{h; == 1!);_11,"5,-_1 - 1,!:,-1,’_;,»} 1€ 2

where gen{ } denotes the algebra generated via commutations by the
operators in the curly brackets. The vector | n > is an highest weight
vector for the irreducible component of the representation of A on the
imvariant subspace 7,:

51']71-}: 0, h:‘lﬁr >= bin I'ﬂ. > Vic Z {38}

The root system and the root spaces of 4, are given by [12]:
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At ={os+ @iy -+ 1STEL} go; = span{est  (39)

and the stability subalgebra of | n > is given by (compare (5b), (5¢)):

kn=hD g o, (40
0n = span{T o € g—o | @ € AT — A} (41

)
1)
A, = {o;+ @y + - -+oy; i <7€ek 1 < n < g} (12)

The most general coherence preserving Hamiltonian can be written as
an hermitian element of 4 as follows:

B Y hguhd: hij = hy; € € (43)
ijel
which is the hamiltonian of an harmonic Fermi gas. The time evolution
of the quantum dynamical system can be viewed as an infinite sequence of
local infinitesimal contact Backlund transformations, in that the element
v == (t) € G = exp (A) representing the time evolution operator can be
written

qg=eSt . g% Zy,.., B EA (44)

(The Z; are locally nilpotent, ie. for any | v >€ ¥, one can find a
sufficiently large integer M such that ZM | v >=0).

This procedure maps the eriginal non-linear classical system into an
equivalent quantum system.

On the other hand, under the action of the same Hamiltonian
the representative point ¢(t) of the coherent state over the phase space
M, evolves in time according to the lagrangian dynamics of a system
of (infinitely many) canonical degrees of freedom, thus defining an
hamiltonian flow — once more classical - on My itself.

In conclusion, the identification of the r-function manifold with that
of quantum coherent states, permits the mapping of the non linear soliton
evolution into a quantum Schridinger evolution and simultaneously into
a classical hamiltonian flow on the coherent states manifold interpreted
as a canonical phase space.
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Tetrahedron Equations
and the Relativistic S-Matrix of Straight-Strings
in 2+ 1-Dimensions

A B. Zamolodchikov

Landau Institute of Thearetical Physics. Vorohyevskot Shosse, 2, Moscow V-334, USSR

Abstract. The quantum S-matrix theory of straight-strings (infinite one-
dimensional objects like straight domain walls) in 2+ 1-dimepsions I8 con-
sidered. The S-matrix is supposed to be “purely clastic”™ and factorized. The
tetrahedron equations (which are the factorization conditions) are investigated
for the special “two-colour” model. The relativistic three-string S-matrix,
which apparently satisfies this tetrahedron equation, 1s proposed.

1. Introduction

The progress of the last decade in studying two-dimensional exactly solvable
models of quantum field theory and lattice statistical physics was motivated to
some extent by using the triangle equations. These equations were first discovered
by Yang [1]; they appeared in the problem of non-relativistic 1 4 1-dimensional
particles with d-function interaction, as the self-consistency condition for Bethe's
ansatz. Analogous (al least formally) relations were derived by Baxter [2], who
had investigated the eight-vertex lattice model. These relations restrict the vertex
weights and are of great importance for exact solvability. In particular, for the
tectangular-lattice model they guarantee the commutativity of transfer-matrices
with different values of the anisotropy parameter v. In the case of Baxier’s general
nonregular lattice % [3], the triangle relations for the vertex weights ensure the
remarkable symmetry of the statistical system (the so-called Z-invariance): the
partition function is unchanged under the deformations of the lattice, generated by
the arbitrary shifts of the lattice axes. Z-invariant model on the lattice & is exactly
solvable [3] (see also [4]).

Recently Faddeev, Sklyanin, and Takhtadjyan [3, 6] have developed a new
general method of studying the exactly solvable models in 14-1-dimensions — the
quantum inverse scattering method. The triangle equations are the significant
constituent of this method ; they are to be satisfied by the elements of the R-matrix
which determine the commutation relations between the elements of the monod-
romy matrix.
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The triangle equations are also the central part of the theory of the relativistic
purely elastic (“factorized”) S-matrix in 1+ 1-dimensions (for a review, see [7] and
refcrences therein). These equations {the “factorization equations”) connect the
clemenis of the two-particle S-matrix they represent the conditions which are
necessary for the factorization of the multiparticle S-matrix into two-particle ones,
For the scattering theory including n different kinds of particles A pi=1.2.. . .n
the factorization equations have the form [7.4]

S (OSH0+8)SE @)

=S-'_iz.ks{ﬂ*}sk|jz{:g+ﬂfjg.ill.;;i[ﬂ:]: (1.1)

kzl3 Ii'|k-3

where, for instance, S¥1%(0) is the two-particle S-matrix, (iy.y), (k. k) are the kinds
of the initial (final) particles having the rapidities’ 0, and 0, respectively:
0=(8,—0,). This equation has the following meaning. In the purely elastic
scattering theory the three-particle S-matrix is factorized into threc two-particle
ones, as 1l the three-particle scattering were the sequence of successive pair
collisions. If the rapidities 0y,8,.0, of the initial particles are given, the two
alternatives for the successions of these pair collisions are possible, The two
different (in gencral) formal expressions for the three-particle S-matrix in terms of
two-particle ones [the righi- and lefi-hand sides of (I.1)] correspond to these
alternatives. The conservation of the individual particle momenta requires the two
“semifronts” of outgoing wave, which correspond to these two alternatives, 1o be
coherent. The Eq.(1.1) expresses this requircment, The diagrammatic repre-
sentation of the triangle Eq.(I.1) is given in Fig. 1, where the straight lines
epresent the “world lines™ of three particles moving with the rapidities 0,,8,.4,.
The two-particle S-matrices correspond to the intersection points of the lines:
) a=1,2,3 are the kinds of the initial (findl) particles; the summing over the
kinds &, of the “intermediate” particles is implied.

In [8] the version ol factorized scattering theory in 24 l-dimensions was
proposed. In this theory the scattered objects are not the particles bul one-
dimensional formations like infinite stralght-lined domain walls, which are
characteristic of some models of 2 + {-dimensional field theory. We shall consider
the quantum objects of this type and call them the straight strings. The stationary
state of a moving straight siring is characterized by the uniform momentum
distribution along its length: its kinematics can be described completely by the
direction of the string and by the transversal velocily. We assume also that the
stationary states of any number of arbitrarily directed (Intersecting, in general)
moving straight strings are realizable?. The intersection points divide each string
into segments, each being assumed to carry some internal quantum number i
which will be called “colour”. The relativistic case of the straight-string kinematics
will be implied.

1 The rapidity of the relativistic |+ 1-dimensional particle 1s defined by the formulae
py=mcoshd,;  pl=msinhd

where pfl is the two-momentum ; p2=m?
2 Solutions of this type are likely in some completely integrable classical models in 2+ |-dimensions

(3. Munakov, private communication)
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Fig. 1a and b. Diagrammatic representation of the triangle Eq. (1.1)

i

al b

Fig. 2a and b. The initial a and the final b states of a three-string scatlering

In fact, if the number L of straight-strings is less than three, the nontrivial
“scattering” is impossible. The three-string scattering 1s “clementary”. The nature
of this process is illustrated in Fig. 2. The initial configuration of three-strings
81, 55,8, 18 shown in Fig. 2a. The indices {i} ={i,. I, 1;. 1}, {5, i3} denote the colours
of six “external” segments while {k} = {k , k,, k,} are the colours of the “internal”
ones. The motion of the strings S, ; a=1,2.3 is such that the triangle in Fig. 2a
shrinks with time. Shrinking and then “turning inside out” this triangle is the
three-string scattering. After scattering, only states of the type shown in Fig. 2b
appear. (This is, essentially, the meaning ol the assumption of the “purely elastic”
character of scattering.) The directions and velocities of the outgoing strings
81, 81, 54 (Fig. 2b) coincide with those of the initial ones. The “internal” segments
of strings, however, can be recoloured (in general {k'} & {k}).

In quantum theory the process shown in Fig. 2 is described by the three-string
scattering amplitude

?-|£:'lr”jr'-'.|

Sizioiska (0,04, 05) . (1.2)

Fakai sk
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where the variables 0,0, 8, (“interfacial angles”, see below) describe the scatter-
ing kinematics.

One can imagine the three-string scattering as the intersection of three planes
in 2+ 1-dimensional space-time. These planes represent the “world sheets” swept
out by the moving straight-strings. Let n,.n,,n, [n? =)} 4+ (n2? = (n%=1] be
the normal unit vectors of the planes corresponding to the strings s TR
respectively. The mutual orientation of three planes, and, hence, the kinematics of
the three-string scattering, is described completely by three invariants

Mty =—cosfy;  mny=—cosfl,; nyn,=—cost,. (1.3)

The two-plane intersection lines divide every plane s, (a=1,2, 3) into four parts
which will be called plaquettes. The colours of string segments, denoted by the
indices i, k,, 1, k; in (1.2) can be obviously attached to twelve plaquettes joined to
the three-plane intersection point. ITn what follows this point will be called the
vertex while the angles 0, 6,,6,, defined by (1.3) - the vertex variables.

The L-string scattering for L >3 has similar properties: the directions and
velocities of all the strings s_;e=1,2, ..., L remain unchanged after the scattering,
the “internal” segments being, in general, recoloured. We assume the factoriza Ltion
of the multistring S-matrix: the L-string S-matrix is the product of
L(L—1)(L—2)/6 three-string ones (1,2), according to the idea that the I-string
scattering can be thought of as the sequerce of three-string collisions. The
succession of this three-string collision is not determined uniquely hy the
directions and velocities of all the strings s, but depends also on their “initial
positions”. Like the 1 + 1-dimensional case, the self-consistency of the factorization
condition for the straight-string S-matrix requires the equality of different formal
expressions for the L-string S-matrix in terms of three-string amplitudes, corre-
sponding to the different successions of three-string collisions. It is easy to note
that this requirement is equivalent to the tetrahedron equation shown in Fig. 3. In
this figure the “world planes™ of four strings s,, a=1,2,3,4 (undergoing the four-
string scattering) are shown. These planes form the tetrahedron in 2+ 1 space-
time. The vertices of the tetrahedron represent the “elementary”™ (hree-string
collisions; the corresponding S-matrices (1.2) are the multipliers in the expression
for the 4-string S-matrix. The tetrahedra shown in Fig, 3a and 3b (which differ
from each other by some parallel shift of the planes 5,) tepresent two possible
successions of three-string collisions constituting the same four-string scattering
process. The colours of the “external” plaquettes are fixed and respectively equal in
the right- and the left-hand sides of the equality in Fig. 3; the summing over all
possible colourings of the “internal” plaquettes (which are the faces of the
tetrahedra) is implied. This tetrahedron equation should be satisfied at any mutual
orientations of the planes s,.s,, 55, 5,.

The 1+ 1-dimensional factorized S-matrix can be mterpreted, after euclidean
continuation. as the Z-invariant statistical model on the planar Baxter’s lattice &
(see [4]). The 2+1-dimensional factorized S-matrix of stra ight-strings admits sim-
ilar interpretation [8]. The natural three-dimensional analog of Baxter's lattice
2 18 the lattice formed by a large number L of arbitrarily directed intersecting
planes in three-dimensional euclidean space. The fluctuating variables (“colours”}
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i) b)

Fig. 3a and b. Diagrammatic representation of the tetrahedron equations

are attached to the lattice plaquettes. The partition function is defined as the sum
over all possible colourings of all the plaquettes, each colour configuration being
taken with the weight equal to the product of the vertex weights over all the
vertices (the vertices are the points of triple intersections of the planes). The vertex
weighls are assumed to be the functions (common for all the vertices) of the mutual
orientation of three planes intersecling in a given vertex. Identilying the vertex
weights with the elements of the three-string S-matrix (1.2) (continued to the
cuclidean domain), one can note that, due to the tetrahedron equation (Fig. 3), the
statistical system thus defined possesses Z-invariance.

The tetrahedron equation (Fig. 3) turns out to be highly overdefined system of
functional equations; even in the simplest models the independent equations
outnumber (by several hundredfold) the independent elements of the three-string
S-matrix (1.2). Therefore, the compatibility of these equations is extremely crucial
for the scattering theory of straight-strings. In [8] the two-colour model of straight-
string scattering theory was proposed, and the explicit solution of the correspond-
ing tetrahedron equations was found in the special “static limit” which cor-
responds to the case v,—0, where v, are the velocities of all the strings. In this
paper we construct the relativistic three-string S-matrix for the two-colour model,
which is apparently the solution of the “complete” tetrahedron equations.
Although the complete evidence of the last statement is unknown we present some
nontrivial checks.

The qualitative aspects of the factorized straight-string scattering theory have
been described briefly in this Intreduction ; more detailed discussion can be found
in [8] In Sect. 2 the formulation of the two-colour model is given for the
relativistic case. The corresponding tetrahedron equations are discussed in Sect. 3.
In Sect. 4 the explicit lormulae for the elements of the three-string S-matrix are
proposed and the arguments that this S-matrix satisfies the tetrahedron equations
are presented. In Sect. 5 it is shown that the obtained S-matrix is in agreement with
the unitarity condition for the straight-string S-matrix.
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2. Two-colour Model of Straight-strings Scattering Theory

Consider the relativistic scattering theory of straight-strings (sce the Introduction)
in which the strings’ segments can carry only wo colours — “white” or “black”
Further, let us allow only the states satisfying the fﬂi]owing requirement : the even
number (Le., 0, 2 or 4) of black segments can join in each point of two- -string
intersection, In other words, in any allowed state the black segments form
continuous polygonal lines (which may intersect) without ends. Certainly, all the
elements of the three-string S-matrix converting the allowed states into unallowed
ones (and vice versa) are implied to be zero.

As 1t 1s explained in the Introduction, the three-string scattering kinematics can
be represented by means of three intersecting “world planes™ s,, 5,. s, in 2+ 1
space time, the vertex being the “place of collision™. In the two-colour model cach
of the twelve plaquettes joining the vertex can be coloured into black or white so
that the black plagueltes form the continuous broken surfaces without
boundaries.

Each allowed coluring of these twelve plaqueties corresponds to some
nonvanishing clement of the three-string S-matrix.

It is convenient to perform the considerations in terms of the euclidean space-
time: the “world planes™ s, can be treated as imbedded in the 3-dimensional
cuclidean space; each of thc: variables 0, defined by (1.3) being some interfacial
angle. The “"physical” amplitudes of scattering in the Minkowski space-time can be
obtained from the cuclidean formulae by means of analytical continuation.

Let us picture the “colour configuration”™ of the twelve plaquettes joining the
vertex as follows. Consider the sphere with the vertex as its centre. The planes s,
5,. 85 draw three great circles on this sphere Lthe vanables 0, 8,, 8, [see (1.3)] arc
cxactl}f the intersection angles of these circles. The intersection pmnts divide each
of the circles into four segments; the colours of the plagueties can be obviously
attached to these segments. Performing the stercographic projection one can map
these three circles on the plane as shown in Fig. 4. This picture can be interpreted
as follows. The spherical triangle 1, in Fig, 4 corresponds to the triangle in Fig. 2a
and represents the initial state of some three-string scattering process. The final
state of this process (shown in Fig, 2b) is represented by the spherical triangle I',.
The variables §, 8,, 0, are the interior angles of the triangles I, and F, (obviously.
these triangles are equal on the sphere). Alternatively, one could consider, for
instance, the triangle I, as representing the initial (and F, as the final) state of
some other three-string process. This is just the cross-channel. Evidently, the
transter to this cross-channel is associated with the variable transformation

By—=m—0;; Ohen—0,: O,-8.. (2.1)

As it 1s clear from Fig 4, each three-string scattering process has four cross-
channels Iy = F ., I, F, [, F, . [,>F,.

We shall assume the P and T invariances of the straight-string scattering
theory [8], and also its symmetry under the simultaneous recolouring of all black
segments into white and vice versa (“colour symmetry”). Then the three-string
S-matrix contains 8 independent amplitudes which are shown (together with the
adopted notations) in Fig. 5.
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83}'

al 518,.,85,8;] bl alf.8;,8;) el V{6,,8,,84]

4l RU8,,8,8;)

\53 Esf

Fig. Sa-h. Eight “colour configurations” of twelve plagueties joining the vertex, and the notations for
corresponding three-string scattering amplitudes. The white (black) circular segments are represented
by the ordinary (solid) lines
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It is convenient to introduce, apart from the amplitudes defined in Fig. 5 the
following 3 functions

Ul8,,0,,0)=ar—0,,n—6,,8,), (2.2a)
L(6,0,,0,)=V(r—0,,0,n—6,), (2.2b)
0,,0,,8,)=R(z—0,7n—0,,0,), (2.2¢)
H(0,,0,.0)=R(rn—0,,0,,n—0,), (2.2d)
Wib,,8,.0,)=0(n—0,7n—0,.0,), (2.2¢€)

which describe the cross-channels of the processes shown in Fig. 5. The three-
string amplitudes should possess the following symmetries, which are the con-
sequences of P, T, “colour” and crossing symmetries

S(6,,6,.04)=25(6,,0,,0,)=5(8,,6,,6,)

=8(n—0,,n—0,,6,). (2.3a)
ag, 0,,0,)=a(8,,0,,0,)=a(@,,0,,0,),
U0y, 8,,0,)=U(0,.0,,05), (2.3b)
V(0:,0,,8;,)=V(0,,0,0,)=V(iz—0,,n—0,,0,),
L(#,,8,,05)=L(6,0,0,). (2.3¢)
R(6,,0,,0;)=R(0,,0,.0,), H(B,,0,,0,)=H(H,,0,,0,),
Q(6,,0,,0,)=0(0,,0,,0,). (2.53d)
@(6,,8,,0,)=06,,0,.0,)=0r—0,,7—6,.0,)

=Wn—0.0,n—0,). (2.3¢)
K(0,0,,0,)=K(0,,0,,0;)=K(n—0,,n—6,,0,)

=K(n—0,,0,, 1—0,). (2.3)
a(0,,0,,0,)=0(0,,0,.6,)=0(0,,0,.0,),
W, 8,,0,)=W(0,.0,,0,). (2.3g)
T(6,,6,.0,)=T(0,.8,,0,)=T(n—06,,n—0,,0,)

=T(n—0;,0,,7n—0,). (2.3h)

The analytic properties of the three-string amplitudes will be considered in
Sects. 3 and 4.

3. The Tetrahedron Equations

The hardest restrictions for the three-string S-matrix come from the tetrahedron
equations, which are shown schematically in Fig. 3. Here we shall choose the four
“world planes” s, s,, 54, 5, shown in this figure to be placed into the euclidean
space (see Sect. 2). The three-string S-matrices associated with the vertices of the
tetrahedra in Fig. 3 are the functions of corresponding vertex variables. In the two-
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Fig. 6. Stereographic projection of large sphere surrounding the terrahedron

colour model each plaguette in Fig 3 can be black or white. Recall that the
colours of 24 “external” plaquettes are fixed and equal in the right- and left-hand
sides of the tetrahedron equation while the independent summing is performed
over all colourings of “internal” plaquettes. Obviously, each allowed colouring of
the “external” plaguettes gives rise to some functional equation connecting the
three-string amplitudes.

To describe the colourings of the “external” plaguettes it is convenient to
introduce again the large sphere (its radius is much larger than the size of the
tetrahedra), taking some point near the vertices as the centre, and consider 4 great
circles on the sphere corresponding to the planes s, s,, 55, s, (certainly, the
tetrahedra in Figs. 3a and 3b are indistinguishable from this point of view).
Stereographic projection of this sphere is shown in Fig. 6. The angles 6, 6,, 8,, 8,,
05, fl,, shown in this figure are just the interior interfacial angles (ie., the angles
between the planes s) of the tetrahedra.

Any allowed colouring of the “external™ plaguettes in Fig. 3 corresponds in
obvious manner to some allowed colouring of the 24 circular segments in Fig. 6
into black and white. [n Fig. 6 some colouring of this type is shown as an example.
This colouring gives rise, as it is evident from simple consideration, to the
following functional equation

S(0,,0,,0,)8(0,,0,.6.)5(0,.0,.0,)a(0,.0.,0,)
+ait, 0,,0)a(0,.0,,0.)d0,.0,,0.)0(4,,0.,0,)
= U0, 0,,08,)U(0,,8,.0,)U00,,05,0:)8(6,,6..6,)
+ Vil,, 05, 0,)V1(0,.0,.0)V(0,,0,,0)a(6,,8..,0.). (3.1)
The equation (3.1) is only one representative of the system of functional
tetrahedron equations which arises if one considers all possible allowed colourings
of the circular segments in Fig, 6. This system includes hundreds of independent

equations and we are not able to present it here; the equation (3.1) is written down
mainly for illustration.
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Fig. 7. Fragment of the diagram in Fig. & which is enclosed with the dotted curve

It is essential that the variables 0., 0,, 0. 8,. 8. 8, in the tetrahedron equations
are not completely independent. Since the mutual orientation of four planes in
three-dimensional space is determined completely by only five parameters, there is
one relation between these six angles®. This relation can be derived, for instance,
from the spherical trigonometry. To do so, concentrate on the fragment of Fig. 6,
surrounded by dotted curve. This fragment is shown separately in Fig. 7, where the
circular arcs are drawn schematically as the straight lines. Using the formulae of
spherical trigonometry one can express the lengths of segments #,, and 7, in
terms of the interior angles of the spherical triangles (123) and {256), respectively.
On the other hand, the length of the segment /,.=¢,,+7¢,. may be expresscd
independenily in terms of the interior angles of the triangle (354). This allows one
to write

[CGS i i ; 5 +.'Tj2_ﬂ3 cos 9605 _i?zcos,—gﬁ;ﬂz_ﬁjrfz
B, +0,+8, 0,4+8,—8, 8,+0.+0, 8,+8.—0.]"?
- cosl—25 i -"-’cos%cm_@. 2_5} 6iias AT% 5
i L D (B R
=sin {1, [_‘.{]SLEE’{_E cos 2m _”32 By—0s (3.:2)

Equation (3.2) is a variant of the desired relation.

4. The Solution of the Tetrahedron Equations

The relation (3.2) connecting the interior angles of the tetrahedron essentially
complicates the direct investigation of the tetrahedron equations. However, one
can concentrate at first on the special limiting case. Namely, consider the variables

3 Certainly, this relation is the imbedding condition of four vectors n,. n,, ny, n, into the three-
dimensional space. ts general form is det |n%l =0, where four vectors n¥ are treated formally as four-
dimensional; g, u=1,2.3.4
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0, 05, 85, 04, 6, 04 satisfying the relation

which corresponds to the limit of coplanar vectors n . n,. ny. 11, In this case all the
spherical triangles in Fig. 7 can be treated as planar ones and the relation (3.2) is
certainly satisficd, From the viewpoint of straight-strings kinematics, the relation
(4.1) corresponds to the limit of “infinitely slow™ strings ; therefore we call this case
the “static limit”. In the static limit the variables ¢, 0,, 0; (which arc the
arguments of the three-string amplitudes) are just the planar angles between the
directions of three strings s,, 5, .. They satisfy the relation 0, +0, + 0, =n. Hence
the “static” three-string amplitudes are the functions, not of three, but of two
variables, 8., 8.

Most of the tetrahedron equations do not become identities in the static limit
[as it happens for the Eq. (3.1)]. Actually, considering the static limit, the number
of the independent tetrahedron equations even increase, since the different cross-
channels of the same “complete” equations give rise to the different “static”
tetrahedron equations.

In [8] the solution of the static-limit tetrahedron equation was constructed ; it
has the form

$(6,,02) = 770, 02) = T¥(0,,05) = *(0,,0,)= 1
as(0,,0,)=R"8,.0,)=0:

172
L8, 0,)= w0 12 02)=—K(0,.8,)=¢, V(0,.0,)= {LE 82]‘ tg {iﬂ :

10 s yiiee
cos (71 - 72)
H*B,,0,)=U"0,8,)=—¢c, 2%0,,0,)=¢, a—e : (4.2)
cos?lcos?z |
where the notations for the three-string amplitudes are the same as in Fig. 5 and in

(2.2), the 8, being set equal to n— 8, — 8, ; for instance,
U(0,,0,)=U(0,0,,n—0,—0,).

In (4.2) £, and &, are arbitrary signs: &2 =g2 = 1. Expressions (4.2) satisfy all the
“static” tetrahedron equations. We do not insist that (4.2) is the general solution:
rather we think that it is not so.

Let us search for the solution of the “complete” tetrahedron equations which
Corresponds to the static limit (4.2), First consider the power expansion around the
static limit. Namely, let the velocities of the scattered strings be not exactly zero
but small, In this case the three-string scaltering amplitudes can be conveniently
considered as the functions of two angles 8,, , (which determine the space
directions of the strings s,, 5,. 5,. see Fig. 2) and “symmetrical velocity™ w=3dr/di
where » is the radius of the circle inscribed in the triangle in Fig. 2. At small
velocities of the strings s,, 8, 55, 5, the nonrelativistic kinematics is valid, and the
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ity jocities” w, corresponding to four triangles (123), (256), (146), (453) in Fig. 7, are
wmjected as follows:

0,

QLZS

3 : [
sin sin — COs —
2 0 2
Wil — 500 om0 i —H‘H"zseTv
o Hy o g LUy 735
sin —sin — sin— oS
2 7 2 2
{4.3)
Bl g il
$in ——=&in — COs — i
2 2 p) 2
Wiss e~ = hgas o i Wase—
g ey AL . Us
sin—2 sin—% CONo2 sin—>
2 2 2 2

here Lh’:‘.‘ notations 00,, =8, +46,; HM_=EJE_+ O '?135 =l +HE'+ Hﬁl arc used. The
. yestigation of the tetrahedron equations in the linear approximation (in w) leads
10 ¢he result

Bio ot il BTRNE
a0, 0,,w)=—z,R(0,,0,,w)=¢,Aw|sin Zl-sin : ;-smg +0(w?), (4.4a)
S(6,,0,,w)=T(0,, 8, w)=1—iw+0(w?), (4.4b)
a0, 0,, wy=W(0, 0, w)=1+Jw+ O(w?), (4.4c)

U(6,.0,,w)=H(0,.0,,w)=—¢ Q(0,,0,,w)
=U™0,,0,) (1 +0(w?), (4.4d)
ax6,.0,, w)= —Ki(8,,0,,w)

=L(0,,6,)(1+Aw ctgHTl g2 1+ 0 [4:4¢)
L [Jj_:' 625 W)= £ V':ﬂp 02: W)
5T 1 61 'j'-' 2
=LM0,,0,) (1 —Awctg—-ctig == 4+ 0(w?), (4.41)

wher® O,=mn—0,—8,, L* and U* are given by Egs. (4.2), and 4 is an arbitrary
Dﬂ:_'-;tvﬂl.'lt.
in studying the complete relativistic tetrahedron equations it is convenient to

,ﬂtrgduce the variables (spherical excesses)

i
200=0,+0,+8,—=n,
2p=n+0,—0,—0,,
y=n+6,—6,—0,,

(4.5)

Ohﬂfm g the relation

at+f+ypt+d=mn. (4.6)
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Any transmutations of 8, 8,, 05, and also any crossing transformations of the type
of (2.1) lead, as one can easily verify, to some transmutations among the variables
o, B, 7. 0. In fact, the quantity 2o is the area of the spherical triangle I, (and F,) in
Fig 4, while 28, 2y, 26 are the areas of the triangles I,. I3, I, respectively.
Therefore the four cross-channels [,—F,, I,—F,, I,—»F,, I,—F, of the three-
string scattering will be called o, f. y, 6-channels, respectively.

In the static limit #, +0,+0,—mx, and we have

a—0; B—=b,; y-6,; 028, (4.7)

The following relation is valid up to the main order in w

/e B s B T%

Therefore, as it is seen from (4.4), the three-string amplitudes have the square-root
branching plane 2 =0, which will be called the z-channel threshold. The crossing
symmetry requires the amplitudes to possess the branching planes (also square-
root) f=0; y=0: =0, which are the thresholds of the f, y, é-channels.

These reasons allow one to write down the following formulae

ol 12
sin 5
aé,,0,.0;)=R(0,,0,,08,)=¢, B e 5 (4.9a)
y
€08 508 5 COS 5
T o i & /2
_V(0,,0,,0.)=teltes| —|tgites| ; 4.9b
(04,05, 05) [ngtgzl [gztgz (4.9b)
. ¥ 3 1/2 o ﬁ 1/2
WA, 0,,05)=—K(6,,0,,05)= [tgztg zJ i [tgitgz ; (4.9¢)
e 12
5{93!821{:]3}:'}“{01:511 33)=I = tgitg%tg%tg% - (4.9d)
. By 82
0(0,,0,,6,)=1+|tg—tgtg-tg—| |, 49
which are in accordance with the expansion (4.4) provided ¢, = —1 and /=1, and

entirely satisfy the crossing relations (2.3). Therefore we suppose that the
expressions (4.9) give the exact solution of the “complete” tetrahedron equations
for the two-colour model.

Unfortunately, rigorous verification of this supposition is rather difficult.
Direct substitution of (4.9) into the tetrahedron equation is complicated because of
the relation (3.2), not to speak of the large number of equations to be verified.
However, we have performed some simplified verifications: an example is given in
the Appendix. Moreover, our supposition has been confirmed in various numeri-
cal checks.

Note that, like the triangle equations (1.1), the tetrahedron equations are
homogeneous ; the three-string S-matrix is determined by the equations only up to



166

502 A B Zamolodehikay

the overall factor which can be a function of the variables 0, The formulac (4.9)
should be considered as expressions giving the ratios of different elements of the
three-string S-matrix ; the right-hand sides of all the equalities (4.9) are implied 1o
be multiplied by some function

[Z(a, B, 7,0)]7 1, (4.10)

which is symmetric under arbitrary transmutations of the variables o, .y, 8 [thisis
forced by the crossing symmetry requirements (2.3)]. This funclion will be
determined by the unitarity condition for the straight-strings S-matrix, studied in
the nex! section.

5. Unitarity Condition

In the euclidean domain the variables =, f5, 3,  [connected by (4.6)] are real and
non-negative, and all the amplitudes (4.9) are real. The “physical” scattering of the
strings 5, in Minkowski space-lime corresponds to real negative values of «
(provided the velocities of the strings s, are not too large*. Here the amplitudes
acquire the imaginary parts. Let us introduce the cutting hyperplane Imo=Im §
=Imy=Imo=0; Rea <0 (corresponding to the branching plane 2=0) in the
three-dimensional complex space of the variables o, f. v, §. Then the “upper” cdge
(Ima=+4+0; Ref>0; Rey=0; Red =0) of this hyperplane represents the “physi-
cal” domain of x-channel. Continuing some amplitude to the “lower” edge
Ima=—0, one obtains the complex-conjugated amplitude of reversed pProcess
(here we imply the T-invariance so that the amplitudes of direct and reversed
processes are equal).
In the physical domain of z-channel the three-string unitarity condition should
be satisfied, 1.c.,
Pk ks ek e ey
E S:fﬁgf._};:_‘-{[ﬂl, fl,, 8315521.:5.?;'3(91, U, 05)% =3d,10728;2 (5.1)
k[k‘;kfl FEAlzh3 Laes2aky
where S is the amplitude of the process shown in Fig. 2 and the star denotes the
complex conjugation. If the second multiplier in the left-hand side of (5.1) is treated
not as the complex-conjugated amplitude but the result of analytical continuation
around the branching plane x=0. the relation (5.1) becomes valid at any complex
f.
The requirement (5.1) for the two-colour string model leads, using (4.9), to the
single equation for the “unitarizing factor” (4.10)

S L o B L T
CO8 ——COs — =

—COSs
R . 2 2 2 .
Z{!I, ﬁ: 7 0)"’{ {:Ia ﬁ> 7 ‘:}): ﬁ ) = (32}
1 ¥ )
COS — COS — COS = C0s —
& 2 2 v,

where the suffix (x) denotes the continuation around the branching plane x=¢0.
This equation together with the requirement of symmetry under arbitrary

4 Actually, this is true unless the velocities of two-string intersection points exceed the speed of light
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transmutation of the variables, determines the factor (4.10). The investigation of
this equation is the subject of our further work.

[t can be shown that, due to the factorization of the multstring S-matrix into
three-string ones, the three-string unitarity condition (5.1) guarantees the unitarity
of the total S-matrix of straight-strings.

6. Discussion

[n a recent paper by Belavin [10] the remarkable symmetry of the triangle Eqgs.
(1.1) was discovered. This symmetry reveals the reasons for the compatibility of the
overdefined system of functional Egs. (1.1) and throws some light upon the nature
of the general solution of these equations. It would be extremely interesting to find
something like this symmetry in the tetrahedron equations.

As explained in the Introduction, the factorized S-matrix of straight-strings in
the euclidean domain can be interpreted as the three-dimensional lattice statistical
model which possesses Z-invariance and apparently is exactly solvable.

Infortunately. for the solution found in this paper some of the vertex weights turn
out to be negative; therefore the existence of the thermodynamic limit of the
corresponding lattice system becomes problematic. We suppose that there are
solutions of tetrahedron equations which are free from this trouble. On the other
hand, if the thermodynamic limit exists, there is the hypothesis that the partition
function of a Z-invariant statistical system on the infinite lattice is simply
connected to the “unitarizing factor” (4.10). (The two-dimensional analog of this
hypothesis is discussed in [4].)

Appendix
Consider the Eq. (3.1) under the following condition
f,+0.+0,=m. (A1)
Since d* =0, §*=@* =1, the Eq. (3.1) acquires the form
a6, 0, 8)a(0,, x—0,—0.6,)aAd,,0,.0)

= U(0,,0,,8)U0,.0,,m—0,—8)U0,,0,.0,), (A2)
After the substitution of the explicit expressions (4.9) into (A.2) it can be rewritten
g, +8.+8, 0,40,—0,—0; 0,+0,+0
Cos— 5 s 42 1~ g2 -24+- 2
0, +6.—4t i, + 1, +H f) 7y — 8
:cms%sm- 17 Uﬁ%cos 'Jr-{ig. (A.3)

The validity of this equality. assuming (3.2), remains to be proved.

The degeneration of the diagram in Fig. 7, corresponding to the case (A.l), is
shown in Fig. 8, The length of the circular segment can be expressed independently
in terms of the interior angles of two triangles in Fig. 8: either (123) or (124).
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Fig. 8. Degencration of diagram shown in Fig, 7, corresponding 1o the relation (A1)

Comparing the results one obtains the relation

g G 8y %0-.—8. =48, .
casu%ucos&-+ ,f 2 gin 311 52 Ll S

82+H5+H4—H1r’2
2

g Sk ., fe GOl
Lol %_ﬂzcmﬁz—k% 0. 6,40, 40,0,

1,2

0,46, +0.4+6,
2 sin 1+ 22 :-+4-

(A.4)
Doing the same with the segments ¢,, and /7, one gets two more relations

: 0,46, — 0.+0,—0 A, +0,+6.1"7
{cosﬂf—i‘2+gj O i = 9, i 23 Leos—2 7,;_'_ 5]

—

= [GOS

6, +6,—0 g, +0,—8 6,+0,— 0. +8,—8, M
1 922 3 cos l+; s at 23 Hsms___4 24 :sJ :

(A.3)
Byt = 8 0, +0,+0,—0 )y — 0, — 0, ]
COs Doty 2 b sog s et H; il sin ot 2--—'2_ bsFs sin-ql b il > 4 6§J

2 2

Cos

By . @, +0,+0. 48, . 8, —0,—8,—0.]""
—Lgint J‘—:- £ dgip—L 22 1

(A.6)

which are certainly equivalent to (A.4). Taking the products of the right- and left-
hand sides of (A.4), (A.5), (A.6), one obtains exactly the equality (A.3).
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