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Abstract— "Broadcasting”, namely distributing information over many users, suffers in-
principle limitations when the information is quantum. This poses a critical issue in quantum
information theory, for distributed processing and networked communications. For pure states
ideal broadcasting coincides with the so-called ”quantum cloning”, describing an hypothetical
ideal device capable of producing from a finite number N of copies of a state (drawn from a set)
a larger number M > N of output copies of the same state. Since such a transformation is not
isometric, it cannot be achieved by any physical machine for a quantum state drawn from a non
orthogonal set: this is essentially the content of the "no-cloning” theorem. For mixed states the
situation is quite different, since from the point of view of each single user a local marginal mixed
state is indistinguishable from the partial trace of an entangled state, and there are infinitely
many joint output states that correspond to ideal broadcasting. Indeed, for sufficiently large
number N of input copies, not only ideal broadcasting of noncommuting mixed states is possi-
ble, but one can even purify the state in the process. guch state purification with an increasing
number of copies has been named "superbroadcasting”. In this paper we will review some recent
results on superbroadcasting of qubits, for two different sets of input states, corresponding to
universally covariant broadcasting and to phase-covariant broadcasting of equatorial states. After
iliustrat'mg the theoretical derivation of the optimal broadcasting channels, we give the maximal
%Jrity and the maximal number of output copies M for which superbroadcasting is possible.

e will see that the possibility of superbroadcasting does not increase the available information
about the original input state, due to detrimental correlations between the local broadcast copies,
which do not allow to exploit their statistics. Thus, essentially, the superbroadecasting channel
simply transfers noise from local states toward correlations. We finally propose a procedure to
realize optimal superbroadcasting maps by means of optimal pure states cloners.

4 Iﬁleywords: quantum cloning, quantum broadcasting, Wedderburn decomposition, Schur-Weyl
uality

1 Introduction joint state that is indistinguishable from the tensor
product of local mixed states from the point of view
of individual receivers. Therefore, the no-cloning
theorem cannot logically exclude the possibility of
ideal broadcasting for sufficiently mixed states.

In Ref. [4] it has been proved that perfect broad-
casting is impossible from N = 1 input copy to
M = 2 output copies, and for a set of non mutu-
ally commuting density operators. This result was
then considered (see Refs. [4] and [5]) as evidence
of the general impossibility of broadcasting mixed
states in the more general case in which N > 1 in-
put copies are broadcasted to M > N users, for
states drawn from a non commuting set. However,
in Ref. [6] some of the present authors have shown
that for sufficiently many input copies N and suf-
ficiently mixed states the no-broadcasting theorem
doesn’t generally hold, and it is possible to generate
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“Information” is by its nature broadcastable. What
about when information is quantum? Do we need
| to distribute it among many users? Indeed, this
may be useful in all situations in which quantum in-
formation is required in sharable form, e. g. in dis-
tributed quantum computation, for quantum shared
secrecy, and, generally, in quantum game-theoretical
contexts. However, contrarily to the case of clas-
sical information, which can be distributed at will,
broadcasting quantum information can be done only
in a limited fashion. Indeed, for pure states ideal
broadcasting is equivalent to the so-called “quan-
tum cloning”, which is impossible due to the well-
known “no-cloning” theorem [1, 2, 3]. The situation
is more involved when the input states are mixed,
since broadcasting can be achieved with an output




M > N output local mixed states which are iden-
tical to the input ones, and with the input mixed
state drawn from a noncommuting set. Actually,
as proved in Ref. [6], it is even possible to partially
purify the local state in the broadcasting process,
for sufficiently mixed input state. Such simultane-
ous purification and broadcasting was then named
“superbraodcasting”.

The possibility of superbroadeasting does not in-
crease the available information about the original
input state, due to detrimental correlations between
the local broadcast copies (see Ref. [7]), which do
not allow to exploit their statistics (a similar phe-
nomenon was already noticed in Ref. [8]). Essen-
tially, the superbroadcasting transfers noise from lo-
cal states toward correlations. From the point of
view of single users, however, the protocol is a purifi-
cation in all respects, and this opens new interesting
perspectives in the ability of distributing quantum
information in a noisy environment.

This paper reviews the universal and phase-co-
variant optimal superbroadcasting maps. The two
maps are derived in a unified theoretical framework
that is thoroughly presented in Section 2. In Sec-
tions 3 and 4 we collect the main results concerning
universal and phase-covariant superbroadcasting. In
Section 5 we describe a scheme to achieve optimal
superbroadcasting maps of mixed states by means
of optimal cloners of pure states. Finally, Section 6
discusses the role of correlations in the output states.

2 Symmetric qubits broadcasting

In deriving optimal maps, we shall extensively use
the formalism of Choi-Jamiotkowski isomorphism [9,
of CP maps £ from states on the Hilbert space H to

states on the Hilbert space K, and positive bipartite

operators R on K® H

Re = (£@T) W) (¥,

E(p) = Trn [(I®@p7) Re], W
where Ut is the non normalized maximally entan-
gled state Y, |m) ®|m) in H@H, and X7 denotes
the transposition with respect to the basis |m) used
in the definition of ¥, In term of Rg, the trace-
preserving condition for £ reads

Trx[Re| = In, (2)

and covariance under the action of a group G is
equivalent to

£ (UspU}) = ViED)V; & [V ® U3, Re] =0, (3)

where U, and Vj, are the unitary representations of
G 3 ¢ on the input and output spaces, respectively,
whereas X* = (X")T denotes the complex conju-
gated of the operator X. In terms of the operator

operator Rg the group-invariance properties from
the map € read as follows

E(UypU)) = E(p) & [T @ U, Re] =0, (4)
and
E(p) = Val(p)V{ & Vo ® I, Re] =0.  (5)

‘We will consider CP maps B from N-qubits states
to M-qubits states, i. e. M = (C*)®Y and K =
(C*)®M, The first requirement for a broadcasting
map is that all receivers get the same reduced state,
a requirement that is achieved by a map whose out-
put is permutation invariant.! Moreover, there is
no loss of generality in requiring that it is also in-
variant under permutations of the input copies. This
two simple properties, according to Eqs. (4) and (5),
can be recast as follows

[Hf @ Hf! R] =0, (6)

where ITM and II¥ are representations of the out-
put and input copies permutations ¢ and T, respec-
tively. Notice that permutations representations are
all real, whence IT} =1II,.

A useful tool to deal with unitary group represen-
tations Uy of a group G on a Hilbert space H is the
Wedderburn decomposition of H

He PH. T, (7)
i

where the index p labels equi'valence classes of ir-
reducible representations which appear in the de-
composition of U,. The spaces H,, support the irre-
ducible representations, and C% are the multiplicity
spaces, with dimension d,, equal to the degeneracy of
the p-th irrep. Correspondingly the representation
U, decomposes as

U, =EPUsel,. (8)
i

By Schur’s Lemma, every operator X commuting
with the representation U, in turn decomposes as

X = @D In, ® Xa,. 9
I

In the case of permutation invariance, the so-called
Schur-Weyl [11] duality holds, namely the spaces
C9 for permutations of M qubits coincide with
the spaces H,, for the representation UPM of SU(2)
where U, is the defining representation. In other

1 Actually, this is not strictly needed, since a joint output
state having identical local partial traces is not necessarily
permutation invariant. However, most figures of merit used
for judging broadcasting maps enjoy this invariance, in par-
ticular the one that we consider in the present paper. Hence
permutation invariance of the output can be required without
loss of generality.
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words, permutation invariant operators Y can act
non trivially only on the spaces H,

Y =PV, e, (10)
e

The Clebsch-Gordan series for the defining represen-
tation of SU(2) is well-known in literature [11, 12,
13], its Wedderburn decomposition being the follow-
ing

M/2

H~ P H;eCh, (11)

J=Jo
where H; = C#+1, j, equals 0 for M even, 1/2 for
M odd, and

25 +1 M
dj = ———-— ]
. M/2+j+1(M/2—j) e
Now, the Hilbert space I ® H on which the op-
erator R acts, supports the two permutations rep-
resentations corresponding to the output and input
qubits permutations, consequently

M/2 N/2
KeH~ | PHeC || PHeCH
Jj=Jjo I=ly

(13)
Upon rearranging the factors in the last equation,
we can recast the decomposition in a more suitable
way, namely

M/2 N2
KeH~ PP H o) e (CheCh), (14)
J=jol=lo

and to satisfy Eq. (6) we have the following form for
R, according to Eq. (10),

M/2 N/2

R= @ @Rﬂ ® (Idj ® Id;) i (15)

J=io l=lo

where R;; acts on H; ® H;. In order to have trace
preservation and complete positivity, the operators
Rj; must satisfy the constraints

iR = 22, g
J

Ry >0,
where Tr; denotes the partial trace over the space
H;. This is the starting point for the analysis of
symmetric qubits cloning devices. Requiring further
conditions such as covariance under representations
VEN, VEM of a group G, namely

P s8N, pliaiy (17)

will give a further constraint on the operators Rj;.
In the following we will consider the two cases G =
SU(2) (universal covariance) and G = (1) (phase-
covariance).

Besides Wedderburn decomposition and the re-
lated Schur-Weyl duality, another useful tool we will
extensively use is the decomposition of tensor-power
states p®V

N/2 " Ji
PPN = (ryr )N/2 @ (}i) ®ly;, (18)

J=do
where p = 1(I4r0,), and JP = ¥ m|jm)(jml|
(for a derivation of identity (18) see Refs. [14] and [7]).
Notice that the total angular momentum component
J, of N qubits is clearly permutation invariant and
can be written as

1 N Nj2
Iy = EZai’” =P i e 1y, (19)
k=1 =do

where o) denotes the operator acting as o, on
the k-th qubit, and as the identity on all remain-
ing qubits.

A simple but effective way of judging the qual-
ity of single-site output p’ = Trp—q [B (p®)] is to
evaluate the projection r’ of the output Bloch vector
over the input one

Ti{o,p] =7 (20)

As we will see the single-site output copy p' of a
covariant broadcasting map commutes with the in-
put p, whence 7’ is indeed the length of the output
Bloch vector. The trace in Eq. (20) can be eval-
uated by considering that the global output state
% = B(p®V) is by construction invariant under per-
mutations, hence

M/2
Ji=Jo
and (see Ref. [7])

o M/2
vhmins > d;T[JPT;). (22)
J=jo i
In the phase-covariant case, according to the usual
convention, we more conveniently take p diagonal
on the o, eigenstates, and the previous formula is
just substituted by

o M/2 :
oy 3 4 I, (23)
3=jo

In the following we will use as figure of merit the
length ' of the output Bloch vector. This is ac-
tually a linear criterion, which restricts the search
of optimal maps among just the extremal ones. We
emphasize that for evaluating broadcasting maps for
qubits the length of the output Bloch vector is a fig-
ure of merit more meaningful than the single-site

=Jhli—















