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Abstract In this paper we review the general framework of operational probabilistic
theories (OPT), along with the six axioms from which quantum theory can be derived.
We argue that the OPT framework along with a relaxed version of five of the axioms,
define a general information theory. We close the paper with considerations about the
role of the observer in an OPT, and the interpretation of the von Neumann postulate
and the Schrödinger-cat paradox.
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1 Introduction

After the experience accumulated in thefield ofQuantum Information theory, in the last
decade a completely new perspective on foundations of Quantum Theory flourished.
The possibilities introduced in information processing by shifting from the classical
to the quantum computation paradigm opened an unexpected scenario containing
novel algorithms [3,9], protocols [2], and properties of information [10,11]. The new
approach to quantum foundations started from this standpoint, and aimed at upturning
the role of the astonishing theorems of quantum information to basic principles from
which the Hilbert space structure of the theory could be derived [6–8]. Moreover,
a crucial feature of the new foundational approach was the idea that the transition
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from classical to quantum information highlights only a tiny fraction of the general
features of information [1], whereas a thorough approach would also clearly locate
the boundaries of a general information theory.

Quantum Theory is indeed derived as a special theory of information, from six
information-theoretical principles [5] that, for the first time, also set the boundaries of
a general theory of information. The power of the new principles resides not only in the
reformulation of quantum theory, but also in providing a framework and a language for
deriving the most relevant theorems of quantum theory and of quantum information
theory, using a conceptual path instead of a mathematical derivation.

In the present paper we review the formulation of the information-theoretical prin-
ciples. We first set the framework and the language of the operational probabilistic
theory (OPT), which also defines the background scenario of a general information
theory [4]. We then use the language to express the six principles, five of which are
fulfilled also by classical information. The purification principle is the one that singles
out quantum theory.

The OPT framework, in addition to allowing a thorough definition of a general
information processing, along with some of the principles also represent an essential
part of the scientific method itself, being such principles strictly needed in order to
do physics. With minimal relaxation and generalization, this is true for all the five
principles shared by classical information. TheOPT framework and the new principles
will become the standpoint for further progresses in the exploration or modification
of the most fundamental theory in physics.

2 The General Framework

One of the main rules of the scientific method is to have well clear distinction between
what is experimental and what is theoretical. Though this would seem a trivial state-
ment, such a confusion happens to be often the source of disagreement between
scientists. Though the description of the apparatus is generally intermingled with
theoretical notions, the pure experimental datum must have a conventionally defined
“objectivity” status, corresponding to “openly known” information, shareable by any
number of different observers. Then both the theoretical language and the framework
must reflect this theory–experiment distinction, by indicating explicitly which notions
are assigned such objectivity status. Logic, with the Boolean calculus of events, is an
essential part of the language, and Probability Theory can be regarded as an extension
of logic, assigning probabilities to events. The notion that is promoted to the objectiv-
ity status is that of “outcome”, announcing which event of a complete test occurred.
The operational framework is a further extension of probability theory that provides
a theoretical connectivity between events, the outcome remaining the only ingredient
that is granted the objectivity status: everything else—probabilities, events, and their
connectivity—remain purely theoretical.

A test is a collection {Ci }i∈X of possible events Ci labeled by outcomes i ∈ X, and
has an input system A and an output system B. We can denote it through a diagram as
follows
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Each outcome i ∈ X corresponds to a possible event, represented as

The run of two tests {Ci } and {D j } in a sequence is a new test called sequential
composition of {Ci } and {D j }, whose events are

while their run in parallel is named parallel composition of {Ci } and {D j }, with events

with composite input systemAC and output BD. Since parallel composition represents
the independent run of two tests on different systems, the sequential composition of
two tests that are parallel compositions must satisfy the following intuitive property

Parallel composition of tests clearly requires a notion of composition of systems.
Given any two systems A and B, one can form the composite systemAB. Composition
is associative: (AB)C = A(BC). In every experiment one can involve a trivial system,
denoted as I, that is a virtual system that carries no information. Since this system is
trivial, we have AI = IA = A.

The tests that have the trivial systemas input or output system, are calledpreparation
tests and observation tests, respectively, and will be denoted as follows

Merging the outcomes of one test into composite outcomes of a coarse-grained test,
or refining compatible tests are primitives that need to be accounted for. Probability

123



272 Found Phys (2016) 46:269–281

theory enters the framework in assigning a joint probability to events. Keeping track
of the connectivity between events corresponds to set a correspondence between the
joint probability and the closed network of events, namely an event with trivial input
and output systems. Hence, the probability is an event of the trivial system I, and this
corresponds to associate a closed diagram to a number 0 ≤ P ≤ 1 as follows

This also corresponds to have the joint probability of all outcomes parametrically
dependent from the circuit, namely

P = p
(
i1, i2, i3, i4, i5, i6, i7, i8|!,A ,B,C ,D,E ,F ,G

)
.

We emphasize that, whereas the outcomes are objective, the association of a mathe-
matical object to the joint event, the identification of systems, and the assessment of
the probability of the event are purely theoretical ingredients. Thus the general ele-
ment of the OPT theory is the joint probability and its parametric dependence on the
circuit.

2.1 States, Effects, Transformations

Consider now the following diagram

The fact that the diagram corresponds to a real number implies that one can think
of the observation-event a j as a functional on preparation-events ρi , and viceversa
a preparation-event ρi is a functional on observation events a j . If two preparation-
events ρi and σi ′ have the same probabilities for all observation-events a j , we will
say that they prepare the same state, and similarly if two observation-events have the
same probabilities for all preparation-events ρi , we will say that they detect the same
effect. Since preparing the same state and detecting the same effect are equivalence
relations, we will collect preparation-events and observation-events into equivalence
classes called states and effects, respectively, and identify themwith the corresponding
functionals. States and effects are then elements of real vector spaces StR(A) and
EffR(A), that will be assumed to be finite dimensional, with dimension DA. The
dimension DA is the size of system A, and thus we will say that B is smaller than
A if DB < DA. The sets of states and effects are denoted as St(A) ⊆ StR(A) and
Eff(A) ⊆ EffR(A), respectively. In the followingwewill always takeSt(A) andEff(A)
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as convex.1 The cones generated by states and effects of a system A are denoted as
St+(A) := {η = kρ|k ≥ 0, ρ ∈ St(A)} and Eff+(A) := {x = ka|k ≥ 0, a ∈
Eff(A)}.

Since the composition of any event C j with a preparation-event ρi always provides
another preparation-event ρ′

i, j , as in the following diagram

also events can be collected into equivalence classes corresponding to linear transfor-
mations from the space of statesStR(A) toStR(B). The space of linear transformations
with input system A and output system B is denoted as TrR(A → B), while the set of
transformations is Tr(A → B) ⊆ TrR(A → B). As for states and effects, we denote
the cone generated by transformations as Tr+(A → B) := {Z = kT |k ≥ 0, T ∈
Tr(A → B)}.

A coarse-graining of a test {Ci }i∈X is obtained by merging outcomes into subsets
X j ⊆ Xwith j ∈ Y, forming a partition of X, namelyXi ∩X j = ∅ and

⋃
j∈Y X j = X.

The corresponding test is {D j } j∈Y, and using the rules for probabilities of composite
events one can prove that

D j =
∑

i∈X j

Ci . (1)

For example, from a test with outcome set X = {1, 2, 3, 4, 5} one can obtain a test
with outcomes Y{even, odd}, where even = {2, 4} and odd = {1, 3, 5}. A test is
deterministic if it corresponds to the full coarse graining of some test, namely Eq. (1)
holds with Y = {0} and X0 ≡ X. The unique element of a deterministic test is usually
called channel. We will call extremal the transformations corresponding to extreme
points of the covex hull Tr1(A → B) of the set of deterministic transformations.
Clearly a test is deterministic if and only if it has a unique outcome. The sets of
deterministic states and effects are denoted by St1(A) and Eff1(A), respectively.

Given two tests {Ci }i∈X and {D j } j∈Y such that Eq. (1) holds, we say that for every
j ∈ Y the collection of the transformations {Ci }i∈Y j is a refinement of the transfor-
mationD j . The set Ref(C ) of all transformations that belong to some refinement of a
given transformation C is called the refinement set of C . A transformation is atomic if
it has a trivial refinement set, namely Ref(C ) = {λC , 0 ≤ λ ≤ 1}. A state ρ ∈ St(A)
whose refinement set Ref(ρ) spans the full state space StR(A) is called internal.

For every system A, there is a special transformation IA called identity that,
when composed with any transformation C ∈ Tr(A → B) leaves it unchanged:
IBC = CIA = C . It is easy to check that the identity transformation belongs to a
deterministic test {IA}. A transformation R ∈ Tr(A → B) is reversible if there is a
transformation S ∈ Tr(B → A) such that RS = IB and SR = IA. Then, S is
the inverse ofR and is denoted by R−1.

1 There is no loss of generality in this assumption, as we can always augment St(A) and Eff(A) to their
convex hulls. However, there are exceptional cases where it may be convenient not to do so, e.g. when one
considers deterministic theories, where probabilities are bound to the values 0 and 1.
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2.2 The Theories

Within the framework introduced in the present section one can formulate different
OPT, namely different information processing theories. A specific theory is given by
a set of systems along with their compositions, and a set of transformations of the
systems, closed under sequential and parallel compositions, along with the probabili-
ties of the tests of the trivial system. An important example, for instance, is provided
by the theory of classical systems, where systems are in correspondence with natural
numbers, and states of a system An corresponding to n ∈ N are sub-normalized prob-
ability distributions on n values {pi }1≤i≤n with pi ≥ 0 and

∑n
i=1 pi ≤ 1. Composite

systems Cl = AnBm correspond to l = n × m. Deterministic states are normalized∑n
i=1 pi = 1, and every transformationM ∈ Tr(An → Bm) corresponds to anm×n

real sub-stochastic matrix Mi, j , i.e., with nonnegative entries Mi, j ≥ 0 and satisfy-
ing

∑m
i=1 Mi, j ≤ 1 for all 1 ≤ i ≤ n. Deterministic transformations correspond to

stochastic matrices, namely
∑m

i=1 Mi, j = 1. The parallel composition of two trans-
formations M ∈ Tr(An → Bm) and N ∈ Tr(Cp → Dq) corresponds to the matrix
Li j,hk = Mi,h N j,k .

The postulates that one can formulate in order to single out a theory within the
general framework regard the structure of sets of transformations. The case of quantum
theory is of course of particular interest, and in the next section we provide axioms that
only refer to the possibility or impossibility to perform some information processing
tasks.

3 Quantum Theory

The principles that select quantum theory within the framework of operational prob-
abilistic theories are six. The first five axioms, apart from minimal relaxations, are
an essential part of the scientific method itself, and are strictly needed in order to do
physics.

3.1 Causality

The first principle is causality. This principle forbids an agent Alice to communicate
information to Bob by a protocol in which Bob performs a preparation-test on a system
A and Alice performs an observation-test on A, and none of the agents is allowed to
see the outcome of the other. The scheme is represented in the following diagram

Since Bob cannot access Alice’s outcome, the distribution of Bob’s outcomes is rep-
resented by the marginal distribution

pB
(
i |ρ, a

)
=

∑

j

p
(
i, j |ρ, a

)
.
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Fig. 1 The two figures represent the general structure of the sets of states and effects of a causal theory. On
the left hand side, the set of states St(A), which is the subset of the cone of positive states St+(A) obtained
by the linear constraint (e|ρ) ≤ 1. The intersection of the hyperplane (e|ρ) = 1 and the cone St+(A) (blue
disk) is the set St1(A) of deterministic states. On the right hand side, the set of effects Eff(A), which is
the subset of the cone of positive effects Eff+(A) obtained by the constraint a ≤ e. Geometrically, this
condition corresponds to intersecting Eff+(A) with its image under the central symmetry with center e/2

It is now clear that causality imposes that the marginal probability of Bob’s outcomes
cannot depend on the parameter a, representing Alice’s observation-test. The mathe-
matical formulation of the principle is thus

∑

j

p
(
i, j |ρ, a

)
= pB

(
i |ρ

)
.

Causality can then be interpreted as no-signaling from the output to the input, or, with
a slight abuse of terminology, no-signaling from the future.

The remarkable consequences of causality are numerous, andwe refer to Refs. [4,5]
for a complete account. We review here only three crucial facts. The first one is an
equivalent condition for causality stating that every system A of a theory has a unique
deterministic effect, that we denote by eA. The second one is that in a causal theory
every state is proportional to a deterministic one. As a consequence, the structure sets
of states and effects of a system A in a causal theory have structures analogous those
shown in Fig. 1.

In a causal theory one can then introduce the notion of normalized refinement
set Ref1(ρ) of a state ρ, that is the set of states that are proportional to some state
in Ref(ρ). Notice that in a causal theory an atomic state is then proportional to an
extremal pure state, and the two notions are thus identified. Atomic states are usually
referred to as pure. The third one is that in a causal theory the marginal state ρ on
system A of a bipartite state P ∈ St(AB) is uniquely defined as
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3.2 Local Discriminability

The principle of local discriminability states that, given two different statesρ andσ of a
composite systemAB, it is possible to discriminate the states ρ and σ using the parallel
composition of two observation-tests {ai }i=0,1 ⊆ Eff(A) and {bi }i=0,1 ⊆ Eff(B). One
can prove that this statement is equivalent to the following implication

While it is well known that, as a consequence of local discriminability, the state and
effect spaces of composite systems are the tensor product of the state spaces of the
components, namely StR(AB) = StR(A) ⊗ StR(B), there is a second consequence
which is even more important: It is possible to characterize transformations T ∈
Tr(A → B) by a preparation-test of A and an observation-test of B, as in the following
scheme

What is relevant is that the transformation can be fully determined locally, without the
need of using bipartite states or effects.

3.3 Atomicity of Composition

The principle of atomicity of composition states that it is impossible to refine the
sequential composition of two atomic transformations. In otherwords, ifA ∈ Tr(A →
B) and B ∈ Tr(B → C) are atomic transformations, then BA ∈ Tr(A → C) is
atomic, too. In mathematical words, the principle states that the set of atomic trans-
formations At(A) is a semigroup, and if we add the identity to it, we have a monoid
{IA}∪At(A). This principle remains the most mysterious of all the six, because it is
the only one for which we do not know any theory in which it is not satisfied, and we
cannot exclude that the principle can be proved as a theorem.

3.4 Perfect Distinguishability

Perfect distinguishability requires that for every state ρ0 ∈ St(A) that is not internal
there is a state ρ1 ∈ St(A) that is perfectly distinguishable from ρ0, namely there is
an observation-test {a0, a1} such that

The geometric interpretation of this principle is graphically represented in Fig. 2,
assuming that causality holds: in this case, a state is atomic, or belongs to a proper
face of the cone St+(A), if and only if it is proportional to a deterministic state that is
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Fig. 2 The convex set St1(A)
of deterministic states of a
system A satisfying perfect
discriminability. The state ρ0 is
extremal in the convex set
St1(A), and thus it can be
perfectly discriminated from
another state ρ1. The linear
functional taking value one on
the tangent hyperplane to
St1(A) at ρ0, and zero on the
parallel hyperplane at ρ1
corresponds to an effect. The
same is true for the functional
taking the opposite values

extremal in the convex set of deterministic states St1(A), or belongs to a proper face
of St1(A), respectively.

In a theory that obeys perfect distinguishability, there are propositions that can be
logically falsified: These are the propositions asserting that the occurrence of outcome
j has null probability upon preparation of the state ρi . Indeed, actual observation of
outcome j upon input ρi would be in contradiction with the theoretical description of
the experiment.

In addition to falsifiable propositions, perfect distinguishability allows for encoding
of classical information in the states of our theory. Indeed, a couple of perfectly distin-
guishable states ρ0, ρ1 can be used to encode a classical bit. In particular, in a causal
theory with perfect distinguishability one can always find deterministic perfectly
distinguishable states ρ0, ρ1 ∈ St1(A), and then the preparation-test {p0ρ0, p1ρ1}
faithfully encodes the information from a classical source with probabilities {p0, p1}.

3.5 Ideal Compression

The principle of ideal compression states that for every system A and for every state
ρ ∈ St(A), there exists an ideal compression protocol, defined by an encoding channel
E and a decoding channel D , such that the transformation E is bijective from the
normalized refinement setRef1(ρ) of ρ to the set of states St1(B) of a smaller system
B.Moreover, the channelDE acts as the identity onRef1(ρ). A compression protocol
with these properties is ideal because it compresses every state in every decomposition
of ρ in a perfectly recoverable way, and every state of the system B is useful, in the
sense that it can encode some state in the refinement set of ρ: There is no waste of
resources.

Ideal compression is a very important axiom for the purpose of recovering quantum
theory, as it captures a relevant feature of the convex cones of states: Every face of the
cone of states of a system A is isomorphic to the cone of states of a smaller system B.
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3.6 Purification

The first five principles are satisfied both by classical and quantum information theory.
The sixth postulate, the one that singles out quantum theory, is the purification postu-
late. The purification principle states that every state has a purification, unique modulo
reversible transformations on the purifying system. A purification of state ρ ∈ St(A)
is a pure state ! ∈ St(AB) such that

The uniqueness requirement is the following

for some reversible U .
The consequences of the purification postulate, along with the other five principles,

are manifold. Most of them are in some way related to entanglement, which can be
defined in our general framework exactly as in quantum theory: an entangled state is
a bipartite state that is not separable, and a separable state is a bipartite state that lies
in the convex hull of states obtained by parallel composition, i.e.,

Here we summarize the main consequences of purification (see Refs. [4,5]).

(1) Existence of entangled states The purification of a mixed state is an entangled
state; the marginal of a pure entangled state is a mixed state.

(2) Transitivity of reversible transformations Every two normalized pure states of the
same system are connected by a reversible transformation.

(3) SteeringLet! ∈ St(AB) be a purification of ρ ∈ St(A). Then for every ensemble
decomposition ρ = ∑

i∈X piσi there exists a measurement {bi }i∈X ⊆ Eff(B),
such that

(4) Faithful state For every systemA there exists a pure state! ∈ St(AB) that allows
for process tomography. More precisely, the following map on transformations
A ∈ Tr(A → C) is injective
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Notice that the existence of such a faithful state along with ideal compression
determines an isomorphism between the cone of transformations Tr+(A → B)
and the cone of states St+(AB). This isomorphism is known in quantum theory
as the Choi-Jamiołkowski isomorphism.

(5) No informationwithout disturbanceAny test that provides non-trivial information
about a systemmust disturb the states of the system. This comes as a consequence
of the fact that a test {Ti }i∈X whose coarse graining S := ∑

i∈X Ti acts identi-
cally on the refinement set Ref(ρ) of a state ρ ∈ St(A) provides no information
about states inRef(ρ), namely p(i |T , σ ) = p(i |T , τ ) for every σ, τ ∈ Ref(ρ).

(6) Teleportation There exists an exact teleportation scheme, namely a measurement
{Bi }i∈X ⊆ Eff(AB) and a set of reversible transformations {U (i)}i∈X on system
A such that

Indeed, if such a scheme exists, it is clear that the resource state ! can be used
to teleport a state ϕ ∈ St(A) by measuring the test {Bi }i∈X on system AB and
communicating the outcome i to the receiver, in such a way that he can correct
the corresponding reversible transformation U (i).

(7) Reversible dilation of tests Every test {Ai }i∈X from A to B is equivalent to the
application of a reversible transformation U on an enlarged system AC ≃ BD
with C prepared in a pure state η, followed by the measurement of an observation-
test {bi }i∈X on system D, as in the following scheme

4 Observer, von Neuman Postulate, and Schrödinger Cat

We end the paper with some consideration about the von Neuman postulate and the
Schrödinger-cat paradox in the OPT framework.

4.1 The Observer

From a realist point of view theOPT framework is often considered unsatisfying, being
inherently dependent on the existence of an “observer”. This is intrinsic to the notions
of “observation” and “preparation” that seem to be attached to that of a performing
“agent”. Regarding the need of the “observation” as a theoretical ingredient, one can
argue that a theory must provide predictions of observations, whether deterministic or
probabilistic. Moreover, a theory must consider the existence of incompatible obser-
vations among which a definite choice must be made experimentally. On the other

123



280 Found Phys (2016) 46:269–281

hand, the notion of “preparation” is intrinsic to the need of focusing on a portion of
reality that is finite both in time and space. This corresponds to setting suitable bound-
ary conditions in space, and both a beginning and an end in time, corresponding to an
input-output description.Without setting boundaries and providing an input, the theory
would be also required to account for initial conditions. The existence of incompatible
observations, on the other hand, is the big conceptual departure of quantum physics
from classical physics: the latter has no complementarity, hence no need of choosing
the test, every test resorting to a single one: the reading of a point in phase space, or
of a bit value in a two-state system. In theories à la Bohm one considers a privileged
observation, building up a construction to connect all the other incompatible observa-
tions to the privileged one: however, such connections need notions as “position” and
“particles” that are mechanical, hence external to a theory of general systems. Indeed,
there is no Bohm theory for quantum circuits, whose description can only be given
upon resorting to a treatment in terms of the spurious notion of a particle.

4.2 The von Neuman Postulate

In an input-output description where the circuit framework provides a complete phys-
ical representation, and assuming causality, the only possible way of connecting
theoretically-described portions of reality (i.e., closed circuits) is via an observe-and-
prepare test

(2)

where {li }i∈X is an observation test, and {ωi }i∈X is a set of deterministic states, or
more generally a set of preparation tests. This is precisely the “von Neumann process
1”, used in the famous postulate. Thus the von Neumann postulate is just the reconnec-
tion of theoretically-described portions of reality in a causal OPT. Entering in some
technicalities, one could treat in a similar way also the Lüders rule.

4.3 The Schrödinger Cat

In the OPT framework we can easily understand that the Schrödinger-cat paradox is
not exclusive of quantum theory. The paradox consists in the possibility of entangling
the state of a microscopic system with that of a macroscopic one—e.g. a radioactive
particle that can be decayed or not decayed and a cat that is correspondingly dead or
alive, as in the famous ideal experiment by Schrödinger. The paradox indeed simply
arises from complementarity between a joint observation-test and any local test. This
happens as follows (for simplicity we will assume causality).

Probabilities originate from actualization of potentialities: a priori we know that
there is a set of events that can occur; a posteriori we know which event actually
occurred. The collection of possible events (the potentialities) depends on which
observation-test is chosen, whereas the preparation of the tested systems determines
the probability distribution of the outcomes: The state of the systems is nothing but
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a summary of probability distributions for all possible observation-tests. When we
have a composite system to test—e.g. the Schödinger cat along with the radioactive
atom—we can perform two kinds of joint observations on the systems that are concep-
tually radically different: local and nonlocal observations. In the nonlocal observation
we make the systems interact, and observe the output of the interaction—a know-
ingly hard task in the lab. The easy kind of test, instead, is the execution of local
observations on systems separately. With the cat working as a measurement appara-
tus one must have perfect correlation of local observations: dead-cat/decayed-atom,
or alive-cat/undecayed-atom. If we were able to perform the nonlocal test we could
actually check the existence of entanglement between cat and atom. What happens in
the Schrödinger cat thought experiment is that the nonlocal test has no intuitive phys-
ical interpretation, since it is incompatible with all possible local observations. The
problem would not be cured in a hidden-variable theoretical description à la Bohm.
But if one reasons operationally, it is evident that there is no logical paradox, and the
described experiment is only highly counterintuitive.
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