Relativity principle without space-time

Giacomo Mauro D'Ariano
Università degli Studi di Pavia

Is quantum theory exact?
The endeavor for the theory beyond standard quantum mechanics.
Second Edition FQT2015

Frascati September 23-25 2015
Program

Derive the whole Physics from principles

Physics as an axiomatic theory

with thorough physical interpretation
Principles for Quantum Theory

I Selected for a Viewpoint in Physics
PHYSICAL REVIEW A 84, 012311 (2011)

Informational derivation of quantum theory

Giulio Chiribella
Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L 2Y5

Giacomo Mauro D’Ariano and Paolo Perinotti
QUIT Group, Dipartimento di Fisica “A. Volta” and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
(Received 29 November 2010; published 11 July 2011)

We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of theories of information processing that can be regarded as standard. One postulate—purification—singles out quantum theory within this class.

DOI: 10.1103/PhysRevA.84.012311
PACS number(s): 03.67.Ac, 03.65.Ta

Principles for Quantum Theory

P1. Causality
P2. Local discriminability
P3. Purification
P4. Atomicity of composition
P5. Perfect distinguishability
P6. Lossless Compressibility

Book from CUP soon!

• Mechanics (QFT) derived in terms of countably many quantum systems in interaction

Min algorithmic complexity principle

• homogeneity
• locality
• reversibility
Principles for Quantum Field Theory

- QFT derived in terms of countably many quantum systems in interaction

add principles

- homogeneity
- locality
- reversibility

Quantum Cellular Automata on the Cayley graph of a group G

Restrictions

\[G = \langle h_1, h_2, \ldots | r_1, r_2, \ldots \rangle := \langle S_+ | R \rangle \]
Principles for Quantum Field Theory

- QFT derived in terms of countably many quantum systems in interaction

add principles

- homogeneity
- locality
- reversibility
- linearity
- isotropy
- minimal-dimension
- Cayley qi-embedded in R^d

Min algorithmic complexity principle

Quantum Cellular Automata on the Cayley graph of a group G

Restrictions

- homogeneity
- locality
- reversibility

(geometric group theory)

G virtually Abelian

Linearity (free QFT)

Quantum Cellular Automaton \Rightarrow Quantum Walk

$$U\psi U^\dagger = A\psi$$

don Neumann algebra \Rightarrow Fock space

Isotropy

- There exists a group L of permutations of S_+, transitive over S_+ that leaves the Cayley graph invariant
- a nontrivial unitary s-dimensional (projective) representation $\{L_l\}$ of L such that:

$$A = \sum_{h \in S} T_h \otimes A_h = \sum_{h \in S} T_{lh} \otimes L_l A_h L_l^\dagger$$
\[G = \langle a, b | aba^{-1} b^{-1} \rangle \equiv \mathbb{Z} \times \mathbb{Z} \]
Proposition 2. All the A_h (with $h \in S$) are full rank.

Proof. The unitarity condition $P_h P_h^\dagger = I$ leads to $A_h A_h^\dagger = 0$. Then either A_h is full rank and $A_h^\dagger = 0$ (against hypothesis) or both A_h and A_h^\dagger are not full rank. □

Proposition 3. For $s = 2$, if isotropy holds then the A_h with $h^2 \in S$ and $|S| + |S| = d$ belong to a ring/group/algebra made of at most d^2 elements.

Proof. Being $s = 2$, the A_h have rank equals to 1. Then a generic A_h can be written as $A_h = |\alpha h| \cdot |\beta h|$. The composition of two arbitrary A_h, A_k leads to $A_h A_k = |\alpha h| \cdot |\beta k| = |\alpha k| \cdot |\beta h|$. Thanks to isotropy we have $|\beta k| = c$ for every α, β. □

Remark 2. For $s = 2$, for a virtually Abelian QW the theorem: every virtually Abelian QW with cell dimension s is equivalent to an Abelian QW with quantum cell dimension multiple of s.
Quantum walk on Cayley graph

Theorem: A group is quasi-isometrically embeddable in \mathbb{R}^d iff it is **virtually Abelian**

Virtually Abelian groups have polynomial growth (Gromov)

points $\sim r^d$
• G hyperbolic

\[G = \langle a, b | a^5, b^4, (ab)^2 \rangle \]
• G hyperbolic \rightarrow exponential growth

$$G = \langle a, b | a^5, b^4, (ab)^2 \rangle$$

points $\sim \exp(r)$

information “transmitted” over the graph decreases as $\exp(-r)$
Informationalism: Principles for QFT

- QFT derived in terms of countably many quantum systems in interaction

QCA is a discrete theory
- Ultra-relativistic regime ($k \sim 1$) [Planck scale]: nonlinear Lorentz
 - Relativistic regime ($k \ll 1$): free QFT (Weyl, Dirac, and Maxwell)

QFT derived:
- without assuming Special Relativity
- without assuming mechanics (quantum ab-initio)

Motivations to keep it discrete:
1. Discrete contains continuum as special regime
2. Testing mechanisms in quantum simulations
3. Falsifiable discrete-scale hypothesis
4. Natural scenario for holographic principle
5. Solves all issues in QFT originating from continuum:
 - i) uv divergencies
 - ii) localization issue
 - iii) Path-integral
6. Fully-fledged theory to evaluate cutoffs

Min algorithmic complexity principle

- homogeneity
- locality
- reversibility
- linearity
- isotropy
- minimal-dimension
- Cayley qi-embedded in \mathbb{R}^d

Quantum Cellular Automata on the Cayley graph of a group G

Restrictions
- homogeneity
- locality
- reversibility
- linearity
- isotropy
- minimal-dimension
- Cayley qi-embedded in \mathbb{R}^d

G virtually Abelian
The Weyl QCA

- Minimal dimension for nontrivial unitary Abelian QW is s=2

Qi-embeddability in \mathbb{R}^3
- Uni+Iso \Rightarrow the only possible Cayley is the BCC!!
- Iso \Rightarrow Fermionic ψ ($d=3$)

Unitary operator:
\[
A = \int_B \Theta d\mathbf{k} \ A_\mathbf{k}
\]

- Two QWs connected by P

\[
A_{\mathbf{k}}^\pm = -i\sigma_x(s_x c_y c_z \pm c_x s_y s_z) \\
+ i\sigma_y(c_x s_y c_z \mp s_x c_y s_z) \\
- i\sigma_z(c_x c_y s_z \pm s_x s_y c_z) \\
+ I(c_x c_y c_z \mp s_x s_y s_z)
\]

$s_\alpha = \sin \frac{k_\alpha}{\sqrt{3}}$
$c_\alpha = \cos \frac{k_\alpha}{\sqrt{3}}$
The Weyl QCA

\[i\partial_t \psi(t) \simeq \frac{i}{2}[\psi(t + 1) - \psi(t - 1)] = \frac{i}{2}(A - A^\dagger)\psi(t) \]

\[\frac{i}{2}(A_k^{\pm} - A_k^{\pm\dagger}) = + \sigma_x(s_x c_y c_z \pm c_x s_y s_z) \quad \text{"Hamiltonian"} \]
\[\pm \sigma_y(c_x s_y c_z \mp s_x c_y s_z) \]
\[+ \sigma_z(c_x c_y s_z \pm s_x s_y c_z) \]

\[k \ll 1 \quad \text{\Rightarrow} \quad i\partial_t \psi = \frac{1}{\sqrt{3}}\sigma^{\pm} \cdot k \psi \quad \text{\& Weyl equation!} \quad \sigma^{\pm} := (\sigma_x, \pm \sigma_y, \sigma_z) \]

Two QCAs connected by \(P \)

\[A_k^{\pm} = -i\sigma_x(s_x c_y c_z \pm c_x s_y s_z) \]
\[\mp i\sigma_y(c_x s_y c_z \mp s_x c_y s_z) \]
\[- i\sigma_z(c_x c_y s_z \pm s_x s_y c_z) \]
\[+ I(c_x c_y c_z \mp s_x s_y s_z) \]

\[s_\alpha = \sin \frac{k_\alpha}{\sqrt{3}} \]
\[c_\alpha = \cos \frac{k_\alpha}{\sqrt{3}} \]
Dirac QCA

Local coupling: A_k coupled with its inverse with off-diagonal identity block matrix

$$E_{\pm}^k = \begin{pmatrix} n A_{\pm}^k & i m I \\ i m I & n A_{\pm}^{\dagger} \end{pmatrix}$$

$n^2 + m^2 = 1$

E_{\pm}^k CPT-connected!

$$\omega_{\pm}(k) = \cos^{-1}[n(c_x c_y c_z \mp s_x s_y s_z)]$$

Dirac in relativistic limit $k \ll 1$

$m \leq 1$: mass

n^{-1}: refraction index

Maxwell QCA

$$M_k = A_k \otimes A_k^*$$

$$F^\mu(k) = \int \frac{dq}{2\pi} f(q) \tilde{\psi}(\frac{k}{2} - q)\sigma^\mu \varphi(\frac{k}{2} + q)$$

Maxwell in relativistic limit $k \ll 1$

Boson: emergent from entangled Fermions

(De Broglie neutrino-theory of photon)

1. Vacuum birefringence
2. Vacuum dispersion
3. Fermionic saturation
The LTM standards of the theory

Dimensionless variables

\[x = \frac{x[m]}{a} \in \mathbb{Z}, \quad t = \frac{t[sec]}{t} \in \mathbb{N}, \quad m = \frac{m[kg]}{m} \in [0, 1] \]

Relativistic limit:

\[c = \frac{a}{t} \quad \hbar = mac \]

Measure \(m \) from mass-refraction-index

\[n(m[kg]) = \sqrt{1 - \left(\frac{m[kg]}{m} \right)} \]

Measure \(a \) from light-refraction-index

\[c^\mp(k) = c \left(1 \pm \frac{k}{\sqrt{3k_{max}}} \right) \]
The relativity principle
Symmetries and Relativity Principle

Looking for changes of reference-frames that leaves the dynamics invariant
Change of reference-frame = special change of representation

VA QWs

\[A = \int_B^\oplus d\mathbf{k} A_k \]

\[\mathbf{n}(\mathbf{k}) \cdot \mathbf{T} := \frac{i}{2} (A_k - A_k^\dagger) \] “Hamiltonian”

\[\mathbf{n}(\mathbf{k}) \text{ analytic in } \mathbf{k} \]

\[(I, \mathbf{T}) = (T^\mu) \] Hermitian basis for Lin(\(\mathbb{C}^s\))

Dynamics: eigenvalue equation

\[A_k \psi(\mathbf{k}, \omega) = e^{i\omega} \psi(\mathbf{k}, \omega) \]

\[(\sin \omega I - \mathbf{n}(\mathbf{k}) \cdot \mathbf{T}) \psi(\mathbf{k}, \omega) = 0 \]

For each value of \(\mathbf{k} \) there are at most \(s \) eigenvalues \(\{\omega_l(\mathbf{k})\} \)
\n\(\mathbf{n}(\mathbf{k}) \) analytic in \(\mathbf{k} \) + finite-dim irreps.
\n\(\omega_l(\mathbf{k}) \) continuous dispersion relations branches
Symmetries and Relativity Principle

Change of reference-frame: $(\omega, \mathbf{k}) \rightarrow (\omega', \mathbf{k}') = \mathcal{L}_\beta(\omega, \mathbf{k})$

\mathcal{L}_β invertible (generally non continuous) over $[-\pi, \pi] \times B$

$\{\mathcal{L}_\beta\}_{\beta \in G}$ group (including space-inversion, charge conjugation, …)

Symmetry of the dynamics:

there exists a pair of invertible matrices Γ_β and $\tilde{\Gamma}_\beta$

such that the following identity holds:

$$(\sin \omega I - \mathbf{n}(\mathbf{k}) \cdot \mathbf{T}) = \tilde{\Gamma}_\beta^{-1} (\sin \omega' I - \mathbf{n}(\mathbf{k}') \cdot \mathbf{T}) \Gamma_\beta$$

Γ_β and $\tilde{\Gamma}_\beta$ continuous functions of (ω, \mathbf{k})

G_0 (id-component of G) preserves the branches

change of reference-frame $= \mathbf{k} \rightarrow \mathbf{k}'(\mathbf{k})$

change of reference-frame $= \text{reshuffling } \mathbf{k} \rightarrow \mathbf{k}'(\mathbf{k})$ of irreps. holds for the whole class of VA QW

$k \rightarrow k'(k)$

$L_\beta(\omega, \mathbf{k}) = (\omega(k'), k'(k))$

G_0, G depend on the QW!
Relativity Principle for Weyl QW

\[p^{(f)} := f(\omega, k)(\sin \omega, n(k)) \]

\[p_{\mu} p^{\mu} = 0 \text{ on } \text{Disp}(A) \]

\[p^{(f)}_{\mu} \sigma^\mu \psi(k, \omega) = 0 \text{ “4-momentum”} \]

Non-linear Lorentz group

\[L^{(f)}_\beta := D^{(f)}^{-1} L_\beta D^{(f)} \]

\[D^{(f)} : (\omega, k) \mapsto p^{(f)}(\omega, k) \]

acting on \([-\pi, \pi] \times B\)

\[\text{Disp}(A) \text{ invariant} \]

\[L_\beta \text{ Lorentz} \]

Relativistic covariance of dynamics

\[(\sin \omega I - n(k) \cdot \sigma) = \tilde{\Lambda}_\beta^\dagger (\sin \omega' I - n(k') \cdot \sigma) \Lambda_\beta \]

\[\Lambda_\beta \in \text{SL}_2(\mathbb{C}) \text{ independent of } (k_\mu) \]
Relativity Principle for Weyl QW

Includes the group of “translations” of the Cayley graph: \(G_0 \) is the Poincaré group.

The Brillouin zone separates into four invariant regions diffeomorphic to balls, corresponding to four different particles.
Relativity Principle for Dirac QW

Dirac automaton: De Sitter covariance (non linear)

Covariance for Dirac QCA cannot leave m invariant

invariance of de Sitter norm:

$$\text{Disp}(A): \quad \sin^2 \omega - (1 - m^2)|\mathbf{n}(\mathbf{k})|^2 - m^2 = 0$$

$\Rightarrow \quad SO(1, 4) \text{ invariance}$

$SO(1, 4) \longrightarrow SO(1, 3) \quad \text{for} \quad m \to 0 \quad O(m^2)$
Bisio, D'Ariano, Tosini, Quantum Field as a Quantum Cellular Automaton: the Dirac free evolution in 1d, Annals of Physics 354 244 (2015)
D'Ariano, Mosco, Perinotti, Tosini, Path-integral solution of the one-dimensional Dirac quantum cellular automaton, PLA 378 3165 (2014)
D'Ariano, Mosco, Perinotti, Tosini, Discrete Feynman propagator for the Weyl quantum walk in 2 + 1 dimensions, EPL 109 40012 (2015)
D'Ariano, Physics as Information Processing, AIP CP1327 7 (2011)
D'Ariano, On the "principle of the quantumness", the quantumness of Relativity, and the computational grand-unification, in AIP CP1232 (2010)