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Interesting situation: the parameter to be estimated 
is encoded on a transformation---not on the state!



Quantum Estimation Theory
Problem: estimate    parameterizing
the (unitary) transformation
optimally according to the cost function

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|



Quantum Estimation Theory
Problem: estimate    parameterizing
the (unitary) transformation
optimally according to the cost function

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

Lesson that we learned from 
entanglement:



Quantum Estimation Theory
Problem: estimate    parameterizing
the (unitary) transformation
optimally according to the cost function

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|
Find the optimal entangled state 
(with an any possible ancilla) 
along with the optimal joint POVM 

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

Lesson that we learned from 
entanglement:



Quantum Estimation Theory
Problem: estimate    parameterizing
the (unitary) transformation
optimally according to the cost function

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|
Find the optimal entangled state 
(with an any possible ancilla) 
along with the optimal joint POVM 

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

For the phase no need of  entanglement (we were lucky!)

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

Lesson that we learned from 
entanglement:



Quantum Estimation Theory

P
θ̂

ρθ

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi
|ψ〉
U

P
θ̂

ρθ

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi
|ψ〉
U



Quantum Estimation TheoryP
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|

Pi

|ψ〉

U

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

New scheme



Quantum Feedback

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

V P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

quantum feedback: perform a transformation         on a system which 
depends on an unknown unitary transformation     occurring on a 
(generally different) system (e.g. reference-frames realignment).

TU
U

U



Quantum Feedback

P
θ̂

ρθ
θ
C(θ, θ̂)
Ux
Px
|Ψ〉〉

d−
1
2|I〉〉

F =
∑

i

|Pi〉〉〈〈Pi|

Πi = αi|Ψi〉〉〈〈Ψi|
Pi
|ψ〉
U

V P
θ̂

ρθ θ C(θ, θ̂) Ux Px |Ψ〉〉 x

F =
∑

i

|Pi〉〉〈〈Pi|

Pi |ψ〉 U Πi = αi|Ψi〉〉〈〈Ψi|

U

quantum feedback: perform a transformation         on a system which 
depends on an unknown unitary transformation     occurring on a 
(generally different) system (e.g. reference-frames realignment).

TU
U

TU



Multiple copies
For parameter estimation: repeat the estimation     
times, gaining a precision factor

N
√

N



Multiple copies
For parameter estimation: repeat the estimation     
times, gaining a precision factor

N
√

N

However, you better use a coherent strategy, in which 
you perform a joint POVM



Multiple copies
For parameter estimation: repeat the estimation     
times, gaining a precision factor

N
√

N

However, you better use a coherent strategy, in which 
you perform a joint POVM

and you want to do the same for the quantum 
feedback
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Quantum circuit board: input and output are themselves 
circuits that are slotted into the board.
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Optimize the quantum circuit board for all possible dispositions 
of  the slots

Use a Quantum Board!
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Asymptotically: same sensitivity [Giovannetti, LLoyd, Maccone, 
PRL 96, 010401 (2006)]
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In parallel over a joint entangled state?

U U!U!U! !

In sequence intercalated by some unitary?

For unitary discrimination: G.M.D’Ariano, P. Lo Presti, M. Paris, 
PRL 87, 270404 (2001); A. Acín, E. Jané, and G. Vidal, Phys. 
Rev. A 64, 050302 (2001)

For unitary discrimination:[Duan, Feng, Ying, PRL 
98, 100503 (2007)]
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An optimal board architecture [van Dam, D’Ariano, 
Ekert, Macchiavello, Mosca, PRL 98, 090501 (2007)]

For example: what is the optimal 
board for phase estimation?

Maybe ... not unique



What is the mathematical 
formulation of  the 
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Quantum Board
Equivalence class of  quantum circuits boards performing the 
same overall input-output transformation ...

But now, the input and the output are transformations



Quantum Board

slot

slot input

slot output

slotted 
subcircuit

global 
outputglobal 

input

Quantum 
board

Problem: what is the optimal board for given slots 
achieving a global input/output transformation 
optimally according to a given cost function?



Quantum Combs

All circuits-boards can be reshaped in form of  ”combs”, with an 
ordered sequence of  slots, each between two successive teeth

G.Chiribella, G.M.D’Ariano, P.Perinotti, PRL 101 060401 (2008)



Quantum Combs

Pins = quantum systems with generally variable dimensions

G.Chiribella, G.M.D’Ariano, P.Perinotti, PRL 101 060401 (2008)
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How do we describe 
a quantum comb 
mathematically?



Channel: Choi representation
Mathematically the input-output transformation operated by a quantum 
circuit is a CP map, and is in one-to-one correspondence with a positive 
operator called ”Choi-Jamiolkowski operator”---the output state of  the 
map applied locally to a maximally entangled state. 

2

R1∗R2 ⇐⇒

|a〉
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. . . . . . . . . . . .

!"!!!
R1 ∗R2 ∗R3 ⇐⇒

Realization theorem.

V1 V2 V3

. . .
VN−1 VN

|a〉 . . . !"!!!
Choi-Jamiolkowski.

Hin M Hout ⇐⇒ |Ω〉
M Hout

Hin

}
RM

quantum circuit

max entangled |Ψ〉〉 R (Choi-Jamiolkowski)


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

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Learning.

L

(U⊗N ⊗ I⊗N )|Ψ〉
U |ϕ〉






|ϕ〉

Control-obs.
σ •

ρ Uj !"!!!
≡ σ

Z
#$%&ρ

Max-entangled 
state

Choi-Jamiolkowski 
operator



Causal networks
The quantum comb is equivalent to a causal network with all inputs on the 
left and all outputs on the right
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Causal networks
The quantum comb is equivalent to a causal network with all inputs on the 
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The causal network is also equivalent to the stack of  memory channels 
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Choi representation
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Causality constraints: (N+1 inputs/outputs)

Tr2n−1[R(n)] = I2n−2 ⊗R(n−1), n = 1, . . . , N

R(0) = 1, R(n) = R



Supermaps
A quantum comb performs a transformation that is a generalization of  
the quantum operation: the so called ”supermap”

=
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A supermap sends a series of  N channels to one channel, also when 
applied locally, e.g. 



Supermaps
A quantum comb performs a transformation that is a generalization of  
the quantum operation: the so called ”supermap”
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Mathematically it is represented by a CP N-linear map which sends N 
Choi operators to one Choi operator, and with his own Choi operator 
satisfying the causality constraints.

A supermap sends a series of  N channels to one channel, also when 
applied locally, e.g. 



Supermaps
A quantum comb performs a transformation that is a generalization of  
the quantum operation: the so called ”supermap”

=

(we can likewise consider probabilistic supermaps).
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Mathematically it is represented by a CP N-linear map which sends N 
Choi operators to one Choi operator, and with his own Choi operator 
satisfying the causality constraints.

A supermap sends a series of  N channels to one channel, also when 
applied locally, e.g. 



Supermaps

More generally, a quantum comb maps a series of  channels into a comb

=
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Supermaps

More generally, a quantum comb maps a series of  channels into a comb

=
or, even more generally, a comb to a comb

=

PRL 101 060401 (2008)



Supermaps

The notion of  supermap is the last level of  generalization, 
i.e. “super-supermaps” (mapping supermaps to supermaps) 
are still supermaps = quantum combs.

=

PRL 101 060401 (2008)
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Link-product.
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A ∗B = TrJ[AθJB] ∈ B(Hout ⊗ Hin)
1
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Choi-operator calculus
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Link product
Special cases:

M (ρ) = RM ∗ ρ quantum operation

POVM

PRL 101 060401 (2008)

Tr[P tρ] = P ∗ ρ

ρ⊗ σ = ρ ∗ σ

TrH[R] = R ∗ IH

tensor product

partial trace
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Circuits Architecture Optimization

in!out

The Choi operators of  a fixed  input-
output comb structure make a convex set

PRL 101 060401 (2008)



Causality constraints correspond to a 
hyperplane section of  the convex

Group-covariance gives another linear 
constraint:

Circuits Architecture Optimization

in!out

The Choi operators of  a fixed  input-
output comb structure make a convex set

PRL 101 060401 (2008)

[R, Vg] = 0 =⇒ R =
⊕

j

Rj ⊗ 11mj



The mathematical 
formulation is reduced to 

a convex problem!



Realization theorem

Principle of delayed reading.

Uj . . .

!"!!! ≡
Uj . . .

• !"!!!
Link-product.

M (ρ) ≡ ρ " RM = Trin[(Iout ⊗ ρᵀ)RM ] = Trin[(Iout ⊗ ρ)Rθ
M ]





A

Ain Aout





B

Bin Bout

=⇒










A

Hin J
B

Hout

A ∈ B(Aout ⊗ Ain), B ∈ B(Bout ⊗ Bin), Aout = A′
out ⊗ J, Bin = J⊗ B′

in,

A " B = TrJ[ABθJ ] ∈ B(Hout ⊗ Hin)

R1"R2 ⇐⇒

|a〉

!"!!!
. . . . . . . . . . . .

!"!!!
R1 " R2 " R3 ⇐⇒

Realization theorem.

V1 V2 V3

. . .
VN−1 VN

|a〉 . . . !"!!!
1

in!out

Theorem: Every Choi operator on given input-output 
spaces and satisfying given causality conditions is 
realized by the comb of  isometries

For realization of  isometries see: Buscemi, D'Ariano, and Sacchi, PRA 68 042113 (2003)

Chiribella, D’Ariano, Perinotti, PRL 101 060401 (2008) EL  83 30004 (2008)



Quantum board testers

Tr[PjR] = pj ,
∑

j

Pj = ΞTester 
Born rule:

causality constraints:

Tr2n+1[Ξ(n)] = I2n ⊗ Ξ(n−1), n = 0, 1, . . . , N

Ξ(N) ≡ Ξ, Tr1[Ξ(0)] = 1

{Pj}

R

PRL 101 060401 (2008)



U UU UU
Estimating tester

Tr[PjR] = pj ,
∑

j

Pj = ΞTester 
Born rule:

Tr2n+1[Ξ(n)] = I2n ⊗ Ξ(n−1), n = 0, 1, . . . , N

Ξ(N) ≡ Ξ, Tr1[Ξ(0)] = 1

PRL 101 060401 (2008)

causality constraints:
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subcombs + quantum memory
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Using quantum memory
delay the use of  subcircuits by breaking the comb into 
subcombs + quantum memory
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Applications



Application 1: discrimination 
and estimation of  unitaries

(optimal oracle-calling 
quantum algorithms)



U UU UU

Optimal discrimination between two possible unitary operators U1 U2 

Discrimination of unitaries
Chiribella, D’Ariano, Perinotti, PRL 101 180501 (2008)
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Discrimination of unitaries
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V = U†
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∆(U ⊗ V ) = ∆(U) + ∆(V )
∆(U)angular spread

N =
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⌉
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The spread of  the tester is not larger than that of           and U⊗N UN
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Optimal discrimination between two possible unitary operators U1 U2 

Discrimination of unitaries
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1U2
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π

∆φ

⌉

∆(AB) ≤ ∆(A) + ∆(B) A M Childs, J Preskill, and J Renes, JMO 47, 155-176 (2000). spread lemma:
U U U U

W1 W2 W3 ∆[W (U ⊗ I)W †(U ⊗ I)] ≤ ∆(U⊗2)

The spread of  the tester is not larger than that of           and U⊗N UN

The parallel diposition is already optimal

Chiribella, D’Ariano, Perinotti, PRL 101 180501 (2008)



Discrimination of memory channels

There are memory channels that can be discriminated perfectly with a 
single use by a quantum tester, and not conventionally

2

analogous to that in Eq. (2)
∑

i

Pi = I2N+1 ⊗ Ξ(N),

Tr2n[Ξ(n)] = I2n−1 ⊗ Ξ(n−1), ∀1 < n ≤ N,

Tr[Ξ(0)] = 1.

(4)

One can prove [7] that there is a one to one correspon-
dence between classes of statistically equivalent schemes
represented in Fig. 2 and testers.

A

P
~

1A

1B 2B 3B

0

41 2 3

5

2

i

FIG. 2: The most general scheme for the connection of a
memory channel to a quantum circuit corresponding to a
tester. The memory channel is represented by its isometric
gates (white boxes) which denote interaction of quantum sys-
tems (inputs are labeled by even integers and outputs by odd
integers) with the ancillae A1 and A2. The tester is rep-
resented by dashed boxes, including the preparation phase
(joint input state of system 0 and ancilla B1) and the final
measurement stage with the POVM {P̃i}.

Every tester {Pi} can be written in terms of a usual
POVM {P̃i} as follows

Pi = (I ⊗ Ξ(N) 1
2 )P̃i(I ⊗ Ξ(N) 1

2 ), (5)

and for every memory channel C the generalized Born
rule rewrites as the usual one in terms of the state

C̃ := (I ⊗ Ξ(N) 1
2 )C(I ⊗ Ξ(N) 1

2 ). (6)

The state C̃ corresponds to the output system-ancilla
state in Fig 2 after the evolution through all boxes of
both the tester and the memory channel, on which the
final POVM {P̃i} is performed[14].

The usual discriminability criterion for channels is
the following. Two channels Ci with i = 0, 1 on a d-
dimensional system are perfectly discriminable if there
exists a pure state |Ψ〉〉 in dimension d2 such that Ci ⊗
I (|Ψ〉〉〈〈Ψ|) with i = 0, 1 are orthogonal (every joint
mixed state with an ancilla of any dimension can be pu-
rified with an ancilla of dimension d). It is easy to see
that the orthogonality between the two output states is
equivalent to the following condition[15]

C0(I ⊗ ρ)C1 = 0, (7)

where ρ := Ψ∗ΨT , where X∗ and XT denote the com-
plex conjugate and transpose of X in the canonical basis,
respectively. The criterion in Eq. (7) is too strong for

memory channels. Indeed, the condition for perfect dis-
criminability of two memory channels Ci with i = 0, 1 is
equivalent to the existence of a tester {Pi} with i = 0, 1,
such that

Tr[PiCj ] = δij . (8)

Using Eqs. (5) and (6), Eq. (8) becomes Tr[P̃iC̃j ] = δij ,
whence the states C̃i with i = 0, 1 are orthogonal, and
the same derivation as for Eq. (7) leads to

C0

(
I ⊗ Ξ(N)

)
C1 = 0, (9)

with Ξ(N) as in Eq. (4). In Eq. (9) the identity operator
acts only on space 2N −1, differently from Eq. (7) where
it acts on all output spaces.

It is interesting to analyze the special case of mem-
ory channels made of sets of independent channels
{Cij}1≤j≤N and i = 0, 1 (in Fig. 2, the memory channel
is replaced by an array of channels without the ancil-
las A1 and A2). The condition for perfect discriminabil-
ity is the same as Eq. (9) with C0 and C1 replaced by⊗

j Cij for i = 0, 1, respectively. In terms of a Kraus
form Ci =

∑
j Kij ·K†

ij Eq. (9) becomes the orthoonality
condition 〈〈K0j |

(
I ⊗ Ξ(N)

)
|K1k〉〉 = 0, which for the sets

of maps becomes

N⊗

l=1

〈〈Kl
0jl

|
(
I ⊗ Ξ(N)

) N⊗

m=1

|Km
1km

〉〉 = 0. (10)

for all choices of indices (i), (j), where Km
ij are the Kraus

operators for the channel Cim. For sets composed by
single channels Ci with i = 0, 1, the condition becomes
simply the existence of a state ρ such that

Tr[ρK†
0jK1k] = 0, ∀j, k, (11)

and the minimum rank of such state ρ determines the
amount of entanglement required for discrimination.

We now provide an example of memory channels that
cannot be discriminated by a parallel scheme, but can
be discriminated with a tester. Each memory channel
has two uses, and is denoted as Ci = Wi ◦Zi for i = 0, 1,
where the two uses Wi and Zi are connected only through
the ancilla, and Wi has input 0 and output A and 1, and
Zi has input A and 2 and output 3. The first use W0

of C0 is the channel with d-dimensional input and fixed
output

W0(ρ) =
1
d2

d−1∑

p,q=0

|p, q〉〈p, q|⊗ |p, q〉〈p, q|, (12)

|p, q〉 being an orthonormal basis in a d2 dimensional
Hilbert space. The second use Z0 of C0 is given by

Z0(ρ) =
d−1∑

p,q=1

Wp,q TrA[ρ(I2 ⊗ |p, q〉〈p, q|)]W †
p,q, (13)

7

6

0

2

4

8

1

3

5

9

7531

86420

9
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Discrimination of memory channels

R1(I ⊗ Ξ)R2 = 0

Tr[PjR] = pj ,
∑

j

Pj = Ξ

Tester Born rule:

Perfect discrimination for: 

Chiribella, D’Ariano, Perinotti, (unpublished)



Discrimination of unitaries

What happens for more than two unitaries?

What happens for non-unitary channels?



Covariant estimation of unitaries
Covariant unitary estimation problem (group of  unitaries, Haar-distributed)

Problem: find the optimal tester for estimating the group element

One can prove that the optimal tester is covariant:

Th = (U⊗N
h ⊗ I)Θ(U†⊗N

h ⊗ I) ⇒ [T,U⊗N
h ⊗ I] = 0T =

∫

G
d gTg

Any covariant tester is equivalent to a parallel scheme

U U U U

U
U
U
U

!

T
1
2 (|Ug〉〉〈〈Ug|)⊗NT

1
2 = T

1
2 (U⊗N

g ⊗ I)|I〉〉〈〈I|(U†⊗N ⊗ I)T
1
2 =

(U⊗N
g ⊗ I)T

1
2 |I〉〉〈〈I|T 1

2 (U†⊗N ⊗ I)

Then:



Oracle calls

U U U U

Oracle-calling quantum algorithm as optimal discrimination of  unitaries

Discrimination of unitaries
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U U U U

Oracle-calling quantum algorithm as optimal discrimination of  unitaries

Hidden-subgroup algorithms (Deutsh-Jozsa, Simon, etc): parallel calls are optimal

Algorithms with no hidden subgroup (e.g. Grover) need a comb [C. Zalka, PRA 60, 
2746 (1999)]
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Oracle calls

U U U U

Oracle-calling quantum algorithm as optimal discrimination of  unitaries

Hidden-subgroup algorithms (Deutsh-Jozsa, Simon, etc): parallel calls are optimal

Algorithms with no hidden subgroup (e.g. Grover) need a comb [C. Zalka, PRA 60, 
2746 (1999)]

Q-combs: systematic method to determine optimal oracle-calling algorithms

Discrimination of unitaries



Discrimination of unitaries
When do we need a tester (not just a parallel discrimination):



Discrimination of unitaries
When do we need a tester (not just a parallel discrimination):

For discrimination of  non-unitary channels

For discrimination within non-covariant sets

For discrimination of  memory channels



Operational network distance
Existence of  optimal non parallel optimal discrimination schemes

PRL 101 180501 (2008)



Operational network distance
Existence of  optimal non parallel optimal discrimination schemes

The proper distance for memory channels must be defined in 
terms of  optimal discriminating testers

3

exists that perfectly discriminates among them. The first
channel acts as follows on the first use

C0(ρ0) =
I

d2
= TrE

[
d−1∑

p,q=0

|p, q〉〈p, q|
d2

⊗(Wp,qρ0W
†
p,q ⊗ |p, q〉〈p, q|)E

]
,

(10)

where the input space has dimension d, |p, q〉 is an or-
thonormal basis in a d2 dimensional Hilbert space, the
unitaries Wp,q := ZpUq are the customary shift and mul-
tiply unitary group, where Z|n〉 = |n + 1〉 and U |n〉 =
e

2πi
d n|n〉, and the traced space is labeled by E because it

describes the environment, which is not directly acessible
but remains correlated with the first output and succes-
sively interacts with the second input. We now split the
second use in two steps. The first step provides

ρ2 $→ ρ′2 =
1
2

TrE1 [ρ2⊗ρE +(E⊗IE2)(ρ2⊗ρE)(E⊗IE2)],
(11)

where E denotes the swap operator E|φ〉|ψ〉 = |ψ〉|φ〉, the
partial trace is taken only on the first system composing
the environment, denoted by E1, and the second part of
the environment, denoted by E2 is untouched. In the
second step, the second part of the environment is used
as follows

C2(ρ2) =
d−1∑

p,q=1

W †
p,q TrE2 [ρ

′
2(I ⊗ |p, q〉〈p, q|)]Wp,q. (12)

The second channel simply provides

D0(ρ0) =
I

d2
, D2(ρ2) = (|0〉〈0|)⊗2. (13)

We will now show that the two channels are not distin-
guishable as customary channels, whereas there exists a
causal scheme allowing for perfect discrimination. The
Choi operators of the two channels are

RC =
d−1∑

p,q=1

|p, q〉〈p, q|1
2d2

⊗
(
|I〉〉〈〈I|3,0 ⊗ I2 + |W †

p,q〉〉〈〈W †
p,q|3,2 ⊗ I0

)
,

RD =
I⊗2
1

d2
⊗ |0〉〈0|3 ⊗ I⊗2

0,2 ,

(14)

where 1, 3 denote the output spaces with dimension d2

and d, respectively. Suppose that the channels are per-
fectly discriminable, then by condition Eq. (7) there ex-
ists ρ02 such that

RC (I1,3 ⊗ ρ0,2)RD = RC RD(I1,3 ⊗ ρ0,2) = 0, (15)

where the second equality comes from the expression of
RD in Eq. (14). Tracing both sides on the output spaces
1 and 3 one has Tr1,3[RC RD ]ρ0,2 = 0. However,

Tr1,3[RC RD ] =
1
2

(
|0〉〈0|0 ⊗ I2 +

d−1∑

p,q=1

I0

d
⊗ I2

)
, (16)

is invertible, and consequently there cannot exist any
state ρ0,2 supported on its kernel. This proves by contra-
diction that the cb-norm distance of C and D is strictly
smaller than 2. We will now show a simple causal scheme
which allows perfect discrimination of channels C and
D . The first use of the channel is applied to the state
|1〉〈1|, then the measurement with POVM {|p, q〉〈p, q|}
is performed at the output. Depending on the outcome
p̄, q̄, the second use of the channel is applied to the state
Wp̄,q̄|1〉〈1|W †

p̄,q̄. It is clear that the output of channel C2

is the state |1〉〈1|, whereas the output of D2 is |0〉〈0|.
This example shows that the correct discriminability

criterion for memory channels cannot be the maximum
cb-norm distance, which is based on customary setups in
which a state is prepared, transformed by the channel and
measured. On the other hand, we propose as a suitable
notion of distance the following one, which is based on
the possibility of discrimination through testers

D(C (N), D(N)) := max
Ξ(N)

∣∣∣
∣∣∣
(
I ⊗ Ξ(N) 1

2

)
∆

(
I ⊗ Ξ(N) 1

2

)∣∣∣
∣∣∣
1
,

(17)
where the maximum is over those Ξ(N) satisfying the
conditions in Eq. (4), and ∆ := (RC (N) −RD(N)). It can
be easily shown that for N = 1 this notion reduces to the
usual cb-norm distance.

The most elementary application of testers is the dis-
crimination of sets of unitary channels. Let us first con-
sider the case of sets of two unitaries. Without loss of
generality we can always reduce to the discrimination
of U, V from I, I. By referring to the scheme in Fig.
2 we can restate the problem as the discrimination of
W †(U ⊗ I)W (V ⊗ I) from I on a bipartite system, where
W describes the interaction with an ancillary system.
It is well known that optimal discriminability of a uni-
tary X from the identity is related to the angular spread
Θ(X), defined as the maximum relative phase between
two eigenvalues of X [3]. Apart from the degenerate case
in which X has only two different eigenvalues, X the
discriminability of X from I is assessed by the quantity
max{0, cosΘ(X)/2}, namely it is perfect if Θ(X) ≥ π.
A theorem proved in Ref. [15] states that for the angular
spread of the product of two unitaries X,Y , the following
bound holds

Θ(XY ) ≤ Θ(X) + Θ(Y ). (18)

Moreover, it is clear that conjugation by a unitary W
leaves the angular spread unchanged. This implies that
the spread of W †(U⊗I)W (V ⊗I) is smaller than or equal
to the one of U ⊗V . Consequently, no causal scheme can
perform better than the parallel one. Notice that this
argument provides the solution to the problem of dis-
criminating the sequence U, V from V,U . By a recursive
argument, one can solve the case of sets of N > 2 uni-
taries. Indeed, considering W †XN−1W (UN ⊗ I), where
XN−1 is the product of the tester unitaries alternated

∆ := C −D

PRL 101 180501 (2008)



Operational network distance
Existence of  optimal non parallel optimal discrimination schemes

The proper distance for memory channels must be defined in 
terms of  optimal discriminating testers
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causal scheme allowing for perfect discrimination. The
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fectly discriminable, then by condition Eq. (7) there ex-
ists ρ02 such that

RC (I1,3 ⊗ ρ0,2)RD = RC RD(I1,3 ⊗ ρ0,2) = 0, (15)

where the second equality comes from the expression of
RD in Eq. (14). Tracing both sides on the output spaces
1 and 3 one has Tr1,3[RC RD ]ρ0,2 = 0. However,
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is invertible, and consequently there cannot exist any
state ρ0,2 supported on its kernel. This proves by contra-
diction that the cb-norm distance of C and D is strictly
smaller than 2. We will now show a simple causal scheme
which allows perfect discrimination of channels C and
D . The first use of the channel is applied to the state
|1〉〈1|, then the measurement with POVM {|p, q〉〈p, q|}
is performed at the output. Depending on the outcome
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is the state |1〉〈1|, whereas the output of D2 is |0〉〈0|.
This example shows that the correct discriminability
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cb-norm distance, which is based on customary setups in
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measured. On the other hand, we propose as a suitable
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where the maximum is over those Ξ(N) satisfying the
conditions in Eq. (4), and ∆ := (RC (N) −RD(N)). It can
be easily shown that for N = 1 this notion reduces to the
usual cb-norm distance.

The most elementary application of testers is the dis-
crimination of sets of unitary channels. Let us first con-
sider the case of sets of two unitaries. Without loss of
generality we can always reduce to the discrimination
of U, V from I, I. By referring to the scheme in Fig.
2 we can restate the problem as the discrimination of
W †(U ⊗ I)W (V ⊗ I) from I on a bipartite system, where
W describes the interaction with an ancillary system.
It is well known that optimal discriminability of a uni-
tary X from the identity is related to the angular spread
Θ(X), defined as the maximum relative phase between
two eigenvalues of X [3]. Apart from the degenerate case
in which X has only two different eigenvalues, X the
discriminability of X from I is assessed by the quantity
max{0, cosΘ(X)/2}, namely it is perfect if Θ(X) ≥ π.
A theorem proved in Ref. [15] states that for the angular
spread of the product of two unitaries X,Y , the following
bound holds

Θ(XY ) ≤ Θ(X) + Θ(Y ). (18)

Moreover, it is clear that conjugation by a unitary W
leaves the angular spread unchanged. This implies that
the spread of W †(U⊗I)W (V ⊗I) is smaller than or equal
to the one of U ⊗V . Consequently, no causal scheme can
perform better than the parallel one. Notice that this
argument provides the solution to the problem of dis-
criminating the sequence U, V from V,U . By a recursive
argument, one can solve the case of sets of N > 2 uni-
taries. Indeed, considering W †XN−1W (UN ⊗ I), where
XN−1 is the product of the tester unitaries alternated

∆ := C −D

CB-norm distance only accounts for parallel discrimination schemes

PRL 101 180501 (2008)



Application 2: quantum 
protocols (cryptography, 

game-theory)



Quantum protocols

Quantum combs describe the most general strategies 
in multi-party protocols and games

G. Gutoski and J. Watrous, Proc. STOC, 565-574, (2007)



Quantum bit commitment

Quantum combs is the most suitable mathematical formulation of  
Alice and Bob’s strategies in a quantum bit commitment protocol



Sketch of impossibility proof
Chiribella, D’Ariano, Perinotti, Schlingemann, and Werner (in preparation)

Thm: a QBC concealing protocol cannot be binding

Proof: continuity of  the comb-Stinespring versus the operational 
distance between strategies
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Alice owns quantum circuit that performs a very 
valuable algorithm U that she wants to keep 
undisclosed.

Bob needs to run Alice's algorithm on an input 
state that will be available tomorrow, but he can 
borrow the circuit from Alice only today for just 
a limited number of  uses N, and with the circuit 
sealed. 
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The only thing that Bob can do today, with the circuit 
available, is to use it on a input state known to him. 

After that the only thing that remains available to 
Bob for tomorrow is the output state, which Bob can 
store on a quantum memory. 
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The only thing that Bob can do today, with the circuit 
available, is to use it on a input state known to him. 

After that the only thing that remains available to 
Bob for tomorrow is the output state, which Bob can 
store on a quantum memory. 

Therefore, Bob needs a quantum device that is 
capable of  retrieving from the output state, namely 
recovering U and then running it on a new unknown 
state.

Quantum algorithm learning
Problem: run an unknown unitary that is available today 
on a quantum state that will be available tomorrow



Quantum algorithm learning
Problem: run an unknown unitary that is available today 
on a quantum state that will be available tomorrow



Exact storing of  quantum states is possible  
(quantum memory is a technological problem)

Perfect storing of  undisclosed unitaries over a 
quantum state is impossible even in-principle 
(Nielsen-Chuang no-programming theorem)

Quantum algorithm learning
Problem: run an unknown unitary that is available today 
on a quantum state that will be available tomorrow



Quantum algorithm learning
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Problem: run an unknown unitary that is available today 
on a quantum state that will be available tomorrow

storing retrieving



Quantum algorithm learning
Problem: a black box computes an unknown function y = f(x) 
                 We can evaluate f  on a finite set of  points
                 getting outcomes                 
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 Subsequently, we are asked to compute f  on a new point    ,
 without using the black box
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f(x) = ?
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Problem: a black box computes an unknown function y = f(x) 
                 We can evaluate f  on a finite set of  points
                 getting outcomes                 

x1, . . . , xN

y1, . . . , yN

x1x2
xN yN. . .y2y1f

In classical computer science, statistical learning provides 
a method to solve this problem
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classical networks for learning:
Comparing x  with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration
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x1

xN

classical networks for learning:
Comparing x  with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration

f

f

.

.

.

g3

where                                  are known functions

f f fg1 g2

g1, g2, . . . , gN

To learn better, one could use a sequential network: 

Quantum algorithm learning



Quantum algorithm learning
• Unknown function  f               unknown quantum channel 

• Classical program                   quantum network

• Input X                                     quantum state  

• Output Y                                  quantum state 

→

→

→ ρin

ρout

C1 CN−1
ρin

E E E E
CN

E

→



• Classical guess                           Quantum “guess”  

→Y → f̂ ρout → Ê

R
ρout

ρ

= Êρ

Physical implementation of  the quantum guess: 
retrieving  channel       
It retrieves the unknown transformation from the output state           and 
performs it on a new state

R

ρout

ρ

Quantum algorithm learning



• Classical guess                           Quantum “guess”  

→Y → f̂ ρout → Ê

R
ρout

ρ

= Êρ

Physical implementation of  the quantum guess: 
retrieving  channel       
It retrieves the unknown transformation from the output state           and 
performs it on a new state

R

ρout

Eρ

→Target: implementing 
the unknown channel 
with maximum fidelity

ρ

Quantum algorithm learning



Quantum algorithm learning

F (E , Ê) =

∫
dϕ F (E(ϕ), Ê(ϕ)) F (ρ, σ) = Tr

[

(ρ
1

2 σρ
1

2 )
1

2

]

Figure of  merit: input-output fidelity

C1
ρin CN R

E E E
find the optimal quantum comb



Quantum algorithm learning
Consider the case where the set of  channels is a group of  unitary transformations.  

C1
ρin CN

U U U

Assuming a uniform prior for the unknown unitaries, we have the average fidelity 

F =

∫
dU F (U , CU )

R = CU



Quantum algorithm learning
U U U

C1
ρin CN R

L = R ∗ CN ∗ · · · ∗ C2 ∗ C1 ∗ ρinComb of  the learning network: 

Fidelity: F =
1

d2

∫
dU 〈〈U |〈〈U∗|⊗N | L |U〉〉|U∗〉〉⊗N

We can always optimize over covariant combs:

[L, U ⊗ V ∗ ⊗ U∗⊗N ⊗ V ⊗N ] = 0 ∀U, V



Quantum algorithm learning

C1
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U U U
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Quantum algorithm learning

C1
ρin CN

U U U
=

C1
ρin CN

I I I

U
⊗N

IA

==

U
⊗N

IA

ρ
′

in=

Any covariant network is equivalent to a parallel 
scheme with ancilla!
Learning can be parallelized, in the same way 
as estimation



Quantum algorithm learning
Decomposing the unitaries as U

⊗N
⊗ IA =

⊕

J

(UJ ⊗ ImJ
)

one can prove that the optimal input states have the form

where                              is a maximally entangled state |IJ〉〉 ∈ H⊗2

J

|ψ〉 =

⊕

J

aJ

|IJ〉〉√
dJ

aJ ≥ 0

This is the same form of  the optimal states for
estimation of  the unknown unitary U with N copies 

G Chiribella, G M D’Ariano, and M F Sacchi, Phys. Rev. A  72, 043448  (2005).     



Quantum algorithm learning

Theorem: for any group of  unitaries, for an input state of  the optimal form

|ψ〉 =

⊕

J

aJ

|IJ〉〉√
dJ

aJ ≥ 0

is achieved by a “measure-and-prepare” scheme.
(estimation of  the unknown unitary U: 
for outcome      , just perform the unitary      )

For the optimal POVM, see G Chiribella, G M D’Ariano, and M F Sacchi, Phys. Rev. A  72, 043448  (2005).     

 the optimal retrieving channel to extract U from the states

(U⊗N ⊗ IA)|ψ〉 =
⊕

J

aJ

|UJ〉〉√
dJ

aJ ≥ 0

Û Û

Bisio, Chiribella, D‘Ariano, Facchini, Perinotti (unpublished)
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Optimal retrieving is “measure-and-prepare”: no need for quantum memory. We can 
measure immediately after applying U, and store the outcome     in a classical memory. 

We can make as many copies as we want (a quantum memory is degraded at every access).

Û
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Parallel scheme + measure&reprepare still optimal for:
• N non-identical input unitaries (and/or non-identical target unitaries)
• perform the inverse of  U:  target         (error correction with correlated noise)U
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Quantum algorithm learning

Û

R
ρout

ρ

= ρout P
Û Ûρ

Optimal retrieving is “measure-and-prepare”: no need for quantum memory. We can 
measure immediately after applying U, and store the outcome     in a classical memory. 

We can make as many copies as we want (a quantum memory is degraded at every access).

Û

Parallel scheme + measure&reprepare still optimal for:
• N non-identical input unitaries (and/or non-identical target unitaries)
• perform the inverse of  U:  target         (error correction with correlated noise)U

†

not necessarily optimal for
• learning  general channels
• learning unitaries that do not form a group
• learning with restrictions on the available input states (entanglement)



Application 4: 
Optimal cloning of  unitaries



Cloning of unitaries

U

U

U

U U
UU

U
U

F =

∫
dU F (T (N)

U
,T ⊗N

U
) (channel fidelity)

G. Chiribella, G. M. D'Ariano, P. Perinotti PRL 101 180504 (2008)

http://xxx.lanl.gov/find/quant-ph/1/au:+Chiribella_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Chiribella_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+DAriano_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+DAriano_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Perinotti_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Perinotti_P/0/1/0/all/0/1


Cloning of unitaries

1-to-2 cloning F =
d +

√
d2 − 1

d3
> Fest =

6

d4
(d #= 2)

Chiribella, D’Ariano, Perinotti, PRL 101 180504 (2008)
1

M0E

a)

1 2

A

U

B

3B

3E

0B

W

σ

b)

2B

2E

U

3E

3B

2A1

0

cloning learning

(same for learning)

Much better than cloning states (I ⊗ U)|I〉〉 q-learning

Cloning unitaries is harder than cloning states (cryptography with information 
encoded on transformations is more secure)

Applying U to a state “degrades” U
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Optimal tomographers
C (d4 outcomes)

C C C multiple uses

circuit board tomographer

Informationally 
complete tester



Optimal tomography

C

A. Bisio, G. Chiribella, G. M. D'Ariano, S. 
Facchini, P. Perinotti PRL 102 010404 (2009)

arXiv: 0806.1172

Use different in and out dimensions to 
unify: states, channels, and POVMs

http://xxx.lanl.gov/find/quant-ph/1/au:+Bisio_A/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Bisio_A/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Chiribella_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Chiribella_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+DAriano_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+DAriano_G/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Facchini_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Facchini_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Facchini_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Facchini_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Perinotti_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Perinotti_P/0/1/0/all/0/1
http://xxx.lanl.gov/abs/0806.1172
http://xxx.lanl.gov/abs/0806.1172


Optimal tomography

C

Prior distribution of  channels 
corresponding to the 
depolarizing average channel

Cost function = representation, 
(equally weighted orthonormal 
set of  operators)

Further selection:                    
1) quantum operations,           
2) channels,                            
3) unital channels

A. Bisio, G. Chiribella, G. M. D'Ariano, S. 
Facchini, P. Perinotti PRL 102 010404 (2009)

arXiv: 0806.1172

Use different in and out dimensions to 
unify: states, channels, and POVMs

http://xxx.lanl.gov/find/quant-ph/1/au:+Bisio_A/0/1/0/all/0/1
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Optimal tomography

quantum operations

unital channels
channels

Be
ll

Be
ll

arXiv: 0806.1172

Π0 = d|Ψ〉〉〈〈Ψ|

Ψ = [d−1(1 − β)I + β |ψ〉 〈ψ|]12
β =

√
(d + 1)/(d2 + 1)

β = [(d − 1)(2 +
√

2(d2 − 1))]−1/2

β = 0
β = [(d − 1)(2 +

√
2(d2 − 1))]−1/2

β = 0

A1 A2 S1 S2 |I〉〉 Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 Ψ〉〉 C U1 U2A1 A2 S1 S2 |I〉〉 |Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 |Ψ〉〉 C U1 U2A1 A2 S1 S2 |I〉〉 |Ψ〉〉 C U1 U2

A1 A2 S1 S2 |I〉〉 |Ψ〉〉 C U1 U2

http://xxx.lanl.gov/abs/0806.1172
http://xxx.lanl.gov/abs/0806.1172


Conclusions
PRL 101 060401 (2008) 
PRL 101 180501 (2008)
PRL 101 180504 (2008)
PRL 102 010404 (2009)
EL  83 30004 (2008)



Conclusions
New Quantum Estimation Theory, with multiple copies, and optimization 
of  the setup  → optimization of  quantum circuits architecture, 
engineering high-precision operations

Quantum circuit board = quantum comb = supermap

Comb algebra (link-product)

Convex optimization method

 Applications: 

discrimination/estimation of  unitaries and memory channels 
(optimal quantum oracle-calling algorithms)

quantum protocols

quantum-algorithm learning = storing undisclosable unitaries

cloning undisclosable unitaries

process tomography

PRL 101 060401 (2008) 
PRL 101 180501 (2008)
PRL 101 180504 (2008)
PRL 102 010404 (2009)
EL  83 30004 (2008)


