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Po

VVVVVYVYY

Mathematical formulation:

find the optimal POVM P@ minimizing
the cost
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Quantum Estimation Theory

Practically interesting situation
(e.g. for the phase of an e.m. mode):

0 = py = UyppU))

Po
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Then you want also to optimize 0

The optimal POVM for
estimating 6 depends on p

nteresting situation: the parameter to be estimated
is encoded on a transformation---not on the state!
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Quantum Estimation Theory

Problem: estimate @ parameterizing
the (unitary) transformation U
optimally according to the cost function

L esson that we learned from
entanglement:

Find the optimal entangled state | W)
(with an any possible ancilla)
along with the optimal joint POVM P

For the phase no need of entanglement (we were lucky!)
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New scheme
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Multiple copies

¢ For parameter estimation: repeat the estimation NV
times, gaining a precision factor v'.N

¢ However, you better use a coherent strategy, in which
you perform a joint POVM

¢ and you want to do the same for the quantum
feedback




What is the best

that you can do?




General scheme: put the copies of the unknown unitary
in a suitable quantum circuit which performs the desired
transformation/estimation.
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Quantum circuit board: input and output are themselves
circuits that are slotted into the board.




Optimize the quantum circuit board for all possible dispositions
of the slots




't looks a difficult

problem ...
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Asymptotically: same sensitivity [Giovannetti, LLoyd, Maccone,
PRL 96, 010401 (2006)]




== For example: what is the optimal

board for phase estimation?

In sequence intercalated by some unitary?
For unitary discrimination: [Duan, Feng, Ying, PRL

98, 100503 (2007)]

n parallel over a joint entangled state?

For unitary discrimination: G.M.DAriano, P. Lo Presti, M. Paris,

PRL 87, 270404 (2001); A. Acin, E. Jané, and G. Vidal, Phys.
Rev. A 64, 050302 (2001)

Asymptotically: same sensitivity [Giovannetti, LLoyd, Maccone,

PRL 96, 010401 (2006)]




- For example: what is the optimal

board for phase estimation?

An optimal board architecture [van Dam, D'Ariano,
Ekert, Macchiavello, Mosca, PRL 98, 090501 (2007)]




- For example: what is the optimal

board for phase estimation?

An optimal board architecture [van Dam, D'Ariano,
Ekert, Macchiavello, Mosca, PRL 98, 090501 (2007)]

Maybe ... not unique

¢
¢ -9




What Is the mathematical

formulation of the
problem?
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Quantum Channel

[t can be regarded as an equivalence class of quantum
circuits performing the same input-output transtormation ...

For a channel the input and the output are states
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Quantum Board

Equivalence class of quantum circuits boards performing the
same overall input-output transformation ...

But now, the input and the output are transformations




Quantum Board

slot

slotted
subcircuit

/7

global
Input

Problem: what is the optima
achieving a global input/out

slot output

D

slot input

00al'C

for given slots

Ut tra

nsformation

optimally according to a given cost function?




Quantum Combs
G.Chiribella, G.M.D'Ariano, PPerinotti, PRL 101 060401 (2008)

| circuits-boards can be reshaped in form of "combs”, with an
rdered sequence of slots, each between two successive teeth

m
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Quantum Combs
G.Chiribella, G.M.D'Ariano, PPerinotti, PRL 101 060401 (2008)

inputs outputs

4

1In—out

Pins = quantum systems with generally variable dimensions




How do we describe
a quantum comb

mathematically?




“Channel: Choi representation

Mathematically the input-output transformation operated by a quantum
circuit is a CP map, and is in one-to-one correspondence with a positive
operator called "Choi-Jamiolkowski operator”---the output state of the
map applied locally to a maximally entangled state.

Max-entangled

State \

Siass )

noi-Jamiolkowski
Derator
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Causal networks

The quantum comb is equivalent to a causal network with all inputs on the
left and all outputs on the right

]

HT

The causal network is also equivalent to the stack of memory channels
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Choi representation
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Causality constraints: (N+1 inputs/outputs)
Tron 1[R™] = Lp_a ® RO, n=1,...
R® =1, R™ =R
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A quantum comb performs a transtormation that is a generalization of
the quantum operation: the so called "supermap”
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A supermap sends a series of N channels to one channel, also when
applied locally, e.g.
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Supermaps

A quantum comb performs a transformation that is a generalization of
the quantum operation: the so called "supermap”

L LF

Tl - Talalinliell = ™

A supermap sends a series of N channels to one channel, also when
applied locally, e.g.

Mathematically it is represented by a CP N-linear map which sends N
Choi operators to one Choi operator, and with his own Choi operator
satisfying the causality constraints.

(we can likewise consider probabilistic supermaps).
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Supermaps

PRL 101 060401 (2008)

More generally, a quantum comb maps a series of channels into a comb

—
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Balalil - Tl — Tl

or, even more generally, a comb to a comb

RAAET = LI
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Supermaps

The notion of supermap is the last level of generalization,
.e. “super-supermaps” (mapping supermaps to supermaps)
are still supermaps = quantum combs.
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Link product

Choi-operator calculus
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Link product
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] Bout

Choi-operator calculus

A e B(Aout X Ain) :B(Ha X Hb X Hc X Hd)a
B € B(Bout ® Bin) =B(Ha ® H. ® H; @ H,)

AB :=(A®I. +4)1gp.® B)
Ax B = Tr[A% B] € B(Hout ® Hin)

The link-product is commutative!
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Link product

Special cases:

%(ﬂ) + R/// * 0 quantum operation

Tr[P'p]l = P x p POVM

14, X o = P *x 0 tensor product

TIH [R] — Rx/ H partial trace
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Circuits Architecture Optimization

-

in—out

¢ The Choi operators of a fixed input-
output comb structure make a convex set

¢ (Causality constraints correspond to a
hyperplane section of the convex

¢ Group-covariance gives another linear
constraint:

R, V] =0 :»R:@Rj@@lmj

J




he mathematical

formulation is reduced to
a convex problem!




Realization theorem

Chiribella, D’Ariano, Perinotti, PRL 101 060401 (2008) EL 83 30004 (2008)

Theorem: Every Choi operator on given input-output

spaces and satisfying given causality conditions is
realized by the comb of isometries

Vi Vo Vs

in—out
For realization of isometries see: Buscemi, D'Ariano, and Sacchi, PRA 68 042113 (2003)
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bsttnmat[mg tester

,

Tester

Born rule:

causality constraints:
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Using quantum memory

delay the use of subcircuits by breaking the comb into
subcombs + quantum memory




Applications




Application 1: discrimination
and estimation of unitaries

(optimal oracle-calling
guantum algorithms)
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Chiribella, D’Ariano, Perinotti, PRL 101 180501 (2008)
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Discrimination ol unitaries

Chiribella, D’Ariano, Perinotti, PRL 101 180501 (2008)
Optimal discrimination between two possible unitary operators Uy Uz

A

= UTU G. M. D'Ariano, P Lo Presti, M. G. A. Paris, PRL 87, 270404 (2001);
A. Acin, PRL 87, 177901(2001).

angular spread A(U)
AUV)=AU)+ A(V)

aeeae
* N ==t

Ag
spread lemma: A(AB) < A(A) + A(B) AMChilds, ) Preskill, and | Renes, IMO 47, 155-176 (2000).

AW (U @ DWIU @ I)] < A(UP?)

The spread of the tester is not larger than that of U®"and U At
The parallel diposition is already optimal




OUll

o Discrimination of memory channels
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PRL 101 180501 (2008)

nere are memory channels that can be discriminated pertfectly with a
ingle use by a quantum tester, and not conventionally




Discrimination of memory channels

Chiribella, D’Ariano, Perinotti, (unpublished)
Tester Born rule:

A

Perfect discrimination for:




Discrimination ol unitaries

¢ What happens for more than two unitaries?

¢ What happens for non-unitary channels?




= Covariant estimation of unitaries

¢ Covariant unitary estimation problem (group of unitaries, Haar-distributed)

¢ Problem: find the optimal tester for estimating the group element

One can prove that the optimal tester is covariant:

i :/ dgTy, T,= U2 DeU® o) = [T,U2YgIl=0
G

Then: T2 (|U,) (Uy)*N T2 = T2 (USN © D)D) (I|(UTN @ 1T? =

(USN @ DT | )T (UeY @ I)

Any covariant tester is equivalent to a parallel scheme
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Hidden-subgroup algorithms (Deutsh-Jozsa, Simon, etc): parallel calls are optimal

Algorithms with no hidden subgroup (e.g. Grover) need a comb [C. Zalka, PRA 60,

2746 (1999)]




Discrimination of unitaries

Oracle-calling quantum algorithm as optimal discrimination of unitaries

Oracle calls

B B R Ra

Hidden-subgroup algorithms (Deutsh-Jozsa, Simon, etc): parallel calls are optimal

Algorithms with no hidden subgroup (e.g. Grover) need a comb [C. Zalka, PRA 60,

2746 (

©-com

999)]

ps: systematic method to determine optimal oracle-calling algorithms
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Discrimination ol unitaries

When do we need a tester (not just a parallel discrimination):

¢ For discrimination of non-unitary channels

& For discrimination within non-covariant sets

¢ For discrimination of memory channels




quantum information
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Existence of optimal non parallel optimal discrimination schemes

The proper distance for memory channels must be defined in
terms of optimal discriminating testers




@p@mm@n@lﬂ network distance

Existence of

PRL 101 180501 (2008)

optimal non parallel optimal discrimination schemes

The proper distance for memory channels must be defined in

terms of opti

mal discriminating testers

D&, 20 .= max H (I@E(N)%) A (I®E(N>%)H
1

=(N)

N

CB-norm distance only accounts for parallel discrimination schemes




Application 2: quantum

protocols (cryptography,
game-theory)




Quantum protocols

Quantum combs describe the most general strategies
In multi-party protocols and games

G. Gutoski and J. Watrous, Proc. STOC, 565-574, (2007)




Quantum combs is the most suitable mathematica
Alice and Bob’s strategies in a quantum bit commi

formulation of

ment protoco




Sketch of impossibility proof

Chiribella, D'Ariano, Perinotti, Schlingemann, and Werner (in preparation)

Thm: a QBC concealing protocol cannot be binding

Proof: continuity of the comb-Stinespring versus the operational
distance between strategies
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* Quantum-algorithm learning

Problem: run an unknown unitary that is available today
on a quantum state that will be available tomorrow

¢ Alice owns quantum circuit that performs a very §F .
valuable algorithm U that she wants to keep
undisclosed.

¢ Bob needs to run Alice's algorithm on an input
state that will be available tomorrow, but he can
borrow the circuit from Alice only today for just
a limited number of uses N, and with the circuit
sealed.
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¢ The only thing that Bob can do today, with the circuit [
available, is to use it on a input state known to him. ¥

¢ After that the only thing that remains available to

Bob for tomorrow is the output state, which Bob can
store on a quantum memory.




= Quantum algorithm learning

Problem: run an unknown unitary that is available today
on a quantum state that will be available tomorrow

¢ The only thing that Bob can do today, with the circuit |
available, is to use it on a input state known to him.

¢ After that the only thing that remains available to
Bob for tomorrow is the output state, which Bob can
store on a quantum memory.

¢ Therefore, Bob needs a quantum device that is
capable of retrieving from the output state, namely
recovering U and then running it on a new unknown
state.




Quantum algorithm learning

Problem: run an unknown unitary that is available today
on a quantum state that will be available tomorrow




* Quantum algorithm learning

Problem: run an unknown unitary that is available today
on a quantum state that will be available tomorrow

¢ Exact storing of quantum states is possible
(quantum memory is a technological problem)

¢ Perfect storing of undisclosed unitaries over a
quantum state is impossible even in-principle
(Nielsen-Chuang no-programming theorem)




7 Quantum algorithm learning

Problem: run an unknown unitary that is available today
on a quantum state that will be available tomorrow

10F 10F 10F &

BAAAS - R vo~ Vo
BERER = BEER + BBV

storing retrieving
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Problem: a black box computes an unknown function y = f(x}
We can evaluate f on a finite set of points z1,..., TN
getting outcomes Y1,...,YN
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Subsequently, we are asked to compute f on a new point
without using the black box f(z) = 7




“ Quantum algorithm learning

Problem: a black box computes an unknown function y = f(x}
We can evaluate f on a finite set of points z1,..., TN
getting outcomes Y1,...,YN

f Y Y2 ... YN

Subsequently, we are asked to compute f on a new point
without using the black box f(z) = 7

In classical computer science, statistical learning provides
a method to solve this problem




Quantum algorithm learning

classical networks for learning:

Comparing x with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration
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classical networks for learning:

Comparing x with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration
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Quantum algorithm learning

classical networks for learning:

Comparing x with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration

-
I YN

To learn better, one could use a sequential network:

where 91,92;---,9N are known functions



= Quantum algorithm learning

* Unknown function f —— unknown quantum channel &
* Classical program  —— quantum network
* |nput X ——> quantum state ;s

* Qutput Y quantum state  Pout

et 1t
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* (Classical guess Quantum “quess”
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Physical implementation of the quantum guess:

retrieving channel R

t retrieves the unknown transformation from the output state Powt and
performs it on a new state O

p a8




quantum information

7 Quantum aﬂg@mt[hm H@amnmg
* (Classical guess Quantum “quess”

Y%f poutﬁé

Physical implementation of the quantum guess:

retrieving channel R

t retrieves the unknown transformation from the output state Powt and
performs it on a new state O

: g ai
/

Target: implementing
the unknown channel
with maximum fidelity




quantum information

ttttt 7 Quantum algorithm learning

¢“8° *§f

Figure of merit: input-output fidelity

F(e.8)= [dp FE@LEW) Flo.o) =Tr [(phop?




7 Quantum algorithm learning

Consider the case where the set of channels is a group of unitary transformations.

ol el |

Assuming a uniform prior for the unknown unitaries, we have the average fidelity

F = / AU FU,Cp)




7 Quantum algorithm learning

1 )8

Comb of the learning network: L =RxCn x---*% Coy x C1 * p;n

Fidelty:  F =5 [ dU (UI(U*|®"] L [wplo)eN

We can always optimize over covariant combs:

LUQV*U*® g VO] =0
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‘‘‘‘‘ “ Quantum algorithm learning
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Quantum algorithm learning

—RE-- U U

Any covariant network is equivalent to a parallel
scheme with ancilla!

Learning can be parallelized, in the same way
as estimation




 Quantum algorithm learning

Decomposing the unitaries as UPN @14 = @ Uy Iy ,)
i

one can prove that the optimal input states have the form

where |I;)) € HS? is a maximally entangled state

This is the same form of the optimal states for
estimation of the unknown unitary U with N copies

G Chiribella, G M D'Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).




“ Quantum algorithm learning

Bisio, Chiribella, D'Ariano, Facchini, Perinotti (unpublished)

Theorem: for any group of unitaries, for an input state of the optimal form

the optimal retrieving channel to extract U from the states

(USN @ L)) = ED ay ‘5% ay >0

is achieved by a “measure-and-prepare” scheme.
(estimation of the unknown unitary U:
for outcome U, just perform the unitary U )

For the optimal POVM, see G Chiribella, G M D’Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).
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Optimal retrieving is “measure-and-prepare”: no need for quantum memory. We can
measure immediately after applying U, and store the outcome U'in a classical memory,.

We can make as many copies as we want (a quantum memory is degraded at every access).
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Optimal retrieving is “measure-and-prepare”: no need for quantum memory. We can
measure immediately after applying U, and store the outcome U'in a classical memory,.

We can make as many copies as we want (a quantum memory is degraded at every access).

Parallel scheme + measureéreprepare still optimal for:
* N non-identical input unitaries (and/or non-identical target unitaries)
e perform the inverse of U: target {J T (error correction with correlated noise)
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Optimal retrieving is “measure-and-prepare”: no need for quantum memory. We can
measure immediately after applying U, and store the outcome U'in a classical memory,.

We can make as many copies as we want (a quantum memory is degraded at every access).

Parallel scheme + measureéreprepare still optimal for:
* N non-identical input unitaries (and/or non-identical target unitaries)
e perform the inverse of U: target {J T (error correction with correlated noise)

not necessarily optimal for

earning general channels

earning unitaries that do not form a group

earning with restrictions on the available input states (entanglement)




Application 4:

Optimal cloning of unitaries




Cloning of unitaries

G. Chiribella, G. M. D'Ariano, P Perinotti PRL 101 180504 (2008)

— / dU F(Z}N), Z]@N ) (channel fidelity)
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Cloning of unitaries

Chiribella, D’Ariano, Perinotti, PRL 101 180504 (2008)
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(same for learning)

-2 cloning > F . = %(d )

 better than cloning states (I ® U )|1)) g-learning

App

ying U to a state “degrades” U

Cloning unitaries is harder than cloning states (cryptography with information
encoded on transformations is more secure)
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Optimal quantum
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multiple uses

circuit board tomographer
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Optimal tomography

Use different in and out dimensions to
unity: states, channels, and POVMs

i

A. Bisio, G. Chiribella, G. M. D'Ariano, S.
Facchini, P. Perinotti PRL 102 010404 (2009)
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Optimal tomography

Use different in and out dimensions to

¢ Prior distribution of channels  unify: states, channels, and POVMs
corresponding to the

depolarizing average channel

set of operators)

& Cost function = representation, C
(equally weighted orthonormal /74

¢ Further selection:
1) quantum operations,
2) channels,

3) unital channels
A. Bisio, G. Chiribella, G. M. D'Ariano, S.

Facchini, P. Perinotti PRL 102 010404 (2009)
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Optimal tomography
EEaNT

8= +/(d+1)/(+1) quantum operations
U= [d(1—0)]+Bv) W (d = 1)(2+v2(a? - 1)) channels
Bi=10 unital channels
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C@HCHUSﬁ@HS PRL 102 010404 (2009
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New Quantum Estimation Theory, with multiple copies, and optimization

of the setup — optimization of quantum circuits architecture,
engineering high-precision operations

U- PRL 101 060401 (2008
Q 1] PRL 101 180501 (2008

¢ Quantum circuit board = quantum comb = supermap
¢ Comb algebra (link-product)
¢ Convex optimization method

Applications:

¢ discrimination/estimation of unitaries and memory channels
(optimal quantum oracle-calling algorithms)

quantum protocols

guantum-algorithm learning = storing undisclosable unitaries

cloning undisclosable unitaries

process tomography



