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Historical
background

e The experience in Quantum
Information has led us to look at
Quantum Theory (QT) under a
completely new angle

e QT is a theory of information

e Address now the Mechanics
side of the Quantum

e Mechanics via Quantum Field
Theory (QFT)

e QFT as countably many
guantum systems in interaction

|&d Selected for a Viewpoint in Physics
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Informational derivation of quantum theory
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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Principles for Quantum Theory

P1. Causality

P2. Local discriminability

P3. Purification™

P4. Atomicity of composition
P5. Perfect distinguishability

P6. Lossless Compressibility

Book from CUP (by the end of 2014
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The informational framework

Logic c Probability ¢ OPT
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The informational framework

Logic c Probability ¢ OPT (Ui, oy, Bi) FEEL (D, F G Ens D))
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The informational framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

p(i, 7, k, 1, m,n,p, g|circuit)

Maximal set of
iIndependent systems
= “leat”
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The informational framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

Probabilistic equivalence
classes
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Principles for (7 —= %Y )
Quantum Theor w
/ P 12,9 = (P} —A—[a))

P . » convexity '

P2. Local discriminabllity

P3. Purification

P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

The probabillity of preparations

IS Independent of the choice of
observations

no signaling without interaction .
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P, Causality
P2 .|Local discriminabillity
P3. Purification

P4, Atomicity of composition Local characterization of transformations
P5. Perfect distinguishabllity A A’

. o —a) A A’
P6. Lossless Compressibility G B b) = (P oo

It is possible to discriminate any pair

of states of composite systems
using only local measurements.
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Principles for
Quantum Theory

P, Causality
P?2. Local discriminabillity
P3. Purification

P4 |Atomicity of composition

P5. Perfect distinguishabllity
P6. Lossless Compressibility

The composition of two atomic
transformations is atomic

Complete information can be accessed
on a step-by-step basis
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P, Causality

P?2. Local discriminabillity

P3. Purification

P4, Atomicity of composition

P5.|Perfect distinguishabllity

P6. Lossless Compressibility

Every state that is not completely mixed (i.e.
on the boundary of the convex) can be
perfectly distinguished from some other state.

Falsifiability of the theory



2rinciples for
Quantum Theory

P, Causality

P?2. Local discriminabillity

P3. Purification

P4, Atomicity of composition
P5. Perfect distinguishabllity

P6.|Lossless Compressibility

For states that are not completely mixed
there exists an ideal compression scheme

Any face of the convex set of
states is the convex set of states of
some other system




Principles for
Quantum Theory

P, Causality

P2. Local discriminabllity

3 [Purification |
P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system




Principles for
Quantum Theory

Consequences

1. Existence of entangled states:
the purification of a mixed state is an entangled state;

P1. Cau Sa”’[y the marginal of a pure entangled state is a mixed state;
P?2. Local discriminability 2. Every two normalized pure states of the same
o3 |Pyrification system are connected by a reversible transformation
P4, Atomicity of composition (v == (v FPPq# -8
S C . [

5' PerfeCt dISthUIShablllty 3. Steering: | et ¥ purification of p. The for every
0. Lossless COmpI’eSSIk)I“J[y ensemble decomposition p=) p a, there exists a

measurement {b }, such that

:px<a/x = Vxe X

Every state has a purification. For fixed =
purifying system, every two purifications of ¥ e E

the same state are connected by a reversible
transformation on the purifying system 4. Process tomography (faithful state):
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5. No information without disturbance
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P, Causality

P2. Local discriminabllity

3 [Purification |
P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system

Consequences

6. Teleportation

A
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/. Reversible dilation of “channels”
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8. Reversible dilation of “instruments”
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9. State-transformation cone isomorphism

10. Rev. transform. for a system make a group



Moving to the
Mechanics

e The Weyl, Dirac, and Maxwell equations
are derived from information-theoretic
principles only, without assuming SR

e QCA theory to be regarded as a
theory unifying scales from Planck
to Fermi (no continuum limit!)

e QFT is recovered in the
relativistic limit (k«1)

e |n the ultra-relativistic limit (Planck
scale) Lorentz covariance is an
approximate symmetry, and one
has the Doubly Special Relativity of
Amelino-Camelia/Smolin/Magueijo

Additional principles

* linearity
* unitarity
* locality Quantum Cellular
« homogeneity Automaton (QCA)
* isotropy

* minimal-dimension and transitivity

Minimal algorithmic complexity of the
Information processing

GOOD FEATURES

1.

n

CRCIE R

no SR assumed: emergence of relativistic guantum field
and space-time

quantum ab-initio

no divergencies and all the problems from the continuum
no “violations” of causality

computable

dynamics stable (dispersive Schrodinger equation for
narrow-band states valid at all scales)

solves the problem of localization in QFT
natural scenario for the holographic principle



Quantum Cellular Automaton

Reduce QFT to just interactions among identical quantum systems in a
denumerable (infinite) set G (no background and no SR assumed)

« System g is (g), Y s-dimensional field operator, geG

* Minimal-dimension: s>1 (s=1 trivial evolution)

* linearity: Interactions described by transition matrices \
AgaeMs(C) between systems ge@:

single evolution step ((g) = Y(Q) =) yeS; A V(q’)
S¢C@ set of systems interacting with g

« locality: |Sy|<, Vg

* isotropy: we require that Agy'#0 iff Ag'g20 (isotropy to
be defined later)

e Finitely generated group G: locality
and universality of the physical law

 homogeneity and transitivity:

* {Agg'lgess iINndependent of g,

* G group, Sg ={thg}=:S, G=<h1,hz,...,hn,|r1,r2,..., 1> * The physical law has finite
guantum algorithmic complexity



Quantum Cellular Automaton

The QCA is:
* g Cayley graph K(G, S+) of inear evolution
an (infinite) group G with UT(2)U = Ay (z)
finite generating set
S=5, ust

+ 10 each node ge@ it corresponds an
evaluation of a quantum field ¢(g9)eCs

+ 10 each generator heS of GG it corresponds + Vacuum state  |£2)
an interaction matrix AneMs(C)
hs(K)|§2) =0

A= ) T,®A, -} Ui =1
hESJrI_IS;l - N-particle states

Th unitary repr. of G on £(G) Pl (k)wl, (k2) .0l (kn)[Q)




Field QCA: isotropy

* There exists a group L of permutations
of S., transitive over S. that leaves
K(G,S:) invariant

* anontrivial unitary s-dimensional
(projective) representation {L;} of L
such that:

O
A:ZTh@)Ah:ZTlh@)LZAhLzr
hes hes

S=5, 8"

# Conjecture: unitarity + isotropy
= G Abelian

(H@



D'Ariano, Perinotti,
arXiv:1306.1934

The Weyl QCA

== Minimal dimension for nontrivial unitary A: s=2

e Unitarity = the only possible G is the BCC!!

e = Ap are proportional to rank-one projectors

Two QCAS
connected
oy CPT




The Weyl QCA

i0p(t) = [t +1) —(t = 1)] = 5(A — AN)p(t)

%(Al:{t . AET) =0, (82CyCy & C18yS,) “Hamiltonian”
+0,(Cs5yCy F S4CyS2)
+0,(cpCyS, £ 545,C2)
k<1

104 = %a' -k e Weyl equation!
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arXiv:1306.1934

Dirac emerging from the QCA

fidelity with Dirac evolution for a narrowlband
packet in the relativistic limit &k ~ m < 1

F=|(exp[-iNAK|  wP(k) = VK +m?

Ak) == (m? + £z — P (k)

Skiky k. 3(kypkyk,)? 2 3
Vkoky sy ) - (m? + B2 403k + N7E?)

relativistic proton: N ~ m > = 2.2 % 10°7 = t =1.2%10"s =3.7%10%y

UHECRs: k=107 > m = N~k 2 =10% 5 5%10 %% s



Getting other automata from Weyl

e Direct-sum coupling — Dirac automata

e [ensor with adjoint = Maxwell automaton
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The Dirac QCA

The only way of coupling two Weyl automata
locally is to couple Ak with its inverse with an
identity matrix as follows:

+  (nA;  wml
k " \iml nAT

wf(k) = Cos_l[n(cxcycz + 555452)]

. kg ka
Sy = SIN —— Co = COS —
V3 V3

+ m<1: bound for mass
+ N 1:vacuum refraction index

. CPT-connected!




Universal constants of QCA theory

Conversion to dimensional units

Ip: automaton time-step

me: bound for particle mass

> Mg = MMmp
> o=
c 1= —
tp




Dirac QCA d=2
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Bisio, D’Ariano, Perinotti (unpub)

Maxwell automaton

Fy = Ex +iBx =Y &ij(ip) )k

¥

“neutrino theory of photon”

—

Fy(t+1) = Akﬁk(t)AL

Maxwell equations in relativistic limit £ < 1
Boson: emergent from convolution of fermions

Tradeoff between violation of Maxwell dynamics and good bosons



Bibeau-Delisle, Bisio, D'Ariano,
Perinotti, Tosini, arXiv:1310.6760

Planck-scale effects: Lorentz covariance distortion

Transformations that leave the dispersion relation invariant

a)(i)(k)
3

wr (k) == % cos (/1 — m2 cos k)

w' = arcsin [y (sinw/ cosk — Btan k) cos k']
k' = arctan [y (tank — Ssinw/ cos k)]
= (187712



http://arxiv.org/abs/1310.6760
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Bibeau-Delisle, Bisio, D'Ariano,
Perinotti, Tosini, arXiv:1310.6760

Planck-scale effects: Lorentz covariance distortion

1.4
0 N 1.2
1.0
g g 8'2\ /\ /\ / For narrow-band states
| o4 we can linearize Lorentz
6 0.2 \_/ \/ . 3
00 ", , 5 [transformations around '
4 k k=Ko and we get k- 7130
) | dependent Lorentz
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Delocalization under boost
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Relative locality
R. Schutzhold and W. G. Unruh, J. Exp. Theor. Phys. Lett. 78 431 (2003)
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1106.0313 (2011)



http://arxiv.org/abs/1310.6760

Astrophysical tests!

« Blurring of the image of very
far quasars

Caption: An aspect of the analysis that motivated PhysicalReviewLetters96.051301
(paper also mentioned 1n parts of this project proposal). Here shown are copies of
Hubble telescope Ultra-Deep-Field images for quasar 6732 (redshuft 3.2), with lefi
panel showing a B-filter (*blue’) image and right panel showing a V-filter (“visible’)

umage. It 15 noticeable from the original images that this quasar appears somewhat

blurrad 1 the shorter-wavelencth B filter. Thas illustrates qualitatively the effect

expected 1 some quantum-spacetime models: propagation of photons in the fuzzy

'SEHCE'!.'HJIE' EDHIE EI’DE'LIE‘E‘ EI'LIIT‘LT.IE 'Di HTIAFES. "u.'-ir"lTE MOTe EIHIT["LIIE f::muﬂ EDI’ IH.TEE‘I'

distances (greater ‘accumulation’ of tiny Planck-length effects) and for shorter
wavelengths (more sensitive to the fundamental short-distance structure of spacetime).
The available database of quasar images does show some prelumnary evidence 1n
favour of these qualitative features, but we are presently unable to exclude that the
blurming be due entirely to conventonal-physics mechamsms. We can nonetheless
use these data to place limits on spacetime fuzziness: if any blurring is caused by
spacetime fuzziness it must not be more than what shown by our quasar images.
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