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CRELATIVITY?

Is thereC Quantization rules, #?

something more
than Quantum?




POSSIBIL.E ANSWER:
THE UNIVERSE IS
A HUGE
QUANTUM COMPUTER



HOW RELATIVITY EMERGES

FROM THE COMPUTATION?




Lorentz transformations from
Galileo prineiple

“+ Galileo principle includes homogeneity and isotropy of
space and homogeneity of time.

“= On the assumption of isotropy and homogeneity of space
and homogeneity of time along with symmetry between the
two references, the most general transformations of
reference system are the Lorentz transformations with a
parameter €2 with the dimensions of a velocity, which is
independent on the relative velocity of frames.

K Empirically Q=c, which is an upper bound for velocities. B




Special Relaavity from
computational network

<Take a computational circuit which is uniform and
1SOLropic.

<Take the “continuum limit™ — space-time.

Take only finite-system gates = bound on speeds m.
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topology

Relativity from QT .o

(more generally from causality) counting
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Relativity from QT
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Relativity from QT
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Relativity from QT
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Relativity from QT
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Relativity from QT
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Relativity from QT
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WE GOT SR FROM

PURE CAUSALITY!




* Probabilistic operational
theory: every test from the
trivial system to the trivial
system 1s associated to a
probability distribution of
outcomes.

The Operational Framework

test
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Causal probabilistic theories
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‘ Input = Output ‘

<

A theory is causal, if for any two tests that are connected the marginal
probability of the input event is independent on the choice of the
output test, whereas, viceversa the marginal probability of the output
event generally depends on the choice of the input test.




Wittgenstein-ism

1 The world 1s all that s the case.

1.1 The world is the totality of
facts, not of things.

1.11 The world is determined

by the facts, and by their being
all the facts.

1.12 For the totality of facts
determines what is the case, and
also whatever is not the case.

1.13 The facts in logical space
are the world.

1.2 The world divides into facts.

1.21 Each item can be the case
or not the case while everything
else remains the same. ‘




My Brief History of Space-Time

& e

“tAt the beginning there were only events ...

**Then the Man devised causal connections
between them

**He modeled the causal connections in a
unified framework which is space-time













Quantum Computational

Field Theory (QCFT)
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~ SIMULATING QFT

| Simple scalar fields in 1 space dimension |

* % % % |

(@) space-granularity (minimal in principle discrimination between
independent events);

@, time-granularity;

field, operator function of space (evolving in time); we will
describe it by the set of operators|¢, := a2 ¢ (na)

enerally nonlocal operators. In QFT they satisfy (anti)commutation relations

Equal-time microcausality:

Fermion: Y/ {I//n, I//m} = Oum (Dirac)
Boson: 0, [('D,/” (Pm] — 6nm (Newton-Wigner)




~ SIMULATING QFT

Simple scalar fields in 1 space dimension

U; = exp (—itha)H> = exp(—27iNTH )

h

H : adimensional Hamiltonian
)4




~ SIMULATING QFT

Klein-Gordon in 1 space dimension

Both for Bose and Fermi fields (using: |[AB,C| = A|B,C]4 =




SIMULATING QFT

ShaT e Klein-Gordon in 1 space dimension

Trotter=ization

U, = e i9H _ jjy Ut(N)7 Ut(N) EA (Hezf\,’TszLzz) (HezjivtrHZZ,ZHl) .
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~ SIMULATING QFT

Diracin 1 space dimension

icho,0, mec?

mc?  —icho,0,

Field equal-time commutation relations (quantization rules)

W), WP ()} =848 (x—y),  {v*(x),¥P(»)}=0

Hamiltonian:

- = + icho,d,  mc?
s /dx v ( mc? —icthé’x) V()




~ SIMULATING QFT

| e . .
Diracin 1 space dimension

* % %k K |

OtEYT - = a2z y%(na)

k—1
l/jr? = 1_‘471—|—067 Fk = ( H GJZ) Gk_a {Fkarh} = 6kh1
i ¥ . .

ihoy, = (v, hwH |




SIMULATING QFT

QCFT fdr wa = c

using the
identity

Compton wavelength

5’x makes sense above the scale of

| T . .
i Diracin 1 space dimension

Z{wﬁ‘*,% Ky =

E
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SIMULATING QFT

| e . .
J Diracin 1 space dimension: the vacuum

* Kk Kk ok

\
I = - . - . 4 [T
1

L

T \antiparticle ‘
*

Y Dirac filled sea : : :
w particle spin-up and spin down

[\V@W




SIMULATING QFT

oS s Diracin 1 space dimension
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antiparticle -

“particle” creation T

: 1T
| Yn > : |O> particle spin-up and spin down

I _ n
n = (H]_—‘” G;)O4ni1







SIMULATING QFT

Diracin 1 space dimension

A Z 2 0

o Z z e
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ONLY QUBITS! NO MORE FIELDS!
NO MORE QUANTIZATION RULES!




QCFT OF DIRAC

I space dimension

[
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QCFT OF DIRAC

Recovering QFT from QCKT
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QCFT OF DIRAC

*¢ The Zitterbewegung provides the |

new Intuitive picture.

*¢ The new “particles” move at the
speed of light: the mass is the
coupling with the antiparticle,
and the interaction produces the
“slow-down™.

*t The field description gives a
“classical” description in terms of
harmonic oscillation with bilinear
Hamiltonian

*¢ quantization rules “emergent”

*¢ no causality leakage nor
localization problems




SIMULATING QFT

| T . .
i Dirac in 3 space dimensions?




" SIMULATING QFT,

ShaT e |_ 1ST QUANTIZATION BY QCFT;,
|¢ (x)> = ﬁbT( ) |O> single particle at position x

» |¢n> L= (b,j”(» qubitTat n (or | boson at n)
iho;|9n) = (¢, hwH]|0) = —hoH|¢,)
e 110, (0] D) = hd (8, H|®) = heo(HD),
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 SIMULATING QFT),

Schrodinger equation

H=HO g

b
Hjjr1= Zejﬂ,j —€j,j Tej+1j+1T€j jt1]
J




SIMULATING QFT,

Schrodinger equation E

* Kk ok Kk i

“Trotterize’ the Hamiltonian

0 1 (1)
H=HY +HWY), Zsz pYEBTE H ZH2]+1 2j+2
j
ol — Z€j+1,j —€jj €1, j+1T€) jt1

o : |
By taking the maximal causal speed equal to.C
namely @ o< N ™1 one obtains:

The Schrodinger equation is not Lorentz invariant!




QCKT

GAUGE INVARIANCE

NONABELIAN . ABELIAN




SIMULATING QFT

GAUGE INVARIANCE |

NONABELIAN

Nativély nonabelian Ga‘uge theory! Good for
and on ... foliation !!! Gravity!




PLAY GOD WITH QCFT

[ or else: Einstein demystified I

* Kk Kk ok
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GR from QT?

positive
and
negative
masses
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GR from QT?
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GR from QT?
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GR from QT?
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GR from QT?
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Advantages of QCFT versus QF 1T

e

- nonstandard representation
i _. & of Feynman path integral
ﬂ (Nakamura)

" QFT , QCFT
\  PROBLEMS | ) SOLUTIONS
W 0 Pro with 0§
Nz ) mpe N lo jon CHRANG
| lattice

Operationally theory

& network defined
&




Moreover, you can change the computational engine

from QT to super-QT, or even non-causal Opl,
without changing the theoretical framework




THE PRINCIPLE OF THE QUANTUMNESS

T
CM Q

re-bit;
PR-boxes




“Emergent” Physics

“*Relativity
= Gravity
*Field Theory

**(Quantization rules and h




TODO hist

*¢ Improve Ichonise and Tamura

bound

% Derive Lorentz covariance of

field
% Dirac and e.m. field in 3d

¢ Connect Lagrangian density with

a circuit tile

*¢ Derive a 1dim toy (non)abelian

gauge theory

¢ Re-examine microcausality:

s Fermi, Bose, para-statistics?

¢ Rederive quantization rules

¢ Re-derive Feynman path integral
via Trotter

¢ Explore connections with lattice
theories

*¢ Rederive GR Einstein’s equation

¢ Explore Penrose spin-networks,
Regge calculus, etc.

*t Rederive gauge theories

** Write a Theoryof ...
(Quantum Gravity!




Concluding remarks

* QCFT seems to have many advantages versus QF'T

*& It puts the nose on the foundational problems in QF'T
 ltis QG-ready

*1t’s fun! (a good excuse to study more physics)

¢ It brings Quantum Information to particle physics, GR,
and cosmology! | '




