A QUANTUM-DIGITAL UNIVERSE: A QCA APPROACH TO FIELD THEORY

Giacomo Mauro D’Ariano
Dipartimento di Fisica “A. Volta”, Università di Pavia

Speakable in quantum mechanics: atomic, nuclear and subnuclear physics tests
ECT, Trento, 30 August 2011
Selected for a Viewpoint in Physics

PHYSICAL REVIEW A 84, 012311 (2011)

Informational derivation of quantum theory

Giacomo Chiribella*

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Ontario, Canada N2L 2Y5

Giacomo Mauro D’Ariano† and Paolo Perinotti§

QUIT Group, Dipartimento di Fisica “A. Volta” and INFN Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy

(Received 29 November 2010; published 11 July 2011)

We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of theories of information processing that can be regarded as standard. One postulate—purification—singles out quantum theory within this class.

DOI: 10.1103/PhysRevA.84.012311

PACS number(s): 03.67.Ac, 03.65.Ta

I. INTRODUCTION

than 80 years after its formulation, quantum theory ysterious. The theory has a solid mathematical foun-

dation, addressed by Hilbert, von Neumann, and Nordheim is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim is still mysterious. The theory has a solid mathematical foun-
I. INTRODUCTION

More than 80 years after its formulation, quantum theory continues to astonish. The theory has a solid mathematical foundation, addressed by Hilbert, von Neumann, and von Neumann himself expressed his dissatisfaction with his mathematical formulation of quantum theory with the surprising words “I don’t believe in Hilbert space anymore,” reported by Birkhoff in
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

• renormalization
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
**PROBLEMS WITH QFT**

- renormalization
- violation (?) of Einstein causality
- localization $\rightarrow$ measurement
- Quantum Gravity
PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
* Quantum Gravity

CURE

* space-time emergence from events
* *homogeneous* causal networks
Q-DIGITALIZATION PROGRAM

PROBLEMS WITH QFT

- renormalization
- violation (?) of Einstein causality
- localization → measurement
- Quantum Gravity

CURE

- space-time emergence from events
- *homogeneous* causal networks

ISSUES

martedì 30 agosto 2011
Q-DIGITALIZATION PROGRAM

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
* Quantum Gravity

CURE

* space-time emergence from events
* homogeneous causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization $\rightarrow$ measurement
* Quantum Gravity

CURE

* space-time emergence from events
* homogeneous causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
* dimensional conundrum
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
* Quantum Gravity

CURE

* space-time emergence from events
* homogeneous causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
* dimensional conundrum
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization $\rightarrow$ measurement
* Quantum Gravity

CURE

* space-time emergence from events
* *homogeneous* causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
* dimensional conundrum

1+1 DIMENSIONS

* covariance is automatic
**Q-DIGITALIZATION PROGRAM**

*QCA AS A PLANCK-SCALE THEORY*

**PROBLEMS WITH QFT**

- renormalization
- violation (?) of Einstein causality
- localization $\rightarrow$ measurement
- Quantum Gravity

**CURE**

- space-time emergence from events
- *homogeneous* causal networks

**ISSUES**

- violation of Lorentz covariance and dispersion relations
- dimensional conundrum

**1+1 DIMENSIONS**

- covariance is automatic
- emergence of physics

*martedì 30 agosto 2011*
Q-DIGITALIZATION PROGRAM

QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
* Quantum Gravity

CURE

* space-time emergence from events
* *homogeneous* causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
* dimensional conundrum

1+1 DIMENSIONS

* covariance is automatic
* emergence of physics
* elimination of q-fields for qubits

martedì 30 agosto 2011
**Q-DIGITALIZATION PROGRAM**

**QCA AS A PLANCK-SCALE THEORY**

### PROBLEMS WITH QFT

* renormalization  
* violation (?) of Einstein causality  
* localization → measurement  
* Quantum Gravity

**CURE**

* space-time emergence from events  
* **homogeneous** causal networks

### 1+1 DIMENSIONS

* covariance is automatic  
* emergence of physics  
* elimination of q-fields for qubits

### >1+1 DIMENSIONS

**ISSUES**

* violation of Lorentz covariance and dispersion relations  
* dimensional conundrum

**martedì 30 agosto 2011**
# Q-Digitalization Program

## QCA as a Planck-Scale Theory

### Problems with QFT

- renormalization
- violation (?) of Einstein causality
- localization → measurement
- Quantum Gravity

**CURE**

- space-time emergence from events
- *homogeneous* causal networks

### Issues

- violation of Lorentz covariance and dispersion relations
- dimensional conundrum

### 1+1 Dimensions

- covariance is automatic
- emergence of physics
- elimination of q-fields for qubits

### >1+1 Dimensions

- elimination of q-fields → Majorana

---

Martedì 30 Agosto 2011
Q-DIGITALIZATION PROGRAM
QCA AS A PLANCK-SCALE THEORY

PROBLEMS WITH QFT
* renormalization
* violation (?) of Einstein causality
* localization \rightarrow measurement
* Quantum Gravity

CURE
* space-time emergence from events
* homogeneous causal networks

ISSUES
* violation of Lorentz covariance and dispersion relations
* dimensional conundrum

1+1 DIMENSIONS
* covariance is automatic
* emergence of physics
* elimination of q-fields for qubits

>1+1 DIMENSIONS
* elimination of q-fields \rightarrow Majorana
* dim. conundrum \rightarrow quantumness

martedì 30 agosto 2011
Q-DIGITALIZATION PROGRAM

PROBLEMS WITH QFT

* renormalization
* violation (?) of Einstein causality
* localization → measurement
* Quantum Gravity

CURE

* space-time emergence from events
* homogeneous causal networks

ISSUES

* violation of Lorentz covariance and dispersion relations
* dimensional conundrum

1+1 DIMENSIONS

* covariance is automatic
* emergence of physics
* elimination of q-fields for qubits

>1+1 DIMENSIONS

* elimination of q-fields → Majorana
* dim. conundrum → quantumness

... AND MORE

* quantization vs classicalization

martedì 30 agosto 2011
Causal network
Causal network

event
event

causal link

Causal network

martedì 30 agosto 2011
event
subroutine
transformation

EFFECT
readout
measurement

STATE
initialization
preparation

Causal network

martedì 30 agosto 2011
A QCA FIELD THEORY

QUANTUM CELLULAR AUTOMATA

\[
\begin{align*}
&n-2 & n-1 & n & n+1 & n+2 & \ldots \\
&+ & - & + & - & + & - & + & - \\
\end{align*}
\]
A QCA FIELD THEORY

QUANTUM CELLULAR AUTOMATA

Translational invariance
A QCA FIELD THEORY
QUANTUM CELLULAR AUTOMATA

Locality of interactions

\[ n-2 \quad n-1 \quad n \quad n+1 \quad n+2 \quad \ldots \]
\[ + \quad - \quad \]

Translational invariance
A QCA FIELD THEORY

QUANTUM CELLULAR AUTOMATA

Locality of interactions

\[ n-2 \quad n-1 \quad n \quad n+1 \quad n+2 \quad \ldots \]
\[ + \quad - \quad + \quad - \]

Translational invariance

Margolus scheme
A QCA FIELD THEORY
QUANTUM CELLULAR AUTOMATA

martedì 30 agosto 2011
A QCA FIELD THEORY
TRANSLATIONAL INVARIANCE

Physical law
Homogeneous network topology
Homogeneous network topology
CAUSAL NETWORKS

THE PHYSICAL LAW: UNDRESSING TOPOLOGY

* Homogeneous network topology
Homogeneous network topology
CAUSAL NETWORKS

GRAPH DIMENSION

* Homogeneous network topology

* Space-time dimension: graph-dimension = d+1
CAUSAL NETWORKS

FEW POSSIBLE LATTICES

* Homogeneous network topology
* graph-dimension = d+1

few possible causal networks
CAUSAL NETWORKS

FEW POSSIBLE LATTICES

* Homogeneous network topology
* graph-dimension = d+1

few possible causal networks
CAUSAL NETWORKS

FEW POSSIBLE LATTICES

* Homogeneous network topology
* graph-dimension = d+1

few possible causal networks
EMERGENCE OF SPACE-TIME FROM CN

CAUSAL DEPENDENCE
EMERGENCE OF SPACE-TIME FROM CN

CAUSAL DEPENDENCE

Causally dependent events

martedì 30 agosto 2011
EMERGENCE OF SPACE-TIME FROM CN

CAUSAL DEPENDENCE

Causally dependent events

Causally independent events
EMERGENCE OF SPACE-TIME FROM CN

FOLIATION: TIME AS A COMPUTER CLOCK
Time is a computer clock for synchronizing the calls to subroutines in a distributed parallel calculus.
EMERGENCE OF SPACE-TIME FROM CN
THE COMPUTATIONAL TOMONAGA-SCHWINGER

BOOSTED FRAME
EMERGENCE OF SPACE-TIME FROM CN

BOOSTED FRAME

THE COMPUTATIONAL TOMONAGA-SCHWINGER

martedì 30 agosto 2011
same circuit topology, different synchronization

BOOSTED FRAME

REST FRAME
EMERGENCE OF SPACE-TIME FROM CN

TIME-DILATION AND SPACE-CONTRACTION

BOOSTED FRAME

REST FRAME
EMERGENCE OF SPACE-TIME FROM CN

TIME-DILATION AND SPACE-CONTRACTION

BOOSTED FRAME

REST FRAME
EMERGENCE OF SPACE-TIME FROM CN

CONSTRUCTION OF THE COORDINATE SYSTEM
EMERGENCE OF SPACE-TIME FROM CN

CONSTRUCTION OF THE COORDINATE SYSTEM

martedì 30 agosto 2011
EMERGENCE OF SPACE-TIME FROM CN

DIGITAL LORENTZ TRANSFORMATIONS
EMERGENCE OF SPACE-TIME FROM CN

DIGITAL LORENTZ TRANSFORMATIONS

\[ t^1 = \chi_{12} \frac{t^2 + v^{12}s^2}{\sqrt{1 - (v^{12})^2}}, \]
\[ s^1 = \chi_{12} \frac{s^2 + v^{12}t^2}{\sqrt{1 - (v^{12})^2}}, \]
\[ \chi_{12} := \sqrt{\alpha^{12} \beta^{12}} \]
\[ v_{13} = \frac{v_{12} + v_{23}}{1 + v_{12}v_{23}} \]
EMERGENCE OF SPACE-TIME FROM CN

DIGITAL LORENTZ TRANSFORMATIONS

\[ t^1 = \chi_{12} \frac{t^2 + v_{12} s^2}{\sqrt{1 - (v_{12})^2}}, \]
\[ s^1 = \chi_{12} \frac{s^2 + v_{12} t^2}{\sqrt{1 - (v_{12})^2}}, \]

\[ \chi_{12} := \sqrt{\alpha_{12} \beta_{12}} \]
\[ \frac{1}{2} (\alpha_{12} + \beta_{12}) \]

\[ v_{13} = \frac{v_{12} + v_{23}}{1 + v_{12} v_{23}} \]
Anisotropy of max-speed of information (no-digital-go theorem by Tobias Fritz)
Anisotropy of max-speed of information (no-digital-go theorem by Tobias Fritz)
EMERGENCE OF SPACE-TIME FROM CN

DIMENSIONAL CONUNDRUM

* Anisotropy of max-speed of information (no-digital-go theorem by Tobias Fritz)
Anisotropy of max-speed of information (no-digital-go theorem by Tobias Fritz)
EMERGENCE OF SPACE-TIME FROM CN

DIMENSIONAL CONUNDRUM

* Anisotropy of max-speed of information (no-digital-go theorem by Tobias Fritz)

Possible solution:

quantum nature of the CN!
INFORMATION FLOW IN 1+1: LORENTZ COVARIANCE IS A BONUS!
THE FREE FLOW OF INFORMATION

i.e. the DIRAC EQUATION (1+1 dimensions)
THE FREE FLOW OF INFORMATION

i.e. the DIRAC EQUATION (1+1 dimensions)

Information can flow only in two directions
THE FREE FLOW OF INFORMATION

i.e. the DIRAC EQUATION (1+1 dimensions)

Information can flow only in two directions and at fixed direction only at max speed
THE FREE FLOW OF INFORMATION

Information can flow only in two directions and at fixed direction only at max speed.

i.e. the DIRAC EQUATION (1+1 dimensions)

- luminal
- subluminal
- superluminal
THE FREE FLOW OF INFORMATION

i.e. the DIRAC EQUATION (1+1 dimensions)

Information can flow only in two directions and at fixed direction only at max speed
THE FREE FLOW OF INFORMATION

i.e. the DIRAC EQUATION (1+1 dimensions)

Information can flow only in two directions and at fixed direction only at max speed

\[ c = \frac{a}{\tau} \]
THE FREE FLOW OF INFORMATION

*i.e. the DIRAC EQUATION (1+1 dimensions)*

Information can flow only in two directions and at fixed direction only at max speed

\[
\hat{\partial}_t \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} = \begin{bmatrix} c\hat{\partial}_x & 0 \\ 0 & -c\hat{\partial}_x \end{bmatrix} \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix}
\]
THE FREE FLOW OF INFORMATION

\[ \frac{\hat{\partial}_t}{\partial t} \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} = \begin{bmatrix} c\hat{\partial}_x & 0 \\ 0 & -c\hat{\partial}_x \end{bmatrix} \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} \]

Information can flow only in two directions and at fixed direction only at max speed

Slower speed = periodic change of direction
Slower speed = periodic change of direction coupling between \( \phi^+ \) and \( \phi^- \) by an imaginary constant

\[
\hat{\partial}_t \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} = \begin{bmatrix} c\hat{\partial}_x & 0 \\ 0 & -c\hat{\partial}_x \end{bmatrix} \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix}
\]

Information can flow only in two directions and at fixed direction only at max speed

The free flow of information i.e. the Dirac equation (1+1 dimensions)

No need of imposing relativistic invariance!

(spinless) Dirac equation!
Slower speed = periodic change of direction

coupling between $\phi^+$ and $\phi^-$ by an imaginary constant

$$
\hat{\partial}_t \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} = 
\begin{bmatrix}
 c\hat{\partial}_x & 0 \\
 0 & -c\hat{\partial}_x
\end{bmatrix}
\begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix}
$$

and at fixed direction only at max speed

Information can flow only in two directions

THE FREE FLOW OF INFORMATION

**i.e. the DIRAC EQUATION**

\[ \text{(spinless) } \textbf{Dirac equation!} \]

... a kinematical definition of inertial mass ...

No need of imposing relativistic invariance!

martedì 30 agosto 2011
THE FREE FLOW OF INFORMATION

**i.e. the DIRAC EQUATION**

Information can flow only in two directions and at fixed direction only at max speed.

\[
\hat{\partial}_t \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix} = \begin{bmatrix} c \hat{\partial}_x & 0 \\ 0 & -c \hat{\partial}_x \end{bmatrix} \begin{bmatrix} \phi^+ \\ \phi^- \end{bmatrix}
\]

Slower speed = periodic change of direction

**... a kinematical definition of inertial mass ...**

**... an informational meaning for \( \hbar \)**

(conversion info-mass - kg-mass)

\[
\begin{align*}
\lambda &= \frac{\hbar}{mc} \\
\omega &= \text{mass (informational) in s}^{-1} \\
m &= \frac{1}{c^2} \hbar \omega
\end{align*}
\]

martedì 30 agosto 2011
FREE INFORMATION FLOW

DIRAC EQUATION

spin: circuit
“undressing”

martedì 30 agosto 2011
spin: circuit “undressing”
THE NETWORK BECOMES QUANTUM: QCA
The coupling between left and right fields leads to a renormalization of the field speed due to unitarity. 

\[ c \rightarrow \zeta c, \quad \zeta = \zeta(m) \]

\[ \zeta(m) = \sqrt{1 - \left(\frac{m}{M}\right)^2} \]

Information halt at the Planck mass
PHYSICS EMERGING FROM THE COMPUTATION
Hermiticity is a consequence of the universality of the physical law.
FIELDS REPLACED BY QUBITS

Jordan-Wigner construction

\[
\gamma_n := \sigma_n^+ \prod_{l=-\infty}^{n-1} \sigma_k^z \quad [\gamma_n, \gamma_m] = 0, \quad [\gamma_n^\dagger, \gamma_m] = \delta_{mn}
\]
FIELDS REPLACED BY QUBITS

Jordan-Wigner construction

\[
\gamma_n := \sigma_n^+ \prod_{l=-\infty}^{n-1} \sigma_k^\sim \quad [\gamma_n, \gamma_m] = 0, \quad [\gamma_n^+, \gamma_m] = \delta_{mn}
\]

\[
\gamma_n \gamma_{n-1} := \sigma_n^+ \sigma_{n-1}^-
\]
\[ \gamma_n := \sigma_n^+ \prod_{l=-\infty}^{n-1} \sigma_k^z \quad [\gamma_n, \gamma_m] = 0, \quad [\gamma_n^\dagger, \gamma_m] = \delta_{mn} \]

\[ \gamma_n^\dagger \gamma_{n-1} := \sigma_n^+ \sigma_{n-1}^- \]

\[ \gamma_n^\dagger \gamma_{n-k-1} := \sigma_n^+ \sigma_{n-1}^z \cdots \sigma_{n-k}^z \sigma_{n-k-1}^- \]
### FIELDS REPLACED BY QUBITS

**Dirac in 1+1 d**

#### Fields are eliminated!

\[
A = \exp \left\{ i\theta \left[ \phi_{n-1}^+ \phi_n^- + \phi_n^- \phi_{n-1}^+ \right] \right\}
\]

\[
B = \exp \left\{ i \frac{\pi}{2} \left[ \phi_{n-1}^+ \phi_n^- + \phi_n^- \phi_{n-1}^+ \right] \right\}
\]

<table>
<thead>
<tr>
<th>Commuting</th>
<th>Anticommuting</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Harmonic oscillator</strong></td>
<td><strong>Jordan-Wigner</strong></td>
</tr>
</tbody>
</table>
| \[ [a_l, a_k^\dagger] = \delta_{lk} \] | \[
\phi_n^+ = \sigma_{2n}^- \prod_{k=2}^{n-1} \sigma_{2k+1}^- \sigma_{2k}^Z
\]
| \[
\phi_n^+ = a_{2n}, \quad \phi_n^- = a_{2n+1}
\] | \[
\phi_n^- = \sigma_{2n+1}^- \sigma_{2n}^Z \prod_{k=-\infty}^{n-1} \sigma_k^Z
\]

**Gates act on local qubits only!**

\[
A = \exp \left[ -i\theta \left( \sigma_{2n-1}^- \sigma_{2n}^+ + \sigma_{2n-1}^+ \sigma_{2n}^- \right) \right]
\]

\[
B = \exp \left[ -i \frac{\pi}{2} \left( \sigma_{2n}^+ \sigma_{2n+1}^- + \sigma_{2n}^- \sigma_{2n+1}^+ \right) \right]
\]
FIELDS REPLACED BY QUBITS

Dirac in > 1+1 d!!

* Jordan-Wigner transformation for d+1>2
FIELDS REPLACED BY QUBITS

Dirac in $> 1+1$ d!!

* Jordan-Wigner transformation for $d+1 > 2$
FIELDS REPLACED BY QUBITS

Dirac in $1+1$ d!!

* Jordan-Wigner transformation for $d+1 > 2$

Dirac field
FIELDS REPLACED BY QUBITS

Dirac in $> 1+1 \text{ d!!}$

- Jordan-Wigner transformation for $d+1 > 2$

- Possible solution: add a Majorana field!
**FIELDS REPLACED BY QUBITS**

Dirac in $> 1+1$ d!!

* Jordan-Wigner transformation for $d+1 > 2$

* Possible solution: add a Majorana field!

---


<table>
<thead>
<tr>
<th>fields</th>
<th>qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_{k,l}^\dagger \gamma_{k,l+1} + \gamma_{k,l+1}^\dagger \gamma_{k,l}$</td>
<td>$(\sigma_{k,l}^x \sigma_{k,l+1}^x + \sigma_{k,l+1}^y \sigma_{k,l}^y)(-)^{l+1} \tilde{\sigma}<em>{k,l}^x \tilde{\sigma}</em>{k,l+1}^y$</td>
</tr>
<tr>
<td>$\gamma_{k,l}^\dagger \gamma_{k+1,l} + \gamma_{k+1,l}^\dagger \gamma_{k,l}$</td>
<td>$(\sigma_{k,l}^x \sigma_{k+1,l}^x + \sigma_{k,l}^y \sigma_{k+1,l}^y)(\tilde{\sigma}<em>{k,l}^x \tilde{\sigma}</em>{k+1,l})$</td>
</tr>
</tbody>
</table>

---

martedì 30 agosto 2011
**FIELDS REPLACED BY QUBITS**

* Dirac in $> 1+1$ d!!

* Jordan-Wigner transformation for $d+1 > 2$

* Possible solution: add a Majorana field!

---


<table>
<thead>
<tr>
<th>fields</th>
<th>qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_{k,l}^{\dagger} \gamma^{k,l+1} + \gamma_{k,l+1}^{\dagger} \gamma_{k,l}$</td>
<td>$(\sigma_{k,l}^{x} \sigma_{k,l+1}^{x} + \sigma_{k,l}^{y} \sigma_{k,l+1}^{y})(-)^{l+1} \tilde{\sigma}<em>{k,l}^{x} \tilde{\sigma}</em>{k,l+1}^{y}$</td>
</tr>
<tr>
<td>$\gamma_{k,l}^{\dagger} \gamma^{k+1,l} + \gamma_{k+1,l}^{\dagger} \gamma_{k,l}$</td>
<td>$(\sigma_{k,l}^{x} \sigma_{k+1,l}^{x} + \sigma_{k,l}^{y} \sigma_{k+1,l}^{y})\tilde{\sigma}_{k,l}^{z}$</td>
</tr>
</tbody>
</table>
Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata

Iwo Bialynicki-Birula

Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Lotników 32/46, 02-668 Warsaw, Poland*
and Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität,
Robert-Mayer-Strasse 8-10, Frankfurt am Main, Germany
(Received 27 September 1993; revised manuscript received 27 December 1993)

Very simple unitary cellular automata on a time evolution of the wave functions for spinor value of the wave function at a given site depend discretized evolution is also unitary and preserved is studied in detail, and it is shown that ever under some natural assumptions, leads in the context of histories is evaluated and is shown to reproduce Generalizations to include massive particles (D higher-spin particles are also described.

PACS number(s): 03.65.Pm, 02.70.–c, 11.15.Hi

II. WEYL EQUATION ON A LATTICE

I shall start with a lattice description of the wave equation for a massless spin-1/2 particle and extend it later to massive particles and to higher spins. In my quantum cellular automaton the two-component wave function $\phi(i, j, k, t)$ is defined on a cubic lattice and it is updated at each time increment $\Delta t$ according to the local algorithm

$$
\phi(i, j, k, t + \Delta t) = W_{+++}\phi(i + 1, j + 1, k + 1, t) \\
+ W_{+++}\phi(i + 1, j + 1, k - 1, t) + \cdots \\
+ W_{---}\phi(i - 1, j - 1, k - 1, t), \quad (1)
$$
Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata

Iwo Bialynicki-Birula
Centrum Fizyki Teoretycznej, Polska Akademia Nauk, Lotników 32/46, 02-668 Warsaw, Poland
and Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität,
Robert-Mayer-Strasse 8-10, Frankfurt am Main, Germany
(Received 27 September 1993; revised manuscript received 27 December 1993)

Very simple unitary cellular automata on a time evolution of the wave functions for spinor value of the wave function at a given site depend discretized evolution is also unitary and preserved is studied in detail, and it is shown that ever and by identifying the evolution operator $T_A$ with the generic evolution operator $U_\Delta$ introduced before. The exact evolution operator in the continuum limit is recovered from the Lie-Trotter product formula (cf., for example, Ref. [39]), when $N = t/\Delta t$ tends to infinity,

$$\lim_{N \to \infty} \left[ \exp(a \sigma_x \partial_x) \exp(a \sigma_y \partial_y) \exp(a \sigma_z \partial_z) \right]^N$$

$$= \exp(c \sigma \cdot \nabla \Delta t). \quad (18)$$

II. WEYL EQUATION ON A LATTICE

I shall start with a lattice description of the wave equation for a massless spin-1/2 particle and extend it later to massive particles and to higher spins. In my quantized automaton the two-component wave function $\phi(x, i, j, k, t)$ is defined on a cubic lattice and it is updated in each time increment $\Delta t$ according to the local
FIELDS REPLACED BY QUBITS

CLASSICALIZATION vs QUANTIZATION
FIELDS REPLACED BY QUBITS

CLASSICALIZATION vs QUANTIZATION

- locally interacting qubits
- Jordan Wigner
- Locally interacting quantum fields
- emergent Hamiltonian
- classical fields

martedì 30 agosto 2011
FIELDS REPLACED BY QUBITS

CLASSICALIZATION vs QUANTIZATION

- locally interacting qubits
- Jordan Wigner
- Locally interacting quantum fields
- emergent Hamiltonian
- classical fields
FIELDS REPLACED BY QUBITS

CLASSICALIZATION vs QUANTIZATION

-fields

martedì 30 agosto 2011
Dirac QCA: First Quantization

Single particle state
First Quantization: two-particle states
First Quantization: two-particle states
First Quantization: two-particle states
IS REALITY QUANTUM-DIGITAL?

SOME INTERESTING POINTS FOR DISCUSSION

* Emergent physics:
  * Minkowski space-time
  * Hamiltonian
  * inertial mass
  * Planck constant
  * classical mechanics
  * quantization/dequantization
  * gravitation...

* Violations:
  * Lorentz covariance,
  * dispersion relations ...

martedì 30 agosto 2011
IS REALITY QUANTUM-DIGITAL?

SOME INTERESTING POINTS FOR DISCUSSION

- Emergent physics:
  - Minkowski space-time
  - Hamiltonian
  - inertial mass
  - Planck constant
  - classical mechanics
  - quantization/dequantization
  - gravitation...

- Violations:
  - Lorentz covariance,
  - dispersion relations...

THANK YOU!

martedì 30 agosto 2011