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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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1.1. Test. A test is made of the following ingredients: a) a collection of possible
outcomes; b) some input systems; c) some output systems. It will be represented in
form of a box, as follows

A
1

{A
i

}
B

1

A
2

B
2

The left wires represent the input systems, the right wires the output systems, and
{A

i

} denotes the complete collection of possible outcomes.

We will use the collection {A
i

}
i2X to denote the test itself, and we will call the set X

sample space. It is often convenient to represent just a single outcome A
i

, or, more
generally, a subset A ⇢ {A

i

} of the collection of possible outcomes, i. e. what is
called an event, as follows

A
1

A
B

1

A
2

B
2

.

The number of wires at the input and at the output can vary, and one can have also
no wire at the input and/or at the output. For example in the Stern-Gerlach test we have
a single input wire and no output wire, and we can imagine the input wire as the particle
entering the apparatus, whereas we have no output wire since there will be nothing left
after the test, apart from the "# outcome. In the case of the beam splitter the input
and the output systems will be four modes of the e. m. field with different directions,
whereas there will be no outcome. In the case of the particle interaction, the input
and output systems are indeed the input and output particles, whereas the outcomes are
particle-events that we detect.

1.2. What are the events? Events are “things” that happen—such as thunders,
lightenings, particle tracks, scintillations on a cathodic screen, or life and death.1 We
distinguish between events and outcomes to emphasize the elemental nature of the
outcomes versus the set nature of events, in the sense that events are “sets of outcomes”,
or, viceversa, you can take disjoint events as outcomes themselves. Thus, synonymous
of outcomes are also “elementary” or “simple event”, or we can stress that an events
consists of more than one outcome by naming it “compound event”. An outcome/event
can be the result of an “experiment”, but the fact that it may or may not occur, does
not necessarily brings a probabilistic connotation, for example the fact that it happens
or not may only depend on what is connected to the wires. Moreover, we remind that
we can have the case of a single event, as in the example of the beam splitter, or in the
case of an interaction between particles.

1.3. Preview of the notion of “network”. In order to understand the intimate
meaning of the notion of test/event and of its box representation, we should imagine
the test inserted in its natural environment: the network. Here the box will be actually
connected to other tests/events as in Fig. 1.1. The different letters A,B,C, . . .A [event]

A [system]

{A
i

}
i2X [test]

labeling the wires will be used to denote different “types of system”. The meaning
itself of the word “system” ultimately comes from the following connectivity rules:

1The last two examples fit very well the case of the sort of the Schrődinger cat, in the famous paradox
about quantum measurements.
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Figure 1.1: A network of events. The events are represented by boxes with wires. Wires
are of two kinds: input and output, on the left/right side of the box, respectively. They
come in different types represented by letters A,B,C . . . labeling the wires. Wires—
also called systems—can be connected only by adjoining an input with an output both
with the same label, without making closed loops. The wires have only an operational
meaning, representing the connections between different operations.

1.4. Connectivity rules:

1. we can connect only an output wire of a box with an input wire of another
box,

2. we can connect only wires with the same label,

3. loops are forbidden,

1.5. Then, what are the wires? Ultimately the wires have only the function of
ruling the way in which a box can be connected to another box. Think for example
of the case of the beam splitter: you don’t actually “see” the e. m. field, however you
know how to put other beam splitters together on an optical table, by “imagining” the
field-mode that comes out from a beam splitter and enters another one. The systems
are just as the lines of an exploded view of a piece of Ikea furniture: the lines don’t
exist anywhere, they only provide an operational schematic of the experiment or of
the phenomenon.2 The various events in the network are connected, meaning that the
occurrence of an event in a given test generally depends on the occurrence of other
events in other tests that are connected to the given test. Thus, ultimately systems are
a representation of the causal connections between different events. In essence, this
is what e. g. input/output particles are in a scattering experiment, or what electric and
photonic signals are when they connect different devices. We should keep in mind
such purely connectivity role of wires in the circuit, and never imagine real wires e. g.
as representing a “free evolution”, which, instead, will be a special kind of test, i. e.
a deterministic test with a single outcome. Hence, don’t forget: wires are just causal
connections. We call wires “systems”, since indeed causal influences are propagated
by what we call a “system” going from one test to another in a test-cascade. Since we
are interested only in events and in relations between events, although actual events
occur in a finite amount of time, we can conveniently consider them as instantaneous,

2This illustration of the notion of “system” has been used by Lucien Hardy in a talk at Perimeter in 2009
[?].
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The number of wires at the input and at the output can vary, and one can have also
no wire at the input and/or at the output. For example in the Stern-Gerlach test we have
a single input wire and no output wire, and we can imagine the input wire as the particle
entering the apparatus, whereas we have no output wire since there will be nothing left
after the test, apart from the "# outcome. In the case of the beam splitter the input
and the output systems will be four modes of the e. m. field with different directions,
whereas there will be no outcome. In the case of the particle interaction, the input
and output systems are indeed the input and output particles, whereas the outcomes are
particle-events that we detect.

1.2. What are the events? Events are “things” that happen—such as thunders,
lightenings, particle tracks, scintillations on a cathodic screen, or life and death.1 We
distinguish between events and outcomes to emphasize the elemental nature of the
outcomes versus the set nature of events, in the sense that events are “sets of outcomes”,
or, viceversa, you can take disjoint events as outcomes themselves. Thus, synonymous
of outcomes are also “elementary” or “simple event”, or we can stress that an events
consists of more than one outcome by naming it “compound event”. An outcome/event
can be the result of an “experiment”, but the fact that it may or may not occur, does
not necessarily brings a probabilistic connotation, for example the fact that it happens
or not may only depend on what is connected to the wires. Moreover, we remind that
we can have the case of a single event, as in the example of the beam splitter, or in the
case of an interaction between particles.

1.3. Preview of the notion of “network”. In order to understand the intimate
meaning of the notion of test/event and of its box representation, we should imagine
the test inserted in its natural environment: the network. Here the box will be actually
connected to other tests/events as in Fig. 1.1. The different letters A,B,C, . . .A [event]

A [system]

{A
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}
i2X [test]

labeling the wires will be used to denote different “types of system”. The meaning
itself of the word “system” ultimately comes from the following connectivity rules:

1The last two examples fit very well the case of the sort of the Schrődinger cat, in the famous paradox
about quantum measurements.

March 27, 2014 DRAFT

Logic ⊂



The framework

16 CHAPTER 1. THE OPERATIONAL FRAMEWORK

opposite event
experiment
preparation-tests
preparation-events
observation-tests
observation-events

of the test {A1,A2,A3}, and, viceversa, the latter is a refinement of the former. The
complementation {{A

i

}A is the opposite event of A within test {A
i

}. The notion of
�-algebra generalizes that of Boolean algebra for continuous sample spaces X. Here, if
not otherwise stated, we will consider for simplicity only discrete sample spaces, with
the �-algebra simply given by the power set A = 2

X of X.

Note 1.1 [Test = experiment] Another word used for “test” is experiment. In Ref. [?] it is written “an ex-
periment on an object system consists in making it interact with an apparatus, which will produce one of a set
of possible outcomes, each one occurring with some probability [. . .] The logic of performing experiments
is finalized to predict results of forthcoming experiments in similar preparations.” Rényi in Ref. [?] defines
the experiment as the pair (X,A) made of the basic space X—i. e. the sample space—and of the �-algebra
of events A. Here, the experiment is simply identified with the collection of outcomes. Notice, however, that
here outcomes and events have a different connotation, which will include that of the transformation due to
the outcome. The notion of test is very general, and includes the notion of “measurement” as a special case,
corresponding to events that are “values” of a quantity.

1.2 Building up the network formally
We will now build multiple-wire boxes and the network itself following simple steps
from elementary boxes.

The starting building block is the single-system test, namely a test with a single
input system A, a single output system B, and a collection of events {A

i

}
i2X labeled

by outcomes in some set X. We will denote the test itself by its collection of events
{A

i

}
i2X, and we will represent the test by the diagram

A {A
i

}
i2X

B (1.1)

whereas a single event A
i

will be represented as

A A
i

B . (1.2)

The number of outcomes of the test will be denoted by |X|.
In the following we will make extensive use of the set of all events appearing in all

tests from A to B. Such set will be denoted by Transf(A,B). When B ⌘ A we will
simply write Transf(A). Tests with trivial input will be called preparation-tests, andTransf(A) [transformationsset]

Transf(A,B) [transformationsset2] the corresponding events will be called preparation-events. A preparation-test is what
is also generally called a “random source of quantum states”. In analogy we will adopt
for preparation-events the usual notation used for states in quantum circuits:

⇢
i

B
:=

I A
i

B (1.3)

In formulae, we will often use the “Dirac-like” notation |⇢
i

)B to denote a preparation
event of system B. We will denote by St(A) the set of preparation-events for system
A, namely St(A) := Transf(I,A).St [stateset]

Similarly, we will call tests with trivial output observation-tests, and the corre-
sponding events observation-events. For the latter we use the usual notation for mea-
surements in quantum circuits:

A a
j

:=

A A
j

I . (1.4)
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i2X, and we will represent the test by the diagram
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whereas a single event A
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The number of outcomes of the test will be denoted by |X|.
In the following we will make extensive use of the set of all events appearing in all

tests from A to B. Such set will be denoted by Transf(A,B). When B ⌘ A we will
simply write Transf(A). Tests with trivial input will be called preparation-tests, andTransf(A) [transformationsset]

Transf(A,B) [transformationsset2] the corresponding events will be called preparation-events. A preparation-test is what
is also generally called a “random source of quantum states”. In analogy we will adopt
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In formulae, we will often use the “Dirac-like” notation |⇢
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)B to denote a preparation
event of system B. We will denote by St(A) the set of preparation-events for system
A, namely St(A) := Transf(I,A).St [stateset]

Similarly, we will call tests with trivial output observation-tests, and the corre-
sponding events observation-events. For the latter we use the usual notation for mea-
surements in quantum circuits:
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A A
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I . (1.4)
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1.21. Operational probabilistic theory (OPT). An operational theory is specified
by a collection of systems, closed under parallel composition, and by a collection of
tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.
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Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.

p(i, j, k, l,m, n, p, q|circuit)
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1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;

b) the probability of having event D
m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to
consider the marginalizations bB = [

k

B
k

, bC = [
l

B
l

, etc., namely the probability is
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1.1. Test. A test is made of the following ingredients: a) a collection of possible
outcomes; b) some input systems; c) some output systems. It will be represented in
form of a box, as follows
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The left wires represent the input systems, the right wires the output systems, and
{A
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} denotes the complete collection of possible outcomes.

We will use the collection {A
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}
i2X to denote the test itself, and we will call the set X

sample space. It is often convenient to represent just a single outcome A
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, or, more
generally, a subset A ⇢ {A
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} of the collection of possible outcomes, i. e. what is
called an event, as follows
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The number of wires at the input and at the output can vary, and one can have also
no wire at the input and/or at the output. For example in the Stern-Gerlach test we have
a single input wire and no output wire, and we can imagine the input wire as the particle
entering the apparatus, whereas we have no output wire since there will be nothing left
after the test, apart from the "# outcome. In the case of the beam splitter the input
and the output systems will be four modes of the e. m. field with different directions,
whereas there will be no outcome. In the case of the particle interaction, the input
and output systems are indeed the input and output particles, whereas the outcomes are
particle-events that we detect.

1.2. What are the events? Events are “things” that happen—such as thunders,
lightenings, particle tracks, scintillations on a cathodic screen, or life and death.1 We
distinguish between events and outcomes to emphasize the elemental nature of the
outcomes versus the set nature of events, in the sense that events are “sets of outcomes”,
or, viceversa, you can take disjoint events as outcomes themselves. Thus, synonymous
of outcomes are also “elementary” or “simple event”, or we can stress that an events
consists of more than one outcome by naming it “compound event”. An outcome/event
can be the result of an “experiment”, but the fact that it may or may not occur, does
not necessarily brings a probabilistic connotation, for example the fact that it happens
or not may only depend on what is connected to the wires. Moreover, we remind that
we can have the case of a single event, as in the example of the beam splitter, or in the
case of an interaction between particles.

1.3. Preview of the notion of “network”. In order to understand the intimate
meaning of the notion of test/event and of its box representation, we should imagine
the test inserted in its natural environment: the network. Here the box will be actually
connected to other tests/events as in Fig. 1.1. The different letters A,B,C, . . .A [event]

A [system]

{A
i

}
i2X [test]

labeling the wires will be used to denote different “types of system”. The meaning
itself of the word “system” ultimately comes from the following connectivity rules:

1The last two examples fit very well the case of the sort of the Schrődinger cat, in the famous paradox
about quantum measurements.
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tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.
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Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.
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1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;

b) the probability of having event D
m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to
consider the marginalizations bB = [

k

B
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, bC = [
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B
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, etc., namely the probability is

April 2, 2014 DRAFT

Notice: the probability of a 
transformation generally 
depends on the circuit at 
its output!!

Operational 
Probabilistic Theory

Probability ⊂ OPT

joint probabilities + connectivity

Logic ⊂



joint probabilities + connectivity

The framework

Probabilistic equivalence 
classes

monoidal 
category 
theory 

Operational 
Probabilistic Theory

116 The framework

connections. We are left with just a joint probability if the circuit is closed, as in Eq.
(4.5). Therefore, to a closed circuit of events as the following

 i

A

A j

B Cl
C

En

D

Gq
E F

Dm

G

H

Bk

L M

Fp

N

O P

(4.6)

we will associate a joint probability p(i, j, k, l,m, n, p, q), which we will consider
as parametrically dependent on the circuit, namely, for a di↵erent choice of events
and/or di↵erent connections we will have a di↵erent joint probability.

Since we are interesting only in the joint probabilities and their corresponding
circuits, we will build up probabilistic equivalence classes, and define

Two events from system A to system B are equivalent if they occur with the same
joint probability with the other events within the same circuit.

We will call transformation from A to B–denoted as A 2 Transf(A,B)–the equiv-
alence class of events from A to B that are equivalent in the above sense. Likewise
we will call instrument an equivalence class of tests, state an equivalence class of
preparation-events, and e↵ect an equivalence class of observation-events. We will
denote the set of states of system A as St(A), and the set of its e↵ects as Eff(A).
Clearly, the input systems belonging to two di↵erent elements of an equivalence
classes will be considered as equivalent, and likewise for output systems.

We now can define an operational probabilistic theory as follows

An operational probabilistic theory (OPT) is a collection of systems and transfor-
mations, along with rules for composition of systems and parallel and sequen-
tial composition of transformations. The OPT assigns a joint probability to each
closed circuit.

Therefore, in an OPT every test from the trivial system I to itself is a probability
distribution {pi}i2X for the set of joint outcomes X, with p(i) := pi 2 [0, 1] and
P

i2X p(i) = 1. Compound events from the trivial system to itself are independent,
namely their joint probability is given by the product of the respective probabilities
for both the parallel and the sequential composition, namely

⇢i1
A ai2

� j1
B b j2

= ⇢i1
A ai2 � j1

B b j2 = p(i1, i2) q( j1, j2).

A special case of OPT is the deterministic OPT, where all probabilities are 0 or 1.
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Multiplication of closed circuits
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an electron, which both correspond to the same quantum system, i. e. the qubit. A
formal definition of the notion of operationally equivalent systems will be given in
the following.

Di↵erent tests can be combined in a circuit, which is a directed acyclic graph
where the links are the systems (oriented from left to right, namely from input to
output) and the nodes are the boxes of the tests. The same graph can be built up for
a single test istance, namely with the network nodes being events instead of tests,
corresponding to a joint outcome for all tests.

The circuit graph is obtained precisely by using the following rules.

Sequential composition of tests. When the output system of test {Cx}x2X and the
input system of test {Dy}y2Y coincide, the two tests can be composed in sequence as
follows

A {Ax}x2X B {By}y2Y C =: A {Bx �Ay}(x,y)2X⇥Y
C

resulting in the test {E(x,y)}(x,y)2X⇥Y called sequential composition of {Cx}i2X and {Dy}y2Y.
In formulas we will also write E(x,y) := DyCx.

Identity test. For every system A, one can perform the identity test (shortly identity)
that “leaves the system alone”. Formally, this is the deterministic test {IA} with the
property

A IA
A C B = A C B

B D A IA
A = B D A

where the above identities must hold for any event A C B and B D A ,
respectively. The sub-index A will be dropped from IA where there is no ambiguity.

Operationally equivalent systems. We say that two systems A and A0 are oper-
ationally equivalent—denoted as A0 ' A—if there exist two deterministic events

A I A0 and A0 I A such that

A I A0 I A = A I A

A0 I A I A0 = A0 I A0

Accordingly, if {C }i2X is any test for system A, performing an equivalent test on
system A0 means performing the test {C 0x }x2X defined as

A0 C 0x A0 = A0 I A Cx
A I A0

Composite systems and parallel composition of tests. Given two systems A and B,
one can join them into the single composite system AB. The systems AB is always
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equivalent to the system BA and we will identify them in the following, meaning that
system composition is commutative, namely

AB = BA. (4.1)

We will call a system trivial system, reserving for him the letter I, if it corresponds
to the identity in the system composition, namely

AI = IA = A. (4.2)

The trivial system corresponds to having no system, namely it carries no information.
Finally we require that the composition of systems is associative, namely

A(BC) = (AB)C (4.3)

namely, if we iterate composition on many systems we always end up with a com-
posite system that only depends on the components, and not on the particular compo-
sition sequence according to which they have been composed. Systems then make a
monoid. A test with input system AB and output system CD represents an interaction
process (see the parallel composition of tests in following).

Parallel composition of tests. Any two tests A {Cx}x2X B C {D j} j2Y D

can be composed in parallel as follows

A {Ax}x2X B

C {By}y2Y D
=: AC {Ax ⌦By}(x,y)2X⇥Y

BD .

The test AC {F(x,y)}(x,y)2X⇥Y
BD is the parallel composition of tests A {Cx}x2X B

and C {Dy}y2Y D . Parallel and sequential composition of tests commute, namely
one has

A Cz
B Ax

C

D By
E Dw

F

=

A Cz
B Ax

C

D By
E Dw

F

.

When one of the two operations is the identity, we will omit the identity box and
draw only a straight line

A Cx
B

C
.

Therefore, as a consequence of commutation between sequential and parallel com-
position, we have the following identity

A Cx
B

C Dy
D

=

A Cx
B

C Dy
D
. (4.4)
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Preparation-tests and observation-tests. Tests with trivial input system are called
preparation-tests, and tests with trivial output system are called observation-tests.
They will be represented as follows

{⇢x}x2X B := I {⇢x}x2X B

A {ay}y2Y := A {ay}y2Y I .

Correspondingly the events will be called preparation-events and observation-events.
In formulas we will also write |⇢i)A to denote a preparation-event and (a j|A to denote
an observation-event.

Closed circuits. Using the above rules we can build up closed circuits, namely with
no input system and no output system. An example is given by the following circuit

{ i}

A

{A j}
B {Cl} C

{En}
D

{Gq}E F

{Dm}
G

H

{Bk}
L M

{Fp}
N

O P

(4.5)

where we omitted the probability spaces of each test.

Independent systems. For any (generally open) circuit constructed according to the
above rules we call a set of systems independent if for each couple of systems in the
set the two are not connected by a directed path ( i. e. following the arrow from the
input to the output). For example, in Eq. (4.5) the sets {A,E}, {H,O}, {A,E,H,O},
{A,L}, {A,E,L,P} are independent, whereas e. g. the sets {A,M}, {A,B}, {A,E,N}
are not. A maximal set of independent systems is called slice.

4.2 The operational probabilistic theory

The general purpose of an operational probabilistic theory is that of predicting and
accounting for the joint probability of events corresponding to a particular circuit of
connections. We are left with just a joint probability if the circuit is closed, as in Eq.
(4.5). Therefore, to a closed circuit of events as the following

 i
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A j

B Cl
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(4.6)
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D B E D F
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A C B A C

D B E D F

u↵a

(A ⌦D) � (C ⌦B) = (A � C ) ⌦ (D �B)

When one of the two operations is the identity, we will omit the identity box and
draw only a straight line

A C B

C
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22 CHAPTER 1. THE OPERATIONAL FRAMEWORK

1.21. Operational probabilistic theory (OPT). An operational theory is specified
by a collection of systems, closed under parallel composition, and by a collection of
tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.

{ 
i

}

A

{A
j

}
B {C

l

} C

{E
n

}
D

{G
q

}E F

{D
m

}
G

H

{B
k

}
L M

{F
p

}
N

O P

Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.

p(i, j, k, l,m, n, p, q|circuit)
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1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;

b) the probability of having event D
m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to
consider the marginalizations bB = [

k

B
k

, bC = [
l

B
l

, etc., namely the probability is

April 2, 2014 DRAFT

Operational 
Probabilistic Theory



The framework

independent systems
Maximal set of 

= “leaf”

Foliation

22 CHAPTER 1. THE OPERATIONAL FRAMEWORK

1.21. Operational probabilistic theory (OPT). An operational theory is specified
by a collection of systems, closed under parallel composition, and by a collection of
tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.

{ 
i

}

A

{A
j

}
B {C

l

} C

{E
n

}
D

{G
q

}E F

{D
m

}
G

H

{B
k

}
L M

{F
p

}
N

O P

Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.

p(i, j, k, l,m, n, p, q|circuit)

 

i

A

A
j

B C
l

C

E
n

D

G
q

E F

D
m

G

H

B
k

L M

F
p

N

O P

1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;

b) the probability of having event D
m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to
consider the marginalizations bB = [

k

B
k

, bC = [
l

B
l

, etc., namely the probability is

April 2, 2014 DRAFT

Operational 
Probabilistic Theory

joint probabilities + connectivity

p(i, j, k, ...|circuit)

Logic ⊂ Probability ⊂ OPT



1.3. THE OPERATIONAL PROBABILISTIC THEORY (OPT) 23

contiguous!wires
input-output path
independent!systems
slice
global slice

represented by the network of events

p(A
j

,D
m

) =

b

 

A

A
j

B
bC

C

bE

D

bG
E F

D
m

G

H

bB

L M

cF

N

O P

(1.23)

On the other hand, the probability in b) can be evaluated by the rule of conditional
probabilities as follows
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and
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. (1.26)

We will see how the evaluation of probabilities will be greatly simplified by the causal-
ity assumption and by the use of conditional states.

1.23. Slices, preparation and observations. Two wires in a circuit are input-output
contiguous if they are the input and the output of the same box. By following a set of
contiguous wires in a circuit in the direction from the input toward the output without
leaving the circuit (i. e. by crossing the attached boxes) we draw an input-output path.
Two systems (wires) that do not belong to the same input-output path will be called
independent. A set of pairwise independent systems/wires will be called a slice. By
construction it is obvious that we can always partition a closed bounded circuit into
two parts by a slice (such slice will be called global slice), as in Fig. 1.4. Using our
composition rules Fig. 1.4 is equivalent to the sequence of a preparation event/test and
an observation event/test
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) (1.27)
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1.21. Operational probabilistic theory (OPT). An operational theory is specified
by a collection of systems, closed under parallel composition, and by a collection of
tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.
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Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.

p(i, j, k, l,m, n, p, q|circuit)
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1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;

b) the probability of having event D
m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to
consider the marginalizations bB = [

k

B
k

, bC = [
l

B
l

, etc., namely the probability is
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a set {li}i2X ✓ Eff(A) of e↵ects that is separating for states. This means that we canI Explain better separat-
ing for B, then it spans B_ expand any e↵ect a as follows

8a 2 Eff(A), a =
X

i2X
ci(a)li. (3.40)

Clearly the coe�cients ci(a) must be linear in a, namely they are linear functionals
over e↵ects, namely ci 2 StR(A). The set {ci}i2X is a dual set for {li}i2X, and it is
unique when the set {li}i2X is linearly independent. Upon pairing the e↵ect a with a
state ⇢ 2 St1(A) one has

⇢ 2 St(A), St1(A), St+(A), StR(A) (3.41)

a 2 Eff(A), Eff1(A), Eff+(A), EffR(A) (3.42)

DA (3.43)

8a 2 EffR(A), (a|⇢) =
X

i2X
ci(a)(li|⇢). (3.44)

Therefore, if we know the probabilities (li|⇢) we know the probability (a|⇢) of any
e↵ect a on the state ⇢, namely we know the state (indeed we can expand the state over
the dual set {ci} as ⇢ =

P

i2X(li|⇢)ci). Therefore, upon measuring the e↵ects {li}i2X we
can reconstruct the state ⇢. We say that we are performing a state tomography of ⇢,
and we call the set of e↵ects {li}i2X informationally complete for states. We conclude
that

Proposition 3.3 A set of e↵ects that is separating for states is informationally
complete for states.

In practice we need to repeat the experiment many times in order to recover the
probabilities (li|⇢) as frequencies of the outcomes, or else use other statistical estima-
tion methods, such as the maximum likelihood. The feasibility of such a procedure
using terms of a single observation test, is a trivial repeated application of random-
izations of di↵erent tests and of coarse graining (an example of such a procedure is
illustrated in Problem ??) Such a test would then be called informationally complete.I Problem??

Quorum of observables. A common case of informationally complete test is that
made of a set of random observables that are su�ciently many to make an infor-
mationally complete observation test, and for this reason the set is called quorum
of observables. The simplest example of quorum is the set of Pauli matrices for
dimHA = 2. Indeed, as shown in Exercise 3.2.4 the three Pauli matrices plus the
identity IA make an orthonormal basis for Lin(C2).

Operational 
Probabilistic Theory

129 Solutions of some Exercises and Problems

Solution of Exercise 4.6.3

Taking a0 = a1 =
1
2 f for any deterministic e↵ect f provides the lower bound k�k � 0.

Moreover, if k�k = 0, then for every binary observation-test {a, b} one has (a|�) 
(b|�), but exchanging a and b gives the converse bound, whence (a|�) = (b|�). This
implies that (a|�) = 1

2 ( f |�) for the deterministic e↵ect f := a + b. Now, taking the
observation-tests {p f , (1� p) f } with f = a+ b and 0  p  1 gives (2p� 1)( f |�) = 0
for every 0  p  1, and finally ( f |�) = 0, which implies (a|�) = 0 for every e↵ect a,
namely � = 0.

Solution of Exercise 4.6.4

Let s := supa02Eff(A)(a0|�) and i := infa12Eff(A)(a1|�). Then i = ( f |�) � s. Indeed, if
i < ( f |�) � s, then by definition of infimum there exist " > 0 and b1 2 Eff(A) such
that i  (b1|�) < i + " < ( f |�) � s. Now, let b0 + b1 = f 0 2 Eff1(A). By hypothesis
(b0 + b1|�)� s = ( f 0|�)� s = ( f |�)� s > (b1|�), and this implies (b0|�) > s, contrarily
to the hypothesis.

EffR(A) = StR(A)_ (4.27)

StR(A) = EffR(A)_ (4.28)

Solution of Exercise 4.6.5

The element of � 2 StR(A) is represented by a selfadjoint trace-class operator � 2
Herm(HA). Using the Jordan decomposition of a selfadjoint operator � = �+ � ��,
with �± denoting the positive (negative) part of �, one has

||�|| = sup
a2Eff(A)

(a|�)A � inf
a2Eff(A)

(a|�)A

= sup
0EaIA

Tr[Ea �] � inf
0EaIA

Tr[Ea �]

= Tr[P+ �] + Tr[P� �] = Tr|�| =: ||�||1,

(4.29)

Ea 2 Lin+(HA) denoting the positive operator corresponding to the e↵ect a, and P±
the orthogonal projector over the linear space corresponding to positive (negative)
eigenvalues of �. This result extends also to infinite-dimensions, with � trace-class,
as a consequence of the identity

||�||1 = sup
||Y ||1
|Tr[E�]|, E 2 Lin(HA). (4.30)

Solution of Exercise 4.7.1

The definition (4.20) corresponds mutatis mutandis to the definition of CB norm for
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Pairing notation:
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devoted to the informational framework. For the moment we will use few simple
diagrams as an intuitive representation, just to familiarize with them.

Exercise 3.3.5 Show that �a in Eq. (3.25) is a quantum state for B.

The state conditioned by the deterministic e↵ect is the marginal state |�)B of system
B in the joint state |�)AB. According to Eq. (3.16), it is given by the density operator

�B = TrA[�AB]. (3.27)

The marginal state �B 2 St(A) allows to evaluate marginal probabilities of observa-
tions on system B only, since one has

p(b j) = (eA ⌦ b j|�) = Tr[�AB(IA ⌦ Ebj )] = Tr[�BEbj ]. (3.28)

In fact, upon marginalizing the observation {ai}, one has

p(b j) =
X

i

p(ai, b j) =
X

i

(ai ⌦ b j|�) = (eA ⌦ b j|�), (3.29)

where we used Eq. (3.6). Diagrammatically, Eq. (3.28) becomes

�
B b
A e

= ⇢ B a . (3.30)

⇢ 2 St(A), a 2 Eff(A), ⇢ A a = (a|⇢) (3.31)

The marginal state of system B provides all expectations of local observations on a
B, in particular expectations of its observables, e. g. for X observable of B one has

hXi = Tr[(IA ⌦ X)�AB] = Tr[X�B]. (3.32)

3.4 Causality, convex structure, discriminability

The reader may have already noticed the asymmetry between marginalizing over
e↵ects and over states. Consider a preparation test {⇢i}i2X ✓ St(A) followed by an
observation test {a j} j2Y ✓ Eff(A). The Born rule (3.12) gives the joint probability

p(i, j) = (a j|⇢i) = Tr[⇢iEaj ]. (3.33)

The marginal probability in which we sum up states is given by

p( j) =
X

i2X
p(i, j) =

X

i2X
Tr[⇢iEaj ] = Tr[⇢XEaj ] ⌘ (a j|⇢X), (3.34)

where ⇢X =
P

i2X ⇢i is the prior state of the preparation test. Therefore, the marginal
probability of the e↵ect depends on the specific preparation test performed. On the

Embedding in real vector spaces



Operational 
Probabilistic Theory

120 The framework

transformation as equivalence class corresponds to say that T ,T 0 2 Transf(A,B)
as maps from states of AR to states of BR are the same for all possible systems R of
the theory, namely T = T 0 2 Transf(A,B) if and only if

8R,8 2 St(AR)  

A T B

R
=  

A T 0 B

R
. (4.12)

Indeed, as we will see in Chapter 7, there exist cases of OPT where there are trans-
formations T ,T 0 2 Transf(A,B) corresponding to the same map when applied to
St(A) and not when applied to St(AR) for some system R.

Since we can take linear combinations of linear transformations, Transf(A,B) can
be embedded in the vector space TransfR(A,B). The deterministic transformations,
whose set will be denoted as Transf1(A,B), will be also called channels. The conic
span of elements of Transf(A,B) will be denoted as Transf+(A,B).

Finally, a transformation U 2 Transf(A,B) is reversible if there exists another
transformation U �1 2 Transf(B,A) such that U �1U = IA and U U �1 = IB. The
set of reversible transformations from A to B will be denoted by RevTransf(A,B).
When A ⌘ B the set of reversible transformations RevTransf(A) is actually a group,
that will also be denoted by GA.

4.5 Coarse -graining and refinement

When dealing with probabilistic events, a natural notion is that of coarse-graining,
corresponding to merging events into a single event. According to probability theory,
the probability of a coarse-grained event S ✓ X subset of the outcome space X is
the sum of probabilities of the elements of S, namely p(S) =

P

i2S p(i). We then
correspondingly have that the coarse-grained event TS of a test {Ti}i2X will be given
by

{Ti}i2{i1, i2, . . . , in
|       {z       }

j1

,in+1, in+2, . . .
|        {z        }

j2

, . . .
|{z}

...

}

TS =
X

i2S
Ti. (4.13)

We stress that the equal sign in Eq. (4.13) is to be meant in the sense of equation
(4.12). In addition to the notion of coarse-grained event we have also that of coarse-
grained test, corresponding to the collection of coarse-grained events {Ts}s2X0 from
a partition X0 = {S1,S2, . . .} of the outcome space X, with Xi [ X j = ; for i , j and
[s2X0Ss = X.

Coarse-graining Refinement
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Bj )|!)AB and its marginal p
(A)
i :=

∑
j pij (p(B)

j :=
∑

i pij )
on Alice’s (Bob’s) side. It is immediate to verify that the
marginal p

(A)
i on Alice’s side does not depend on the test

{Bj } on Bob’s side: indeed, one has

p
(A)
i =

∑

j

(e|A(e|B(Ai ⊗ Bj )|!)AB

= (e|A

⎛

⎝Ai ⊗

⎡

⎣
∑

j

(e|BBj

⎤

⎦

⎞

⎠ |!)AB

= (e|AAi |ρ)A, (42)

having used the normalization condition
∑

j (e|BBj = (e|B
(Corollary 3) and having defined the marginal state |ρ)A :=
(e|B|!)AB. The same reasoning holds for the marginal on
Bob’s side. !

B. Conditioning

In a causal sequence the choice of a device can depend on
the outcomes of previous devices. This gives rise to the notion
of conditioned test, which generalizes the notion of sequential
composition:

Definition 29 (Conditioned test). If {Ci}i∈X is a test from
A to B and, for every i, {D (i)

ji
}ji∈Yi

is a test from B to C,
then the conditioned test is a test from A to C, with outcomes
(i,ji) ∈ Z :=

⋃
i∈X{i} × Yi , and events {D (i)

ji
◦ Ci}(i,ji )∈Z. Dia-

grammatically, the events D (i)
ji

◦ Ci are represented as follows:

. (43)

The above definition of conditioning makes sense in a
causal theory, where the uniqueness of the deterministic
effect ensures that the test {D (i)

ji
◦ Ci}i∈X,ji∈Yi

satisfies the
normalization condition required by Corollary 3:

∑

i∈X

∑

ji∈Yi

(e|CD (i)
ji

◦ Ci =
∑

i∈X

(e|BCi = (e|A. (44)

Conditioning expresses the possibility of choosing what to
do at a certain step using the classical information generated
in the previous steps. In a causal operational theory there is no
reason to forbid an experimenter to perform conditioned tests.
Accordingly, in the following we will assume that in a causal
theory any conditioned test is allowed. In fact, the possibility to
perform conditioned tests is essentially equivalent to causality.
Indeed, one has also the converse statement:

Lemma 7 (Causality is necessary for conditioned tests). A
theory where every conditioned test is possible is causal.

Proof. To prove that the theory is causal we show that
for every system A the deterministic effect (e|A is unique.
Suppose that (e|A and (e′|A are two deterministic effects,
and let ρ ∈ S(A) be an arbitrary state. By definition, there
is a preparation test {ρi}i∈X that contains ρ, that is, ρ = ρi0

for some outcome i0 ∈ X. Moreover, using coarse-graining
we obtain the two-outcome preparation test {ρ0,ρ1}, where
ρ0 = ρ and ρ1 :=

∑
i ̸=i0

ρi . Now, consider the conditioned test
{(e|ρ0)A,(e′|ρ1)A}, defined by the following procedure: first
perform the preparation test {ρ0,ρ1}, and then, if the outcome
is 0 apply the effect (e|A, otherwise apply (e′|A. Now, since

{(e|ρ0)A,(e′|ρ1)A} is a test from the trivial system to itself one
must have

(e|ρ0)A + (e′|ρ1)A = 1. (45)

On the other hand, since the effect e′ is deterministic,
one must have (e′|ρ0)A + (e′|ρ1)A = 1. By comparison, this
implies (e|ρ0)A = (e′|ρ0)A, and, since ρ0 was a generic state,
e = e′. !

Remark (conditioning with different outputs and “direct
sum” systems). In principle, one could also consider a
conditioning where the output system of each test {D (i)

ji
} is

a system Ci that depends on the outcome i. In this case
the output of the conditioned test would be a “direct sum”
system “C :=

⊕
i∈X Ci .” In quantum theory, this situation

can be described introducing a superselection rule, according
to which the possible states of the “direct sum” system
are the block-diagonal density matrices of the form ρ =⊕

i∈X ρi , where each ρi is a density matrix on the Hilbert
space associated to system Ci . This kind of extension would
also require treating the outcome spaces X as a classical
systems that can be the input or the output of some classical
information-processing device. However, we will not consider
here this generalization as it is not needed for the main purpose
of the article.

A particular case of conditioning is randomization.
Definition 30 (Randomization). If {pi}i∈X is a preparation

test for the trivial system and, for every outcome i, {C (i)
ji

}ji∈Yi

is a test from A to B, the randomized test {piC
(i)
ji

}i∈X,ji∈Yi
is

the test from A to B with events defined by

.
(46)

(on the left-hand side we used the fact that that the composition
with trivial systems is trivial, and, therefore, one has AI =
A,BI = B).

If a causal theory is not deterministic (i.e., if the possible
values of probabilities are not only 0 and 1) then randomization
and coarse-graining always allows one to construct an internal
state (see Definition 24): it is enough to take a spanning
set of states {ρi}i∈X, to randomize them with some nonzero
probabilities {pi}i∈X and then to coarse-grain, thus getting the
internal state ω =

∑
i∈X piρi .

Finally, conditioning allows one to prove that a causal
theory contains all possible measure-and-prepare channels,
defined as follows.

Definition 31 (Measure-and-prepare channels). A channel
C ∈ T(A,B) is measure-and-prepare if there exists an obser-
vation test {ai}i∈X on A, and a collection of normalized states
{βi}i∈X ⊂ S1(B) such that

C =
∑

i∈X

|βi)B(ai |A. (47)
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Bj )|!)AB and its marginal p
(A)
i :=

∑
j pij (p(B)

j :=
∑

i pij )
on Alice’s (Bob’s) side. It is immediate to verify that the
marginal p

(A)
i on Alice’s side does not depend on the test

{Bj } on Bob’s side: indeed, one has

p
(A)
i =

∑

j

(e|A(e|B(Ai ⊗ Bj )|!)AB

= (e|A

⎛

⎝Ai ⊗

⎡

⎣
∑

j

(e|BBj

⎤

⎦

⎞

⎠ |!)AB

= (e|AAi |ρ)A, (42)

having used the normalization condition
∑

j (e|BBj = (e|B
(Corollary 3) and having defined the marginal state |ρ)A :=
(e|B|!)AB. The same reasoning holds for the marginal on
Bob’s side. !

B. Conditioning

In a causal sequence the choice of a device can depend on
the outcomes of previous devices. This gives rise to the notion
of conditioned test, which generalizes the notion of sequential
composition:

Definition 29 (Conditioned test). If {Ci}i∈X is a test from
A to B and, for every i, {D (i)

ji
}ji∈Yi

is a test from B to C,
then the conditioned test is a test from A to C, with outcomes
(i,ji) ∈ Z :=

⋃
i∈X{i} × Yi , and events {D (i)

ji
◦ Ci}(i,ji )∈Z. Dia-

grammatically, the events D (i)
ji

◦ Ci are represented as follows:

. (43)

The above definition of conditioning makes sense in a
causal theory, where the uniqueness of the deterministic
effect ensures that the test {D (i)

ji
◦ Ci}i∈X,ji∈Yi

satisfies the
normalization condition required by Corollary 3:

∑

i∈X

∑

ji∈Yi

(e|CD (i)
ji

◦ Ci =
∑

i∈X

(e|BCi = (e|A. (44)

Conditioning expresses the possibility of choosing what to
do at a certain step using the classical information generated
in the previous steps. In a causal operational theory there is no
reason to forbid an experimenter to perform conditioned tests.
Accordingly, in the following we will assume that in a causal
theory any conditioned test is allowed. In fact, the possibility to
perform conditioned tests is essentially equivalent to causality.
Indeed, one has also the converse statement:

Lemma 7 (Causality is necessary for conditioned tests). A
theory where every conditioned test is possible is causal.

Proof. To prove that the theory is causal we show that
for every system A the deterministic effect (e|A is unique.
Suppose that (e|A and (e′|A are two deterministic effects,
and let ρ ∈ S(A) be an arbitrary state. By definition, there
is a preparation test {ρi}i∈X that contains ρ, that is, ρ = ρi0

for some outcome i0 ∈ X. Moreover, using coarse-graining
we obtain the two-outcome preparation test {ρ0,ρ1}, where
ρ0 = ρ and ρ1 :=

∑
i ̸=i0

ρi . Now, consider the conditioned test
{(e|ρ0)A,(e′|ρ1)A}, defined by the following procedure: first
perform the preparation test {ρ0,ρ1}, and then, if the outcome
is 0 apply the effect (e|A, otherwise apply (e′|A. Now, since

{(e|ρ0)A,(e′|ρ1)A} is a test from the trivial system to itself one
must have

(e|ρ0)A + (e′|ρ1)A = 1. (45)

On the other hand, since the effect e′ is deterministic,
one must have (e′|ρ0)A + (e′|ρ1)A = 1. By comparison, this
implies (e|ρ0)A = (e′|ρ0)A, and, since ρ0 was a generic state,
e = e′. !

Remark (conditioning with different outputs and “direct
sum” systems). In principle, one could also consider a
conditioning where the output system of each test {D (i)

ji
} is

a system Ci that depends on the outcome i. In this case
the output of the conditioned test would be a “direct sum”
system “C :=

⊕
i∈X Ci .” In quantum theory, this situation

can be described introducing a superselection rule, according
to which the possible states of the “direct sum” system
are the block-diagonal density matrices of the form ρ =⊕

i∈X ρi , where each ρi is a density matrix on the Hilbert
space associated to system Ci . This kind of extension would
also require treating the outcome spaces X as a classical
systems that can be the input or the output of some classical
information-processing device. However, we will not consider
here this generalization as it is not needed for the main purpose
of the article.

A particular case of conditioning is randomization.
Definition 30 (Randomization). If {pi}i∈X is a preparation

test for the trivial system and, for every outcome i, {C (i)
ji

}ji∈Yi

is a test from A to B, the randomized test {piC
(i)
ji

}i∈X,ji∈Yi
is

the test from A to B with events defined by

.
(46)

(on the left-hand side we used the fact that that the composition
with trivial systems is trivial, and, therefore, one has AI =
A,BI = B).

If a causal theory is not deterministic (i.e., if the possible
values of probabilities are not only 0 and 1) then randomization
and coarse-graining always allows one to construct an internal
state (see Definition 24): it is enough to take a spanning
set of states {ρi}i∈X, to randomize them with some nonzero
probabilities {pi}i∈X and then to coarse-grain, thus getting the
internal state ω =

∑
i∈X piρi .

Finally, conditioning allows one to prove that a causal
theory contains all possible measure-and-prepare channels,
defined as follows.

Definition 31 (Measure-and-prepare channels). A channel
C ∈ T(A,B) is measure-and-prepare if there exists an obser-
vation test {ai}i∈X on A, and a collection of normalized states
{βi}i∈X ⊂ S1(B) such that
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a set {li}i2X ✓ Eff(A) of e↵ects that is separating for states. This means that we canI Explain better separat-
ing for B, then it spans B_ expand any e↵ect a as follows

8a 2 Eff(A), a =
X

i2X
ci(a)li. (3.40)

Clearly the coe�cients ci(a) must be linear in a, namely they are linear functionals
over e↵ects, namely ci 2 StR(A). The set {ci}i2X is a dual set for {li}i2X, and it is
unique when the set {li}i2X is linearly independent. Upon pairing the e↵ect a with a
state ⇢ 2 St(A) one has

8a 2 EffR(A), (a|⇢) =
X

i2X
ci(a)(li|⇢). (3.41)

Therefore, if we know the probabilities (li|⇢) we know the probability (a|⇢) of any
e↵ect a on the state ⇢, namely we know the state (indeed we can expand the state over
the dual set {ci} as ⇢ =

P

i2X(li|⇢)ci). Therefore, upon measuring the e↵ects {li}i2X we
can reconstruct the state ⇢. We say that we are performing a state tomography of ⇢,
and we call the set of e↵ects {li}i2X informationally complete for states. We conclude
that

Proposition 3.3 A set of e↵ects that is separating for states is informationally
complete for states.

In practice we need to repeat the experiment many times in order to recover the
probabilities (li|⇢) as frequencies of the outcomes, or else use other statistical estima-
tion methods, such as the maximum likelihood. The feasibility of such a procedure
using terms of a single observation test, is a trivial repeated application of random-
izations of di↵erent tests and of coarse graining (an example of such a procedure is
illustrated in Problem ??) Such a test would then be called informationally complete.I Problem??

Quorum of observables. A common case of informationally complete test is that
made of a set of random observables that are su�ciently many to make an infor-
mationally complete observation test, and for this reason the set is called quorum
of observables. The simplest example of quorum is the set of Pauli matrices for
dimHA = 2. Indeed, as shown in Exercise 3.2.4 the three Pauli matrices plus the
identity IA make an orthonormal basis for Lin(C2).

Exercise 3.4.4 Upon writing the general expansion of any operator over the set
of Pauli matrices plus the identity, derive the general matrix element hu|⇢|vi of
the state as a function of the expectations of the Pauli matrices.

SIC POVM’s. The randomized Pauli observable of Exercise 3.4.4 is a 6-element
POVM, which is not minimal. A minimal informationally complete POVM which is

separating for states
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119 Transformations

One can now use the result of exercise 4.3.1 to conclude the proof. ⌅
It is obvious that a similar lemma holds for e↵ects, namely

Lemma 4.2 (Discriminability of effects) In any convex OPT if two e↵ects
a(0), a(1) 2 Eff(A) are distinct (i.e. a(0) , b(1)), then one can discriminate them with
error probability strictly smaller than 1

2 .

The convexity of the sets of states St(A) and e↵ects Eff(A) for every system A
selects a relevant class of theories, that are called convex theories. Classical and
quantum theory are both convex. Notice that if a theory is convex then one can
consistently extend all the sets of transformations Transf(A,B) to their convex hull
Co(Transf(A,B)). In the following, when referring to a convex theory we will mean
a theory where all the sets of transformations are convex.

4.4 Transformations

From what we said before, the following circuit is a state of BFHO

 

A

A
B

E F

H

O

.

This means that any transformation connected to some output systems of a state maps
the state into another state of generally di↵erent systems. Thus, while states and
e↵ects are linear functionals over each other, we can always regard a transformation
as a map between states. In particular, a transformation T 2 Transf(A,B) is always
associated to a map T̂ from St(A) to St(B), uniquely defined as

T̂ : |⇢) 2 St(A) 7! T |⇢) = |T ⇢) 2 St(B).

Similarly the transformation can be associated to a map from Eff(A) to Eff(B). The
map T̂ can be linearly extended to a map from StR(A) to StR(B). Notice that the
linear extension of T (which we will denote by the same symbol) is well defined.
In fact, a linear combination of states of A is null—in formula

P

i ci|⇢i) = 0—if and
only if

P

i ci(a|⇢i) = 0 for every a 2 Eff(A), and since for every b 2 Eff(B) we have
(b|T 2 Eff(A), then (b|T �Pi ci|⇢i)

�

=
P

i ci(b|T |⇢i) = 0, and finally
P

i ciT |⇢i) = 0.
We want to stress that if two transformations T ,T 0 2 Transf(A,B) correspond to

the same map T̂ from St(A) to St(B), this does not mean that the two transformations
are the same, since as an equivalence class, they must occur with the same joint prob-
ability in all possible circuits. In terms of state mappings, the same definition of the
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The notion of refinement is translated to transformations (whence also to states,
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Transf+(A,B). A transformation C is atomic if it has only trivial refinement, namely
Ci refines C implies that Ci = pC for some probability p � 0. A test that con-
sists of atomic transformations is a test whose “resolving power” cannot be further
improved.

It is often useful to refer to the set of all possible refinements of a given event C .
This set is called refinement set of the event C 2 Transf(A,B), and is denoted by
RefSet (C ). In formula, RefSet (C ) := {D 2 Transf(A,B)| D � C }.

In the special case of states, we will use the word pure as a synonym of atomic.
A pure state describes an event providing maximal knowledge about the system’s
preparation, namely a knowledge that cannot be further refined.

As usual, a state that is not pure will be called mixed. An important notion is that of
internal state. A state is called internal when any other state can refine it: precisely,
! 2 St(A) is internal if for every ⇢ 2 St(A) there is a non-zero probability p > 0
such that p⇢ is a refinement of !, i. e. p⇢ 2 RefSet (!). The adjective “internal”
has a precise geometric connotation, since the state cannot belong to the border of
St(A). An internal state describes a situation in which there is no definite knowledge
about the system preparation: describing a system by a completely mixed state means
that we know so little about its preparation that in principle we cannot exclude any
preparation a priori.

Exercise 4.5.1 Show that for transformations in T ✓ Transf(AB,CD) that are
parallel compositions of A 2 Transf(A,C) and B 2 Transf(B,D) one has
SpanRRefSet (A ) ⌦ SpanRRefSet (B) ✓ SpanRRefSet (T).

4.6 Operational distance between states

The vector space StR(A) can be equipped with a natural norm, related to the optimal
discrimination scheme for pairs of states ⇢0, ⇢1 making a binary preparation test. A
special case of such a test is that of a couple of deterministic states with given prior
probabilities p and and 1 � p, which is the canonical case of state discrimination in
quantum estimation theory [?].

Given a binary preparation-test {⇢0, ⇢1} ✓ St(A), consider the discrimination strat-
egy for states ⇢0 and ⇢1 consisting in performing a binary observation-test {a0, a1}.
Upon defining a := a0 + a1, the success probability in the discrimination of ⇢0 and
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⇢1 is given by

psucc = (a0|⇢0) + (a1|⇢1)

= (a|⇢0) + (a1|⇢1 � ⇢0)

= (a|⇢1) + (a0|⇢0 � ⇢1)

=
1
2

[1 + (a1 � a0|⇢1 � ⇢0)].

If we now optimize over the possible strategies, classified by the observation-tests
{a0, a1}, we obtain

p(opt)
succ =

1
2

[1 + k⇢1 � ⇢0k], (4.14)

where the operational norm k�k of an element � 2 StR(A) is given by

k�k := sup
{a0,a1}

(a0 � a1|�), (4.15)

with {a0, a1} ranging over all two-outcome observation-tests. For the proof that the
functional k · k is actually a norm, see Exercise 4.6.3. In the special case where A = I,
the operational norm coincides with the absolute value: indeed � 2 StR(I) just means
� 2 R, and since 0, 1 2 Eff(I) ✓ [0, 1] clearly one has

sup
p2[0,1]

(2p � 1)� = |�|, (4.16)

corresponding to the choice p = 0 if � < 0 and p = 1 if � � 0.
One can easily prove that

k�k  sup
a02Eff(A)

(a0|�) � inf
a12Eff(A)

(a1|�).

Moreover, whenever ( f |�) = ( f 0|�) for every pair f , f 0 2 Eff1(A) of deterministic
e↵ects, also the converse bound holds (see Exercise 4.6.4). There are two relevant
situations where the latter condition holds: 1) � belongs to the linear span of deter-
ministic states, which is the case for � = ⇢0 � ⇢1 for ⇢0, ⇢1 both proportional to
deterministic states; 2) theories where the deterministic e↵ect eA is unique (this is a
very relevant class of theories, called causal; see Chapter 6 for more details). In both
cases the following identity holds

k�k = sup
a02Eff(A)

(a0|�) � inf
a12Eff(A)

(a1|�). (4.17)

Introducing a norm entails the existence of Cauchy sequences, (⇢n)n2N, as well as
their equivalence relation (⇢n)n2N ⇠ (�n)n2N if limn!1(⇢n��n) = 0. In what follows,
we will always take the set of states St(A) to be closed in the operational norm, i. e. a
Banach space. This is a very natural assumption: the fact that there is a sequence of
states (⇢n)n2N that converges to ⇢ 2 StR(A) means that there is a procedure to prepare
⇢ with arbitrary precision, and hence ⇢ can be considered as an ideal state.
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121 Operational distance between states

The notion of refinement is translated to transformations (whence also to states,
and e↵ects), as equivalence classes of events. Refinement and coarse-graining de-
fine a partial ordering in the set of transformations Transf(A,B) and in thir cone
Transf+(A,B), writing D � C if D is a refinement of C . This ordering corresponds
to the ordering induced by the cone Transf+(A,B), namely D � C if C � D 2
Transf+(A,B). A transformation C is atomic if it has only trivial refinement, namely
Ci refines C implies that Ci = pC for some probability p � 0. A test that con-
sists of atomic transformations is a test whose “resolving power” cannot be further
improved.

It is often useful to refer to the set of all possible refinements of a given event C .
This set is called refinement set of the event C 2 Transf(A,B), and is denoted by
RefSet (C ). In formula, RefSet (C ) := {D 2 Transf(A,B)| D � C }.

In the special case of states, we will use the word pure as a synonym of atomic.
A pure state describes an event providing maximal knowledge about the system’s
preparation, namely a knowledge that cannot be further refined.

As usual, a state that is not pure will be called mixed. An important notion is that of
internal state. A state is called internal when any other state can refine it: precisely,
! 2 St(A) is internal if for every ⇢ 2 St(A) there is a non-zero probability p > 0
such that p⇢ is a refinement of !, i. e. p⇢ 2 RefSet (!). The adjective “internal”
has a precise geometric connotation, since the state cannot belong to the border of
St(A). An internal state describes a situation in which there is no definite knowledge
about the system preparation: describing a system by a completely mixed state means
that we know so little about its preparation that in principle we cannot exclude any
preparation a priori.

Exercise 4.5.1 Show that for transformations in T ✓ Transf(AB,CD) that are
parallel compositions of A 2 Transf(A,C) and B 2 Transf(B,D) one has
SpanRRefSet (A ) ⌦ SpanRRefSet (B) ✓ SpanRRefSet (T).

4.6 Operational distance between states

The vector space StR(A) can be equipped with a natural norm, related to the optimal
discrimination scheme for pairs of states ⇢0, ⇢1 making a binary preparation test. A
special case of such a test is that of a couple of deterministic states with given prior
probabilities p and and 1 � p, which is the canonical case of state discrimination in
quantum estimation theory [?].

Given a binary preparation-test {⇢0, ⇢1} ✓ St(A), consider the discrimination strat-
egy for states ⇢0 and ⇢1 consisting in performing a binary observation-test {a0, a1}.
Upon defining a := a0 + a1, the success probability in the discrimination of ⇢0 and
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⇢1 is given by

psucc = (a0|⇢0) + (a1|⇢1)

= (a|⇢0) + (a1|⇢1 � ⇢0)

= (a|⇢1) + (a0|⇢0 � ⇢1)

=
1
2

[1 + (a1 � a0|⇢1 � ⇢0)].

If we now optimize over the possible strategies, classified by the observation-tests
{a0, a1}, we obtain

p(opt)
succ =

1
2

[1 + k⇢1 � ⇢0k], (4.14)

where the operational norm k�k of an element � 2 StR(A) is given by

k�k := sup
{a0,a1}

(a0 � a1|�), (4.15)

with {a0, a1} ranging over all two-outcome observation-tests. For the proof that the
functional k · k is actually a norm, see Exercise 4.6.3. In the special case where A = I,
the operational norm coincides with the absolute value: indeed � 2 StR(I) just means
� 2 R, and since 0, 1 2 Eff(I) ✓ [0, 1] clearly one has

sup
p2[0,1]

(2p � 1)� = |�|, (4.16)

corresponding to the choice p = 0 if � < 0 and p = 1 if � � 0.
One can easily prove that

k�k  sup
a02Eff(A)

(a0|�) � inf
a12Eff(A)

(a1|�).

Moreover, whenever ( f |�) = ( f 0|�) for every pair f , f 0 2 Eff1(A) of deterministic
e↵ects, also the converse bound holds (see Exercise 4.6.4). There are two relevant
situations where the latter condition holds: 1) � belongs to the linear span of deter-
ministic states, which is the case for � = ⇢0 � ⇢1 for ⇢0, ⇢1 both proportional to
deterministic states; 2) theories where the deterministic e↵ect eA is unique (this is a
very relevant class of theories, called causal; see Chapter 6 for more details). In both
cases the following identity holds

k�k = sup
a02Eff(A)

(a0|�) � inf
a12Eff(A)

(a1|�). (4.17)

Introducing a norm entails the existence of Cauchy sequences, (⇢n)n2N, as well as
their equivalence relation (⇢n)n2N ⇠ (�n)n2N if limn!1(⇢n��n) = 0. In what follows,
we will always take the set of states St(A) to be closed in the operational norm, i. e. a
Banach space. This is a very natural assumption: the fact that there is a sequence of
states (⇢n)n2N that converges to ⇢ 2 StR(A) means that there is a procedure to prepare
⇢ with arbitrary precision, and hence ⇢ can be considered as an ideal state.

success probability of discrimination

123 Operational distances for transformations and effects

Exercise 4.6.1 Show that in a non deterministic operational probabilistic theory
it is possible to generate every finite probability distribution.

Exercise 4.6.2 Prove that in a non deterministic operational probabilistic the-
ory for every deterministic e↵ect f 2 Eff1(A) there exist all the observation-
operations {p1 f , p2 f , . . . , pN f } where {p1, p2, . . . , pN} is an arbitrary probabil-
ity distribution.

Exercise 4.6.3 Prove that the functional k · k on StR(A) defined in Eq. (4.15) is
actually a norm, namely it satisfies

1. k�k � 0, with k�k = 0 if and only if � = 0.
2. k� + ✓k  k�k + k✓k.
3. kk�k = |k| k�k for k 2 R.

Exercise 4.6.4 Prove that whenever ( f |�) = ( f 0|�) for every pair of deterministic
e↵ects f , f 0 2 Eff(A), then

k�k = sup
a02Eff(A)

(a0|�) � inf
a12Eff(A)

(a1|�).

Exercise 4.6.5 Prove that in the case of quantum theory the operational norm
over StR(A) coincides with the trace-norm k�k1 := Tr|�|, where |�| denotes the
absolute value of the operator � 2 Lin(HA) of system A.

In addition to the usual properties of a norm, the operational norm also satisfies
the following monotonicity property.

Lemma 4.3 (Monotonicity of the operational norm) If C 2 Transf1(A,B)
is a deterministic transformation, then for every � 2 StR(A) one has

||C �||B  ||�||A. (4.18)

For C is reversible equality holds.

Proof. By definition, ||C �||B = supb12Eff(B)(b1|BC |�)A � infb02Eff(B)(b0|BC |�)A. Since
(b1|BC and (b0|BC are e↵ects on system A, one has ||C �||B  supa12Eff(A)(a1|B|�)A �
infa02Eff(A)(a0|A|�)A = ||�||A. Clearly, if C is reversible one has the converse bound
||�||A = ||C �1C �||A  ||C �||B, thus proving the equality ||�||A = ||C �||B.⌅

4.7 Operational distances for transformations
and effects

As for the vector space StR(A), also the vector space TransfR(A,B) can be equipped
with a natural norm related to the optimal discrimination scheme for pairs of trans-
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55 No-signaling from the future

4.2 No-signaling from the future

The causality axiom will ultimately leads us to interpret the input-output connections
between tests as causal links, understanding their sequential composition as series of
tests performed in cascade on the same system. Let us now review the statement of
the axiom.

Causality Axiom: The probability of preparations is independent of the choice of
observations.

Let analyze what the causality axiom says precisely. Consider the joint test con-
sisting of a preparation test X = {⇢i}i2X ⇢ St(A) followed by the observation test
Y = {a j} j2Y ⇢ Eff(A) performed on system A

X A Y .

The joint probability of preparation ⇢i and observation a j is given by

p(i, j|X ,Y ) := (a j|⇢i) ⌘ ⇢i A a j .

The marginal probability of the preparation alone does not depend on the outcome j.
Yet, it generally depends on which observation test Y is performed, namely

X

a j2Y
(a j|⇢i) =: p(i|X ,Y ).

The marginal probability of preparation ⇢i is then generally conditioned on the choice
of the observation test Y . What the causality axiom states is that p(i|X ,Y ) is indeed
independent of Y , namely for any two di↵erent observation tests Y = {a j} j2Y and
Z = {bk}k2Z one has

p(i|X ,Y ) = p(i|X ,Z ) = p(i|X ).

The causality postulate is not just a restriction to probability distributions of circuits
made only of two tests–preparation and observation. It actually regulates the joint
probability distribution of any closed circuit made of multiple systems and tests,
since any closed circuit can be always regarded as the composition of a preparation
and an observation test. This can be done as follows. We say that a system A is con-
nected to system B if there is a test of which A is input and B is output or viceversa
(A is output and B is input). For example, in the following circuit
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Using the identity (4.7), this can be written as follows

p(A)
i = (ai|A(e|B|�)AB =: (ai|A|⇢)A. (4.17)

Eq. (4.17) defines the marginal state |⇢)A of system A of the joint state |�)AB. There-
fore, in summary

Marginal state: The marginal state of |�)AB on system A is the state

|⇢)A := (e|B|�)AB. (4.18)

represented by the diagram

�
A

B e
=: ⇢ A . (4.19)

4.4.4 For causal OPTs closure means convexity

A theory having St(A) which is closed with respect to the operational norm will
contain all the states that can be approximated arbitrarily well by states of the theory.
Since probabilities are just elements of St(I), if an OPT is operationally closed, then
also the set of possible values of probabilities is closed. Now, if the only available
values for the probability are just p = 0, 1—i. e. St(I) = {0, 1}—then the probabilistic
theory will be deterministic. We will say that the theory is a deterministic OPT,
considering deterministic theories as a special case of probabilistic theories. Now,
a relevant fact is that if the OPT contains at least a non deterministic test, then the
operational closure of the OPT automatically guarantee that the whole interval [0, 1]
of probabilities is available. In equations

0 < p < 1, p 2 St(I) + operational closure =) St(I) = [0, 1]. (4.20)

Indeed the availability of a non deterministic test means that at least a binary test with
0 < p < 1 is available. We can then use it as a biased coin which can be tossed many
times, and by randomness extraction we can approximate any coin bias p 2 [0, 1].
Hence the available probabilities are a dense set in [0, 1], and closure of the set St(I)
implies that St(I) ⌘ [0, 1], namely the whole interval of probabilities is available.

Now, if the theory is causal, the availability of a non deterministic test along
with the possibility of conditioning will provide any possible convex combination
of events, as stated in the following Lemma:

Theorem 4.4 (Approximation of convex combinations) In a causal OPT
containing at least a non deterministic test any convex combination of events can be
approximated with arbitrary precision.
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52 CHAPTER 1. THE OPERATIONAL FRAMEWORK

causal chain
causal anti-chain
locality!Einstein
quantum non-locality

there can be no dependence on the choice of the test of the marginal of the joint prob-
ability distribution of local tests. In a causal theory a global input-output path will be
called causal chain, whereas a global slice can be called a causal anti-chain. Two sys-
tems can belong either to the same causal chain—i. e. they are causally connected—or
to the same causal anti-chain—i. e. they are independent. Since we choosed the arrow
of time according to causality, a causal chain can be regarded as a “line of time”. On
the other hand, since two independent systems A and B do not belong to the same
causal chain, which of the two is in the past and which in the future is arbitrary, and
the no-signaling from the future here implies that there can be no-signaling in both
directions A ! B and B ! A. This kind of no-signaling is exactly of the same
kind of the socalled Einstein locality, which states that “if two physical systems do
not interact (i. e. they remained isolated) for a time interval �t, then the evolution
of the physical properties of one system cannot be affected by whatever operation is
performed on the other system” [?]. In a Minkowskian view two systems that cannot
interact are space-like separated, and we can thus regard a causal anti-chain as a “line
of space”. Therefore, a complete foliation made of anti-chains can be regarded as a
choice of reference system in relativity theory (generally the reference will be locally
accelerated).

Note 1.11 [Nonlocality] Theorem 1.2 plays a pivotal role in assessing the nature of quantum non-locality.
Indeed, as we will see in the next chapter, being a causal OPT, QT cannot violate Einstein locality. Thus,
even though the correlations produced by entangled states are non-local in the sense that they cannot be
represented by local hidden variables (see Sect. ??), however, they cannot be used for superluminal commu-
nications.

1.8 Local discriminability
A powerful property of an OPT is local discriminability.

1.72. Local discriminability: A theory satisfies local discriminability if for every
couple of different states ⇢,� 2 St(AB) there are two local effects a 2 E↵(A) and
b 2 E↵(B) such that

⇢
A a

B b
6= �

A a

B b
(1.118)

⇢
A X

B Y

(1.119)

⇢
A X

B Y

(1.120)

Another way of stating local discriminability is to say that the set of factorized
effects is separating for the joint states.
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1.21. Operational probabilistic theory (OPT). An operational theory is specified
by a collection of systems, closed under parallel composition, and by a collection of
tests, closed under parallel/sequential composition and under randomization. The
operational theory is probabilistic if every test from the trivial system to the trivial
system is associated to a probability distribution of outcomes.
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Figure 1.3: A network made of tests.

Therefore an OPT provides us with the joint probabilities for all possible events in
each box for any closed network (namely which has no input and no output system)
as in Fig.1.3. Since the theory hence associates a joint probability to any or event of a
closed network, it will be convenient to represent the joint probability of events in a
closed network by the network itself, e. g.

p(i, j, k, l,m, n, p, q|circuit)
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p(i|X ,Y ) = p(i|X ,Y 0
) = p(i|X ) (1.23)

1.22. Joint and marginal probabilities. One is seldom interested in the full joint
probabilities, but, more often, in probabilities of the following kinds:

a) the joint probability of having events A
j

and D
m

irrespective of all other events;
b) the probability of having event D

m

conditioned on events A
j

and  
i

and irre-
spective of all other events.

How we can calculate these probabilities from the full joint probabilities? Consider
case a). To evaluate the probability “irrespectively” on an event means to substitute
such event with the union of all possible events of the test, namely, in our case to

April 2, 2014 DRAFT
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6.2 No-signaling from the future

The causality axiom will ultimately leads us to interpret the input-output connections
between tests as causal links, understanding their sequential composition as series of
tests performed in cascade on the same system. Let us now review the statement of
the axiom.

Causality Axiom: The probability of preparations is independent of the choice of
observations.

Let analyze what the causality axiom says precisely. Consider the joint test con-
sisting of a preparation test X = {⇢i}i2X ⇢ St(A) followed by the observation test
Y = {a j} j2Y ⇢ Eff(A) performed on system A

X A Y .

The joint probability of preparation ⇢i and observation a j is given by

p(i, j|X ,Y ) := (a j|⇢i) ⌘ ⇢i A a j .

The marginal probability of the preparation alone does not depend on the outcome j.
Yet, it generally depends on which observation test Y is performed, namely

X

a j2Y
(a j|⇢i) =: p(i|X ,Y ).

The marginal probability of preparation ⇢i is then generally conditioned on the choice
of the observation test Y . What the causality axiom states is that p(i|X ,Y ) is indeed
independent of Y , namely for any two di↵erent observation tests Y = {a j} j2Y and
Z = {bk}k2Z one has

p(i|X ,Y ) = p(i|X ,Z ) = p(i|X ).

The causality postulate is not just a restriction to probability distributions of circuits
made only of two tests–preparation and observation. It actually regulates the joint
probability distribution of any closed circuit made of multiple systems and tests,
since any closed circuit can be always regarded as the composition of a preparation
and an observation test. This can be done as follows. We say that a system A is con-
nected to system B if there is a test of which A is input and B is output or viceversa
(A is output and B is input). For example, in the following circuit
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(6.1)
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spaces of composite systems that allows to fully characterize a transformation by
running it only on its input system, without considering input entangled states with
any other additional system.

5.3 The principle

Local Discriminability Axiom: It is possible to discriminate any pair of states of
composite systems using only local measurements.

Mathematically the axiom asserts that that for every two joint states ⇢,� 2 St(AB),
with ⇢ , �, there exist e↵ects a 2 Eff(A) and b 2 Eff(B) such that the joint probabil-
ities for the two states are di↵erent, namely, in circuits

⇢

A

B , �

A

B ) ⇢

A
a

B
b
, �

A
a

B
b
. (5.3)

It is easy to see that if the two joint probabilities in Eq. (5.3) are di↵erent, then one
can design a binary test with outcomes corresponding to assessing the two states,
having error probability pE < 1/2.

Exercise 5.3.1 Show that in any convex theory, for any two di↵erent determinis-
tic states ⇢0 , ⇢1 2 St1(A) there exists a binary test {a0, a1} with probabilities
of error strictly smaller that 1/2, namely

p(1|0) = p(0|1) <
1
2
, (5.4)

with p(i| j) = p(i, j)/
P

l p(l, j) conditioned probabilities, and p(i, j) = (ai|⇢ j).

Solution

Since the states are distinct there exists at least an e↵ect a such that (a|⇢0) >
(a|⇢1). Moreover, since the theory is convex we can choose without loss of
generality (a|⇢1) � 1/2 (if a does not meet this condition, we can replace it
with the convex combination a0 = 1/2(a + e)). Now define the binary test
{a0, a1} as follows

8

>

>

<

>

>

:

a0 = qa
a1 = e � a0

q =
1

(a|⇢0) + (a|⇢1)
< 1, (5.5)

For this test one has p(1|0) = p(0|1) = (a|⇢1) /[(a|⇢0) + (a|⇢1)] < 1/2. ⌅

Exercise 5.3.1 establishes that if two states are di↵erent, then the worst-case error
probability max{p(1|0), p(0|1)} can be reduced to a value that is strictly smaller than

It is possible to discriminate any pair 
of states of composite systems 
using only local measurements.

Reductionism

Holism
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We can now prove the two main theorems following from the principle of local
discriminability.

Theorem 5.1 (Product rule for composite systems) A theory satisfies
local discriminability if and only if, for every composite system AB one has

DAB = DADB. (5.6)

Proof. By Eq. (5.3), a theory satisfies local discriminability if and only if local e↵ects
a⌦b 2 Eff(AB), with a 2 Eff(A) and b 2 Eff(B), are separating for joint states St(AB).
Then, the set T := {a ⌦ b|a 2 Eff(A), b 2 Eff(B)} is a spanning set for EffR(AB).
Since the dimension of SpanR(T ) is DADB and the spaces of states and e↵ects have
the same dimension, we have DAB = DADB. Conversely, if Eq. (5.6) holds, then
the product e↵ects are a spanning set for the vector space EffR(AB), hence they are
separating, and local discriminability holds.⌅

Theorem 5.2 (Local characterization of transformations) If local dis-
criminability holds, then for any two transformations A ,A 0 2 Transf(A,A0), the
condition A ⇢ = A 0⇢ for every ⇢ 2 St(A) implies that A = A 0.

Proof. Let B be a system and  2 St(AB). Then, for every e↵ect b 2 Eff(B) we have

 

A
A

A0
a

B
b
= ⇢b

A
A

A0
a , (5.7)

where ⇢b is the (unnormalized) state ⇢b := (IA⌦b) . Now, suppose that A ⇢ = A 0⇢
for all ⇢ 2 St(A). This implies

A ⇢b = A 0⇢b 8b 2 Eff(B), 8B,

and, therefore

 

A
A

A0
a

B
b
=  

A
A 0 B

a
B

b
. (5.8)

By local tomography, we then conclude that (A ⌦ IB) = (A 0 ⌦ IB) , for every
state  2 St(AB) and for every system B. By definition, this means that A coincides
with A 0. ⌅

Upon extending the notion of separating set from linear functionals to linear maps,
we can restate Theorem 5.2 as follows

Corollary 5.3 Local input states are separating for transformations.

Local characterization of transformations

Origin of the complex tensor product
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of Pauli matrices plus the identity, derive the general matrix element ⟨u|ρ|v⟩ of
the state as a function of the expectations of the Pauli matrices.

SIC POVM’s. The randomized Pauli observable of Exercise 3.4.4 is a 6-element
POVM, which is not minimal. A minimal informationally complete POVM which is
also rank-one is provided by a SIC-POVM (SIC acronym for symmetrical informa-
tionally complete). This is made of four rank-one projectors made with Bloch vectors
asi in Eq. (3.19) at the vertices of a tetrahedron.6

Tomography of multipartite states. What about the possibility of experimentally
determine a joint state of a composite system σ ∈ St1(AB . . .Z)? Do we need an
informationally complete observation test made of joint observables for AB . . .Z?
Here the local discriminability Principle 2 comes to help us: since local effects are
separating for joint states, we can just use local informationally complete observation
tests for each single system A, B, . . ., Z. Local discriminability guarantees us that the
test {ai ⊗ b j ⊗ . . .⊗ zk}i∈XA, j∈XB,...k∈XZ is separating for all states St1(AB . . .Z), namely
we can achieve the tomography of any unknown joint state (including the entangled
states that we will see in subsect.3.5) as follows

σ

!"
#$

A %&'({ai}
B )*+,{b j}

. . .

Z %&'({zk}

(3.42)

For example, for testing a state σ ∈ St1(AA) we just need two copies of the same
informationally complete observation test for system A: we don’t need to build up a
new informationally complete observation test e. g. {wi, j}i, j∈X for AA, as in figure

σ
!"#$ A

{wi, j}
-./0B

(3.43)

This is the power of local discriminability! As an example, for N qubits, the expec-
tation value of a joint operator J can be expressed in terms of the quorum of local
Pauli observables as follows

⟨J⟩ = 2−N
∑

{l j}
Tr[J(⊗ jσl j )]⟨⊗ jσl j⟩. (3.44)

Informationally complete preparation-test. Symmetrically to the notion of infor-
mationally complete observable we have the notion of informationally complete

6 At the moment the existence of sic-POVMs for any dimension is still an open problem, and analytical
solutions are known only up to dimension 13, and for dimensions 15 and 19, whereas numerically they
have been found up to dimension 67 [Scott and Grassl (2009)].

Tomography
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By local tomography, we then conclude that (A ⌦ IB) = (A 0 ⌦ IB) , for every
state  2 St(AB) and for every system B. By definition, this means that A coincides
with A 0. ⌅

Upon extending the notion of separating set from linear functionals to linear maps,
we can restate Theorem 5.2 as follows

Corollary 5.3 Local input states are separating for transformations.

55 Purification

that is, if and only if the states A | )AC and A 0| )AC cannot be distinguished by
local tests, namely i↵

8b 2 Eff(B), c 2 Eff(C) :  

A A B b
C c

=  

A A 0 B b
C c

(3.156)

for every product e↵ect (b|B(c|C. By the Local Discriminability Principle 2 Eq. (3.156)
is equivalent to A | )AC = A 0| )AC.⌅

3.8.2 Faithful states and ancilla assisted tomography

According to Theorem 3.10 two transformations are equal upon input of ⇢ i↵ they
act in the same way on a purification of ⇢. If ⇢ is internal, namely the state is not
on the boundary of the convex set of states, then Supp ⇢ = HA is the full Hilbert
space of system A, which means that the two transformations act in the same way
on all possible input states, and this, thanks to the local discriminability principle,
means that the two transformations are identical. This also means that two transfor-
mations acting in the same way over the purification | ⇢ii of an internal state ⇢ are
the same transformation. In other words, the action of a transformation A on the the
purification | ⇢ii of an internal state ⇢ completely characterizes the transformation
A . We will then call | ⇢ii a faithful state, namely the output state (A ⌦I )| ⇢ii is in
one-to-one correspondence with the transformation A . Therefore, we don’t need to
have an informationally complete preparation-test to run at the input of A : we just
need two local informationally complete observation tests and just the single input
state | ⇢ii, used with the following set-up

 ⇢

A A B {ai}
C {b j}

(3.157)

 

A A A0 a

C b

(3.158)

The above method is also called ancilla-assisted tomography. An example of appli-
cation is provided in the following exercise.

Exercise 3.8.2 For d = dimHA < 1, the state 1p
d
|Iii is a faithful. Show how,

apart from a phase factor, it is possible to recover all matrix elements of the
operator A 2 Lin(H) by performing an ancilla-assisted tomography. [Hint: use
the identity |Aii = (A ⌦ I)|Iiii and evaluate the matrix element of Ai j in terms
of the expectations hh�|i0, j0iihhi, j|�ii with |�ii = 1p

d
(A ⌦ I)|Iiii].

Exercise 3.8.3 The Choi-Jamiołkowski isomorphism corresponds to the special
case of faithful state ⌦ = 1

2 |IiihhI| 2 St1(AA). Does any other faitful state
St1(AA) induce a cone-isomorphism between St+(BA) and Transf+(A,B)?

Local effects are separating for joint states

Counter-examples: Real QT, Fermionic QT
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33 The operational language

is dictated by the requirement of being an appropriate mathematical representation of
a physical process. For example, in a Stern-Gerlach test the two events up and down
are possible, and their occurrence is heralded by a spot on the screen–the classical
outcome.

We denote by Transf(A,B) the set of all events from A to B. The reason for this
notation is that in a full-fledged operation theory the elements of Transf(A,B) will be
interpreted as transformations with input system A and output system B. If A = B we
simply write Transf(A) in place of Transf(A,A). An operation with a single outcome
will be called deterministic. The precise reason for this nomenclature will be clear
after the introduction of the probabilistic structure of operation theories, however
we can provide an intuitive explanation here, considering that a single-outcome test
contains no alternate events, and then the unique event corresponding to the unique
outcome will deterministically occur every time the operation is applied.

2.1.1 Sequential composition of operations

Two operations {Ci}i2X and {D j} j2Y can be occur in a sequence, as long as the input
system of the second operation is equal to the output system of the first one. The re-
sult is a third operation, defined as the sequential composition of {Ci}i2X and {D j} j2Y,
whose events are represented as

A
E(i, j)

C
:=

A
Ci

B
D j

C

and are written in formulas as E(i, j) := D jCi. The composite operation is then {E(i, j)}(i, j)2X⇥Y.
For every system A, one can perform the identity-operation (or simply, the iden-

tity), that is, an operation {IA} with a single outcome, with the property
A

IA
A

Ci
B

=
A

Ci
B 8Ci 2 Transf(A,B)

B
D j

A
IA

A
=

B
D j

A 8D j 2 Transf(B,A)

The sub-index A will be dropped from IA where there is no ambiguity.

2.1.2 Composite systems and parallel composition

Given two systems A and B, one can consider them together, thus forming a third
system C, which is called the composite system of A and B, here denoted by AB.
Given two systems A and B there is no di↵erence between the composite systems
AB and BA, and then parallel composition enjoys the property of commutativity

AB = BA. (2.1)

The letter I will be reserved for the trivial system, which represents “no system”
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For states that are not completely mixed 
there exists an ideal compression scheme

Any face of the convex set of 
states is the convex set of states of 
some other system
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89 The Purification Principle

This means that even a randomized algorithm or a Monte Carlo simulation can
be run without an external random number generator, starting o↵ only with pure
states.

The three points above provide good reasons to require the pure and reversible sim-
ulatability as a fundamental property of physical processes. Since Purification gives
this as a bonus, there are at least three good reasons to be happy about it. But do
we need Purification in order to have a pure and reversible simulation? The answer
is “Yes”, because the preparation of a state is a special case of physical process—a
process with no input. Hence, if you want the pure and reversible simulatability to
hold for every process, then you also need Purification as a special case.

In the following, we will delve deeper into the consequences of purification, giving
a first illustration of how the high level reasoning from first principles can reconstruct
crucial quantum features.

6.2 The Purification Principle

Here is the precise statement of the Purification Principle:

Purification Axiom. For every system A and for every state ⇢ 2 St(A), there exists
a system B and a pure state  2 PurSt(AB) such that

⇢ A =  

A

B e
. (6.1)

If two pure states  and  0 satisfy

 0
A

B e
=  

A

B e
,

then there exists a reversible transformation U , acting only on system B, such that

 0
A

B
=  

A

B U B
. (6.2)

Here we say that  is a purification of ⇢ and that B is the purifying system. In-
formally, Eq. (6.1) guarantees that you can always find a pure state of AB that is
compatible with your limited knowledge of A alone. On top of this, Eq. (6.2) spec-
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This means that even a randomized algorithm or a Monte Carlo simulation can
be run without an external random number generator, starting o↵ only with pure
states.

The three points above provide good reasons to require the pure and reversible sim-
ulatability as a fundamental property of physical processes. Since Purification gives
this as a bonus, there are at least three good reasons to be happy about it. But do
we need Purification in order to have a pure and reversible simulation? The answer
is “Yes”, because the preparation of a state is a special case of physical process—a
process with no input. Hence, if you want the pure and reversible simulatability to
hold for every process, then you also need Purification as a special case.

In the following, we will delve deeper into the consequences of purification, giving
a first illustration of how the high level reasoning from first principles can reconstruct
crucial quantum features.
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Proof. Suppose that  is a pure state of AB and that its marginal on system A is
pure—call it ↵. Then, for every pure state �, the product state  0 = ↵ ⌦ � will be a
purification of ↵ 3. The uniqueness of purification, stated by Eq. (6.2), implies that
 = ↵ ⌦ U � for some reversible transformation U acting only on B. This means
that  is a product state. Hence, if a pure state is entangled, then its marginal must
be mixed. ⌅

Summarizing, we have proved that, in a theory satisfying our principles, a state is
mixed if and only if its purification is entangled. By this observation, the only theo-
ries that satisfy Purification and have no entanglement are the theories where there
are no mixed states at all. In these theories no event can be random, because random
events could be used to generate mixed states. In other words, we have proven the
implication: “Purification + no entanglement =) determinism”. This is mostly a
curiosity here, because in this book we will focus our attention to probabilistic theo-
ries where not all outcomes are determined in advance. In these theories, Purification
implies the existence of entanglement.

6.4 Reversible transformations and twirling

Purification implies not only that there are entangled states, but also that there are
“enough reversible transformations” in our theory. For example, one has the follow-
ing

Proposition 6.4 For every pair of normalized pure states  and  0 of a generic
system B there must be a reversible transformation U such that

 0 B =  B U B . (6.4)

Proof. Easy corollary of the uniqueness of purification stated by Eq. (6.2): if we erase
system A from the diagram (mathematically, if we set it to be the trivial system I),
then the uniqueness condition reads “if (e| 0) = (e| ), then there exists a reversible
transformation U such that  0 = U  ”. ⌅

The ability to transform any pure state into any other by means of reversible trans-
formations will be called transitivity, meaning that the action of the set of reversible
transformations is transitive on the set of pure states.

Transitivity, combined with the existence of entanglement, leads us straight to
the existence of entangling gates, i. e. reversible gates that transform product states
into entangled states. Another consequence of transitivity is every physical system
3 The fact that the product of two pure states is pure follows immediately from the Atomicity of Com-

position, or, with a little bit of extra work, from Local Tomography.
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perfectly distinguishable. As the result of this procedure, the composite system AC
is in the state

� =
X

x2X
px ↵x ⌦ �x . (6.9)

The state � has two important properties: First, it is an extension of ⇢, that is,

�
A

C e
= ⇢ A . (6.10)

Second, if one measures system C with the test that distinguishes among the states
{�x | x 2 X}, one can simulate the original preparation device for system A: indeed,
one has

�
A

C cx
= px ↵x A 8x 2 X , (6.11)

where c := {cx} is the observation test such that distinguishes among the states
{�x | x 2 X}. This is an interesting trick, because it allows us to replace the prepa-
ration of a random pure state with the preparation of a single state of a larger system
AC, followed by a measurement on C.

Clearly, the trick that we showed here works for every ensemble decomposition
of ⇢: given an ensemble decomposition, we can always find a suitable system C, a
state of AC, and a measurement on C such that Eq. (6.11) is satisfied. But can we
find an extension that works for every ensemble? Thanks to Purification, the answer
is a�rmative:

Proposition 6.5 (Steering) Let  2 PurSt(AB) be a purification of ⇢ 2 St(A).
Then, for every ensemble decomposition ⇢ =

P

x px↵x there exists a measurement
b = {bx}, such that

 

A

B bx

= px ↵x A 8x 2 X . (6.12)

Proof. For every ensemble {px↵x}, construct an extension � 2 St(AC) as in Eq. (6.9)
and take a purification of it, say  2 PurSt(ACD). Since  0 and  are two purifi-
cations of ⇢, the uniqueness of purification implies that there must exist a channel
C 2 Transf(B ! CD) such that  0 = (IA ⌦ C ) (cf. proposition 6.1). Using Eq.
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(6.11) we then obtain

 

A

B

C

C cx

D e

=  0

A

C cx

D e

= �
A

C cx

= px ↵x A 8x 2 X .

Defining the measurement b by bx := (cx ⌦ e)C we then have that Eq. (6.12) is
satisfied. ⌅

Choosing di↵erent measurements on system B we can “steer” the ensemble de-
composition of ⇢, in the sense that we decide which particular ensemble we want to
generate 4. This feature is quite striking when the state ⇢ has more than one ensem-
ble decomposition into pure states: in this case, we cannot say that the state before
the measurement was in an unknown pure state, because even the set of alternative
pure states in which the system could be depends on the choice of the measurement.
This fact means that we don’t have a local realistic interpretation of the ensembles
describing the state preparation.

6.6 Process tomography

Purification establishes an interesting correspondence between transformations and
states. This is easy to see: let us take a set of states {↵x | x 2 X} that span the whole
state space of system A and a set of positive probabilities {px}x2X. Then, take a pu-
rification of the mixed state ⇢ =

P

x px ↵x—say  2 PurSt(AB). Now, if two trans-
formations A and A 0 satisfy

 

A A A0

B
=  

A A 0 A0

B
,

it is clear that A must be equal to A 0, namely the correspondence A 7! (A ⌦IB)�
is injective.

Indeed, using the steering property of Eq. (6.12) we obtain

↵x A A A0 = ↵x A A 0 A0 8x 2 X ,

Since the states {↵x} span the whole state space, this also means that A ⇢ = A 0⇢ for

4 Note, however, that we cannot decide which particular state ↵x is prepared—otherwise we would
violate Causality.
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4 Note, however, that we cannot decide which particular state ↵x is prepared—otherwise we would
violate Causality. 5. No information without disturbance

8⇢
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Proof. For every ensemble {px↵x}, construct an extension � 2 St(AC) as in Eq. (8.9)
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This fact means that we don’t have a local realistic interpretation of the ensembles
describing the state preparation.
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Purification establishes an interesting correspondence between transformations and
states. This is easy to see: let us take a set of states {↵x | x 2 X} that span the whole
state space of system A and a set of positive probabilities {px}x2X. Then, take a pu-
rification of the mixed state ⇢ =

P
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it is clear that A must be equal to A 0, namely the correspondence A 7! (A ⌦IB)�
is injective.

4 Note, however, that we cannot decide which particular state ↵x is prepared—otherwise we would
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di↵erent. If we take a pure state  2 PurSt(AB) that can be used for process tomog-
raphy, then the no-disturbance condition implies

P

x(Ax ⌦IB) =  . But  is pure:
hence, each unnormalized state (Ax ⌦ IB) must be proportional to  . Precisely,
there must be a set of probabilities {px} such that (Ax ⌦IB) = px . Since the map
A 7! (A ⌦IB) is injective (see Sect. 8.6), we conclude that Ax = pxIA. In other
words, our test is equivalent to the following procedure:

1. do nothing on system A
2. output an outcome x chosen at random with probability px.

Clearly, this means that our test does not extract any information at all. In summary,
we proved the implication “no disturbance =) no information”: in a world that sat-
isfies Purification, there is no way to extract information without leaving a trace
behind. This fact has enormous implications for cryptography: when two parties are
communicating, every attempt to extract information about their message will result
in a disturbance that the they can in principle detect.

8.8 Teleportation

Another major consequence of Purification is teleportation. The task of teleportation
is essentially the task of a fax: to transfer data from a sender to a receiver using only
a classical transmission line and some pre-established correlations between sender
and receiver.

Suppose that we want to transfer the data carried by system A and that the receiver
has a copy of system A in an entangled state with another system, B, in the sender’s
lab. A teleportation protocol has the following structure:

1. The sender measures the input system A together with system B, obtaining an
outcome x.

2. The outcome x is communicated to the receiver through the classical transmission
line.

3. Depending on the outcome x, the receiver performs a correction operation on the
output.

The protocol works if, after these three steps, the state of the input system is trans-
ferred to the output system. Let us see how to construct a working teleportation
protocol starting just from first principles.

For the entangled state shared between sender and receiver, let us choose a pu-
rification of the invariant state � of system A—call it � 2 PurSt(AB). Let us also
choose an ensemble of reversible transformations {pxUx} that averages to the twirling
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where � is the marginal of � on system B. Now, note that, by definition

�

A

B e

�

A e
B

=
� A

� B
,

that is, �⌦� is a purification of �⌦ �. Using Eq. (6.14) and the steering property of
proposition 6.5, we have that there exists a measurement {Bx} such that

�

A

B

Bx

�

A

B

= px  

A Ux
A

B
8x 2 X .

Since the correspondence A 7! (A ⌦IB)� is injective (see Sect. 6.6), we conclude
that

�

A

B

BxA

= px
A Ux

A 8x 2 X .

We are done: the above equation says that, if a sender performs the measurement
{Bx} on the input system and on half of the entangled state �, then the state the
input system will be transferred on the receiver’s side and will undergo a reversible
transformation depending on the outcome. Using the classical transmission line, the
sender can communicate the outcome to the receiver, who can undo the reversible
transformation by applying its inverse U �1

x . As a result of this procedure, the state
of system A has been transferred from the sender’s to the receiver’s end.

6.9 A reversible picture of an irreversible world

In a world satisfying Purification, irreversible processes can be simulated by re-
versible ones, pretty much in the same way in which the preparation of mixed states
can be simulated by the preparation of pure states. Suppose that you observe a deter-
ministic process C acting on system A. We will see now that, thanks to Purification,
the process can be simulated as

A C A =
⌘ E

U

E e
A A

, (6.15)
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the display. What is interesting, however, if that we can take a pure and reversible
simulation of the process C , and regard our test as the result of a reversible interac-
tion between the tested system A, the display B, and, possibly, an environment E. In
formula,

A Ax
A =

A

U

A

⌘
B B bx

E E e

8x 2 X , (6.18)

where E is a suitable system, ⌘ is a pure state, and U is a reversible transformation.
The proof of this fact is left to you as an exercise:

Exercise 6.10.1 Prove Eq. (6.18) and generalize it to tests with di↵erent input
and output systems. [Hint: use the result of exercise 6.9]

The cut between between the physical systems included in the description and
those that are omitted is known as von Neumann’s cut. In general, the cut can be
done in di↵erent ways: we can imagine that there are photons going from the display
to the eye of the experimenter, and, again, we can include them in the description,
adding one more system in the interaction U that gives rise to the test. Of course,
this game can go on forever: we can include into the description the experimenter
herself, and we can even include an infinite chain of experimenters, each of them
making tests on the previous one. Thanks to Eq. (6.18), we can always displace the
cut between the systems that evolve reversibly and the system that undergoes the final
measurement. Due to Purification, each experimenter can claim that she is doing a
measurement, while all the other systems evolve deterministically according to some
fundamentally reversible dynamics 5.

6.11 The state-transformation isomorphism

In a theory satisfying Purification there is a special correspondence between states
and transformations, essentially based on the idea of process tomography. The steps
to set up the correspondence are the following: for a given system A

1. take a set of pure states {↵x} that spans the whole state space
2. take a mixed state ⇢ =

P

x px ↵x , where all probabilities {px} are positive
3. take a purification of ⇢, say  2 PurSt(AB) for some purifying system B.

5 Here we carefully avoid to make any statement on how things “really” are, which would lead to the
so-called measurement problem.

8. Reversible dilation of “instruments”

9. State-transformation cone isomorphism

10. Rev. transform. for a system make a compact Lie group
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• linearity 
• isotropy 
• minimal-dimension 
• Cayley qi-embedded in Rd

Restrictions}
• homogeneity  
• locality 
• reversibility

6 GIACOMO MAURO D’ARIANO AND PAOLO PERINOTTI

The quantum walk has isotropy group generated by the
⇡/4 rotations Z4 around any vertex. The representation
is generally projective, and corresponds to associate to
the generator any fixed phase factor.

Example 2 (Three-dimensional Weyl quantum walk).
s = 2, G = Z3, the Cayley graph is the BCC (body-
centered cubic) lattice, with generators {h1, h2, h3, h4}
and relator h1 + h2 + h3 + h4 = 0. Modulo change of
basis on C2 the quantum walks are the following

Ahi = ⇣⇤Bi, Ah�i = ⇣Bi+2mod4, ⇣ =
1± i

4
. (16)

B1 =

✓
1 0
1 0

◆
, B2 =

✓
0 1
0 1

◆
, (17)

B3 =

✓
0 �1
0 1

◆
, B4 =

✓
1 0
�1 0

◆
.

Each quantum walk has isotropy group L = Z2 ⇥ Z2 the
Klein group, corresponding to the Abelian group of ⇡ ro-
tations around the three cubic axes, with unitary projec-
tive representation given by the 2⇥ 2 matrices R↵ = i�↵

(↵ = x, y, z), Rt = �I2, with �↵ the Pauli matrices

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
, (18)

with relators

RxRy = �Rz, and cyclic permutations, R2
↵ = �I2, ↵ = x, y, z

(19)

Remark 3. The quantum walks in Examples 1 and 2 are
the only isotropic QWCG with Abelian G that are quasi-
isometrically embeddable in Rd, with d = 2, 3. These
has been derived in Ref. [?], and in the relativistic limit
give the Weyl equation, which is the building block of the
quantum-automata framework for quantum field theory.

3. Note on the derivation of the QWCG from

principles

We assume the following requirements for the interac-
tions defining the QW evolution: 1) linearity, 2) unitar-
ity, 3)locality, 4) homogeneity, and 5) isotropy.

Cells labeled by g 2 G, |G|  @

Linearity

The interaction between systems is described by sg0 ⇥ sg
transition matrices Agg0 with evolution from step t to
step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t)

Unitarity

lin
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4. Note on the derivation of the QWCG from

principles

We assume the following requirements for the interac-
tions defining the QW evolution: 1) linearity, 2) unitar-
ity, 3)locality, 4) homogeneity, and 5) isotropy.

Cells labeled by g 2 G, |G|  @;  g 2 Csg , 0 < sg < 1
Linearity

The interaction between systems is described by sg0 ⇥ sg
transition matrices Agg0 with evolution from step t to
step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t).

Unitarity

X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Agg0 6= 0 () Ag0g 6= 0: g0 and g are interacting

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
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with relators

RxRy = �Rz, and cyclic permutations, R2
↵ = �I2, ↵ = x, y, z
(19)

Remark 3. The quantum walks in Examples 1
and 2 are the only isotropic QWCG with Abelian
G that are quasi-isometrically embeddable in Rd,
with d = 2, 3. These has been derived in Ref. [?],
and in the relativistic limit give the Weyl equa-
tion, which is the building block of the quantum-
automata framework for quantum field theory.

3. Note on the derivation of the QWCG

from principles

We assume the following requirements for the
interactions defining the QW evolution: 1) linear-
ity, 2) unitarity, 3)locality, 4) homogeneity, and 5)
isotropy.

Cells labeled by g 2 G, |G|  @

Linearity

The interaction between systems is described by
sg0 ⇥ sg transition matrices Agg0 with evolution
from step t to step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t).

Unitarity

X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Sg ✓ G set of cells g0 interacting with g (Agg0 6=
0) |Sg|  k < 1 for every g 2 G.

Homogeneity

All cells g 2 G are equivalent =) |Sg| and {Agg0}g02Sg

independent of g.

Identify the matrices Agg0 = Ah for some h 2 S
with |S| = |Sg|

Define gh := g0 if Agg0 = Ah

A sequence of transitions AhNAhN�1 . . . Ah1 con-
nects g to itself, i.e. gh1h2 . . . hN = g, then it
must also connect any other g0 2 G to itself,
i.e. g0h1h2 . . . hN = g0.

un
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X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Agg0 6= 0 () Ag0g 6= 0: g0 and g are interacting

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
=) |Sg|, sg, {Agg0}g02Sg independent of g

Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|

Define gh := g0 if Agg0 = Ah and define Ag0g := Ah�1

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

�(G,S): Colored directed graph with vertices g 2 G, and
edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in {Ah}h2S

Either the graph �(G,S) is connected, or it consists of
n disconnected identical copies of the same connected
graph. W. l. g. assume �(G,S) connected

Define the free group F of words with letters in on S and
the free subgroup H generated by words in R =) H is
normal in F .

Suppose the word problem is solvable =) G = F/N
group with �(G,S) Cayley graph with generators h 2 S
(relators words in the set R of strings corresponding to
closed paths)

No self-interactions =) S = S+ [ S�, where S� := S�1
+

Self-interactions =) S = S+ [ S� [ {e}

Unitarity + homogeneity

The following operator over the Hilbert space `2(G)⌦Cs

is unitary

A =
X

h2S

Th ⌦Ah,

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i
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X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

g0 interacting with g: Agg0 6= 0

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
=) |Sg|, {Agg0}g02Sg independent of g

Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|
Define gh := g0 if Agg0 = Ah

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

Define the colored graph �(G,S) with vertices g 2 G,
and edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in

{Ah}h2S . It is now easy to verify that either the graph
�(G,S) is connected, or it consists of n disconnecte d
copies of the same connected graph �(G0, S). Since the
information in G is generally redundant, consisting in n
identical and independent copies of the same QW with
cells belonging to G0, from now on we will assume that
the graph �(G,S) is connected. One can now prove that
such a graph represents the Cayley graph of a finitely
presented group with generators h 2 S and relators cor-
responding to the set R of strings corresponding to closed
paths. More precisely, if we define the free group F of
words with letters in on S and the free subgroup H gen-
erated by words in R, it is easy to check that H is normal
in F . The group G with Cayley graph �(G,S) coincides
with F/N .

In the elementary case there are no self-interactions,
and the set S is then S = S+ [ S�, where S� is the
set of inverses of the elements of S+. In case of self-
interactions, we include the identity e in S, which then
becomes S = S+ [ S� [ {e}. The requirements of uni-
tarity and homogeneity correspond to assuming that the
following operator over the Hilbert space `2(G) ⌦ Cs is
unitary

A =
X

h2S

Th ⌦Ah, (20)

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i.
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X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

g0 interacting with g: Agg0 6= 0, Ag0g 6= 0

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
=) |Sg|, {Agg0}g02Sg independent of g

Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|

Define gh := g0 if Agg0 = Ah and define Ag0g := Ah�1

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

�(G,S): Colored directed graph with vertices g 2 G, and
edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in {Ah}h2S

Either the graph �(G,S) is connected, or it consists of
n disconnected identical copies of the same connected
graph. W. l. g. assume �(G,S) connected

Define the free group F of words with letters in on S and
the free subgroup H generated by words in R =) H is
normal in F .

Suppose the word problem is solvable =) G = F/N
group with �(G,S) Cayley graph with generators h 2 S
(relators words in the set R of strings corresponding to
closed paths)

In the elementary case there are no self-interactions,
and the set S is then S = S+ [ S�, where S� is the
set of inverses of the elements of S+. In case of self-
interactions, we include the identity e in S, which then
becomes S = S+ [ S� [ {e}. The requirements of uni-
tarity and homogeneity correspond to assuming that the
following operator over the Hilbert space `2(G) ⌦ Cs is
unitary

A =
X

h2S

Th ⌦Ah, (20)

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i.
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|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
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Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|

Define gh := g0 if Agg0 = Ah and define Ag0g := Ah�1

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

�(G,S): Colored directed graph with vertices g 2 G, and
edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in {Ah}h2S

Either the graph �(G,S) is connected, or it consists of
n disconnected identical copies of the same connected
graph. W. l. g. assume �(G,S) connected

Define the free group F of words with letters in on S and
the free subgroup H generated by words in R =) H is
normal in F .

Suppose the word problem is solvable =) G = F/N
group with �(G,S) Cayley graph with generators h 2 S
(relators words in the set R of strings corresponding to
closed paths)

No self-interactions =) S = S+ [ S�, where S� := S�1
+

Self-interactions =) S = S+ [ S� [ {e}

Unitarity + homogeneity

The following operator over the Hilbert space `2(G)⌦Cs

is unitary

A =
X

h2S

Th ⌦Ah,

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i
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=) |Sg|, {Agg0}g02Sg independent of g

Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|

Define gh := g0 if Agg0 = Ah and define Ag0g := Ah�1

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
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edges (g, g0) with g0 = gh. Color the edges with |S|
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matrices in {Ah}h2S

Either the graph �(G,S) is connected, or it consists of
n disconnected identical copies of the same connected
graph. W. l. g. assume �(G,S) connected

Define the free group F of words with letters in on S and
the free subgroup H generated by words in R =) H is
normal in F .
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group with �(G,S) Cayley graph with generators h 2 S
(relators words in the set R of strings corresponding to
closed paths)

No self-interactions =) S = S+ [ S�, where S� := S�1
+

Self-interactions =) S = S+ [ S� [ {e}
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The following operator over the Hilbert space `2(G)⌦Cs
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where T is the right-regular representation of G on `2(G)
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requirements. We call these solutions Weyl automata, because
they give Weyl’s equation in the relativistic limit. In Sec. V we
show the unique possible way to couple Weyl automata locally
in order to obtain a new automaton. We call the resulting QCA
a Dirac automaton because it gives Dirac’s equation in the
relativistic limit. The inequivalent Dirac automata are only
two. In Sec. VI we show the same result for the case of Cayley
graphs of Z2 and Z, leading to Weyl and Dirac QCAs in two
and one space dimensions, respectively. Finally, in Sec. VII
we study the relativistic limit of all the above automata, which
consists of taking small wave vectors compared to the Planck
length, which is the scale of a lattice step. We then show
the first-order corrections to the Dirac dynamics in the d = 3
case, due to the discreteness of space time at the Planck
scale, and provide the range of possible experimental tests
of the corrections. In this section we also provide an analytical
description of the QCA for the narrowband states of quantum
field theory in terms of a dispersive Schrödinger equation
holding at all scales.

II. QCAS AND SYMMETRIES

In the present section we introduce the general construction
of space starting from QCA representing interactions among
identical Fermionic quantum systems. Let the cellular automa-
ton involve a denumerable set G of systems, conveniently
described by Fermionic field operators ψg,l satisfying the usual
anticommutation relations,

{ψg,l,ψg′,l′} = 0, {ψg,l,ψ
†
g′,l′} = δg,g′δl,l′ . (1)

In the following, we denote by ψg the formal sg-component
column vector,

ψg =

⎛

⎜⎜⎜⎝

ψg,1
ψg,2

...
ψg,sg

⎞

⎟⎟⎟⎠
, (2)

where sg is the number of field components at site g.
We now assume the following requirements for the inter-

actions defining the QCA evolution: (1) linearity, (2) unitarity,
(3) locality, (4) homogeneity, and (5) isotropy.

By linearity, we mean that the interaction between systems
is described by sg′ × sg transition matrices Agg′ , which allow
us to write the evolution from step t to step t + 1 as

ψg(t + 1) =
∑

g′∈G

Agg′ψg′ (t). (3)

Unitarity corresponds to the reversibility constraint∑
g′ Agg′A

†
g′′g′ =

∑
g′ A

†
gg′Ag′′g′ = δgg′′Isg

.
If we define the set Sg ⊆ G of sites g′ interacting with

g as the set of sites g′ for which Agg′ ̸= 0, the locality
requirement amounts to ask that the cardinality of the set Sg is
uniformly bounded over G, namely, |Sg| ! k < ∞ for every
g. In the following we focus on those automata for which, if
the transition from g to g′ is possible, then also that from g′ to
g is possible, namely, if Agg′ ̸= 0, then Ag′g ̸= 0.

The homogeneity requirement means that all the sites g ∈
G are equivalent. In other words, the evolution must not allow
one to discriminate two sites g and g′. In mathematical terms,

this requirement has three main consequences. The first one
is that the cardinality |Sg| is independent of g. The second
one is that the set of matrices {Agg′}g′∈Sg

is the same for every
g, whence we will identify the matrices Agg′ = Ah for some
h ∈ S with |S| = |Sg|. This allows us to define gh = g′ if
Agg′ = Ah. In this case, we also formally write g = g′h−1.
Since for Agg′ ̸= 0 also Ag′g ̸= 0, clearly if h ∈ S then also
h−1 ∈ S. The third consequence is that, whenever a sequence
of transitions h1h2 · · · hN with hi ∈ S connects g to itself, i.e.,
gh1h2 · · · hN = g, then it must also connect any other g′ ∈ G
to itself, i.e., g′h1h2 · · ·hN = g′.

We now define the graph #(G,S), where the vertices are
elements of G, and edges correspond to couples (g,g′) with
g′ = gh. The edges can then be colored with |S| colors,
in one-to-one correspondence with the transition matrices
{Ah}h∈S . It is now easy to verify that either the graph #(G,S)
is connected or it consists of n disconnected copies of the
same connected graph #(G0,S). Since the information in G is
generally redundant, consisting of n identical and independent
copies of the same QCA with cells belonging to G0, from
now on we assume that the graph #(G,S) is connected.
One can now prove that such a graph represents the Cayley
graph of a finitely presented group with generators h ∈ S and
relators corresponding to the set R of strings of elements of S
corresponding to closed paths. More precisely, we define the
free group F of words with letters in S and the free subgroup
H generated by words in R; it is easy to check that H is normal
in F , thanks to homogeneity. The group G with Cayley graph
#(G,S) coincides with F/N .

In the elementary case there are no self-interactions, and
the set S can then be taken as S = S+ ∪ S−, where S−
is the set of inverses of the elements of S+. In case of
self-interactions, we include the identity e in S, which then
becomes S = S+ ∪ S− ∪ {e}. The requirements of unitarity
and homogeneity correspond to assuming that the following
operator over the Hilbert space ℓ2(G) ⊗ Cs is unitary,

A =
∑

h∈S

Th ⊗ Ah, (4)

where T is the right-regular representation of G on ℓ2(G)
acting as Tg|g′⟩ = |g′g−1⟩.

Finally, we say that the automaton is isotropic if every
direction on #(G,S) is equivalent. In mathematical terms, there
must exist a faithful representation U over Cs of a group L of
graph automorphisms transitive over S+ such that one has the
covariance condition

A =
∑

h∈S

Th ⊗ Ah =
∑

h∈S

Tl(h) ⊗ UlAhU
†
l , ∀ l ∈ L. (5)

The existence of such automorphism group implies that the
Cayley graph is symmetric.

The unitarity conditions in terms of the transition matrices
Ah read

∑

h∈S

A
†
hAh =

∑

h∈S

AhA
†
h = Is,

(6)∑

h,h′ ∈ S
h−1h′ = h′′

A
†
hAh′ =

∑

h,h′ ∈ S
h′h−1 = h′′

Ah′A
†
h = 0.
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requirements. We call these solutions Weyl automata, because
they give Weyl’s equation in the relativistic limit. In Sec. V we
show the unique possible way to couple Weyl automata locally
in order to obtain a new automaton. We call the resulting QCA
a Dirac automaton because it gives Dirac’s equation in the
relativistic limit. The inequivalent Dirac automata are only
two. In Sec. VI we show the same result for the case of Cayley
graphs of Z2 and Z, leading to Weyl and Dirac QCAs in two
and one space dimensions, respectively. Finally, in Sec. VII
we study the relativistic limit of all the above automata, which
consists of taking small wave vectors compared to the Planck
length, which is the scale of a lattice step. We then show
the first-order corrections to the Dirac dynamics in the d = 3
case, due to the discreteness of space time at the Planck
scale, and provide the range of possible experimental tests
of the corrections. In this section we also provide an analytical
description of the QCA for the narrowband states of quantum
field theory in terms of a dispersive Schrödinger equation
holding at all scales.

II. QCAS AND SYMMETRIES

In the present section we introduce the general construction
of space starting from QCA representing interactions among
identical Fermionic quantum systems. Let the cellular automa-
ton involve a denumerable set G of systems, conveniently
described by Fermionic field operators ψg,l satisfying the usual
anticommutation relations,

{ψg,l,ψg′,l′} = 0, {ψg,l,ψ
†
g′,l′} = δg,g′δl,l′ . (1)

In the following, we denote by ψg the formal sg-component
column vector,

ψg =

⎛

⎜⎜⎜⎝

ψg,1
ψg,2

...
ψg,sg

⎞

⎟⎟⎟⎠
, (2)

where sg is the number of field components at site g.
We now assume the following requirements for the inter-

actions defining the QCA evolution: (1) linearity, (2) unitarity,
(3) locality, (4) homogeneity, and (5) isotropy.

By linearity, we mean that the interaction between systems
is described by sg′ × sg transition matrices Agg′ , which allow
us to write the evolution from step t to step t + 1 as

ψg(t + 1) =
∑

g′∈G

Agg′ψg′ (t). (3)

Unitarity corresponds to the reversibility constraint∑
g′ Agg′A

†
g′′g′ =

∑
g′ A

†
gg′Ag′′g′ = δgg′′Isg

.
If we define the set Sg ⊆ G of sites g′ interacting with

g as the set of sites g′ for which Agg′ ̸= 0, the locality
requirement amounts to ask that the cardinality of the set Sg is
uniformly bounded over G, namely, |Sg| ! k < ∞ for every
g. In the following we focus on those automata for which, if
the transition from g to g′ is possible, then also that from g′ to
g is possible, namely, if Agg′ ̸= 0, then Ag′g ̸= 0.

The homogeneity requirement means that all the sites g ∈
G are equivalent. In other words, the evolution must not allow
one to discriminate two sites g and g′. In mathematical terms,

this requirement has three main consequences. The first one
is that the cardinality |Sg| is independent of g. The second
one is that the set of matrices {Agg′}g′∈Sg

is the same for every
g, whence we will identify the matrices Agg′ = Ah for some
h ∈ S with |S| = |Sg|. This allows us to define gh = g′ if
Agg′ = Ah. In this case, we also formally write g = g′h−1.
Since for Agg′ ̸= 0 also Ag′g ̸= 0, clearly if h ∈ S then also
h−1 ∈ S. The third consequence is that, whenever a sequence
of transitions h1h2 · · · hN with hi ∈ S connects g to itself, i.e.,
gh1h2 · · · hN = g, then it must also connect any other g′ ∈ G
to itself, i.e., g′h1h2 · · ·hN = g′.

We now define the graph #(G,S), where the vertices are
elements of G, and edges correspond to couples (g,g′) with
g′ = gh. The edges can then be colored with |S| colors,
in one-to-one correspondence with the transition matrices
{Ah}h∈S . It is now easy to verify that either the graph #(G,S)
is connected or it consists of n disconnected copies of the
same connected graph #(G0,S). Since the information in G is
generally redundant, consisting of n identical and independent
copies of the same QCA with cells belonging to G0, from
now on we assume that the graph #(G,S) is connected.
One can now prove that such a graph represents the Cayley
graph of a finitely presented group with generators h ∈ S and
relators corresponding to the set R of strings of elements of S
corresponding to closed paths. More precisely, we define the
free group F of words with letters in S and the free subgroup
H generated by words in R; it is easy to check that H is normal
in F , thanks to homogeneity. The group G with Cayley graph
#(G,S) coincides with F/N .

In the elementary case there are no self-interactions, and
the set S can then be taken as S = S+ ∪ S−, where S−
is the set of inverses of the elements of S+. In case of
self-interactions, we include the identity e in S, which then
becomes S = S+ ∪ S− ∪ {e}. The requirements of unitarity
and homogeneity correspond to assuming that the following
operator over the Hilbert space ℓ2(G) ⊗ Cs is unitary,

A =
∑

h∈S

Th ⊗ Ah, (4)

where T is the right-regular representation of G on ℓ2(G)
acting as Tg|g′⟩ = |g′g−1⟩.

Finally, we say that the automaton is isotropic if every
direction on #(G,S) is equivalent. In mathematical terms, there
must exist a faithful representation U over Cs of a group L of
graph automorphisms transitive over S+ such that one has the
covariance condition

A =
∑

h∈S

Th ⊗ Ah =
∑

h∈S

Tl(h) ⊗ UlAhU
†
l , ∀ l ∈ L. (5)

The existence of such automorphism group implies that the
Cayley graph is symmetric.

The unitarity conditions in terms of the transition matrices
Ah read

∑

h∈S

A
†
hAh =

∑

h∈S

AhA
†
h = Is,

(6)∑

h,h′ ∈ S
h−1h′ = h′′

A
†
hAh′ =

∑

h,h′ ∈ S
h′h−1 = h′′

Ah′A
†
h = 0.
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⎛

⎜⎜⎜⎝

ψg,1
ψg,2

...
ψg,sg

⎞

⎟⎟⎟⎠
, (2)

where sg is the number of field components at site g.
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g′ Agg′A

†
g′′g′ =

∑
g′ A

†
gg′Ag′′g′ = δgg′′Isg

.
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FIG. 2. Cayley graph of G = ha, b|aba�1b�1i. The graph is
isotropic.

FIG. 3. Cayley graph of G = ha, b|a2b�2i. The graph is
isotropic.

CLOSURE

Proposition 2. All the Ah (with h 2 S) are not full

rank.

Proof. The unitarity condition
P

h�h0=h00 AhA
†
h0 = 0

with h00 = 2h leads to AhA
†
�h = 0. Then either Ah

is full rank and A†
�h = 0 (against hypothesis) or both

Ah and A†
�h are not full rank. ⌅

Proposition 3. For s = 2, if isotropy holds all the Ah

with h 2 S and |S+| = d belong to a ring/group/albegra

(vedere cosa e’) made of at most d2 elements.

Proof. Being s = 2, the Ah have rank equals to 1. Then
a generic Ah can be written as Ah = |⌘hih#h|. The com-

FIG. 4. Cayley graph of G = ha, b|a5, b4, (ab)2i. The graph is
NOT isotropic.

FIG. 5. Cayley graph of G = ha, b|a5, b5, (ab)2i. The graph is
isotropic.

position of two arbitrary Ah, Ak leads to

AhAk = |⌘hih#h| |⌘kih#k| = h#h|⌘ki |⌘hih#k|.

Thanks to isotropy we have h#h|⌘ki = c for every ⌘k,#h.
⌅

Remark 2. For s = 2. For G Abelian, and the automaton

a
b
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Theorem (Gromov): A group is quasi-isometrically 
embeddable in Rd iff  it is virtually Abelian

Virtually Abelian groups 
have polynomial growth

# points ~rd



• G hyperbolic → exponential growth
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Informationalism: 
Principles for QFT

• Mechanics (QFT) derived in terms of 
countably many quantum systems in 
interaction 

Min algorithmic complexity principle

add principles

Quantum Cellular 
Automata on the 
Cayley graph of a 
group G

}
• linearity 
• isotropy 
• minimal-dimension 
• Cayley qi-embedded in Rd

Restrictions}
• homogeneity  
• locality 
• reversibility

• There exists a group L of 
permutations of S+, transitive over 
S+ that leaves the Cayley graph 
invariant 

• a nontrivial unitary s-dimensional 
(projective) representation {Ll} of L 
such that: 

A =

∑

h∈S

Th ⊗Ah =

∑

h∈S

Tlh ⊗ LlAhL
†
l

Isotropy



Informationalism: 
Principles for QFT

• without assuming Special Relativity

• QCA is a discrete theory

•Ultra-relativistic regime (k~1) [Planck scale]: 
nonlinear Lorentz

• Relativistic regime (k≪1): free QFT 
(Weyl, Dirac, and Maxwell)

•QFT derived:

•without assuming mechanics (quantum ab-initio)

1. Discrete contains continuum as special regime 
2. Testing mechanisms in quantum simulations 
3. Falsifiable discrete-scale hypothesis 
4. Natural scenario for holographic principle 
5. Solves all issues in QFT originating from 

continuum:
i) uv divergencies 
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Definition 2 (Quantum walk on Cayley graph). An s-dimensional quantum walk
on the Cayley graph (QWCG) �(G,S+) of the finitely presented group G is the
quadruple

Q = {G,S+, s, {Ah}h2S}, (3)

where

(1) s 2 N;
(2) 8h 2 S, Ah 2 Ms(C) (s ⇥ s complex matrices); Ah are called transition

matrices.
(3) the following operator is unitary over HQ := `2(G)⌦ Cs

AQ =
X

h2S

Th ⌦Ah , (4)

Definition 3 (Trivial QWCG). A QWCG is trivial if A is the identity operator on
`2(G)⌦ Cs.

In the following we will denote by S2 the set of group elements of the form hh0,
with h, h0 2 S.

Lemma 1. A is unitary if and only if all the following equations hold
8
>>><

>>>:

X

h2S

A†
hAh =

X

h2S

AhA
†
h = Is,

8g 2 S2/{e},
X

h,h02S, hh0�1=g

A†
hAh0 =

X

h,h02S, hh0�1=g

Ah0A†
h = 0.

(5)

Lemma 2. A†
hAh0 = 0 if hh0 is not a subword of a relator r with krk = 4, k · k

denoting the word metric on G.

Problem 1. Given G,S+ and s � 1, find a set of matrices {Ah}h2S providing a
nontrivial Q = {G,S+, s, {Ah}h2S}.
Definition 4. We say that the two sets of matrices {Ah}h2S and {Bh}h2S are
unitarily equivalent, if there is a unitary matrix U 2 Ms(C) such that

8h 2 S, Bh = U†AhU

Problem 2. Given G,S+ and s � 1, find all not unitarily equivalent sets of matrices
{Ah}h2S that provide nontrivial Q = {G,S+, s, {Ah}h2S}.

We are now in position to introduce the following main definition.

Definition 5 (Isotropic QWCG). An s-dimensional QWCG over the Cayley graph
�(G,S+) is isotropic if there is a group L of permutations of S that induces a graph
automorphism and acts transitively on S+, and there exists a projective unitary
representation {Ul}l2L of L on Cs satisfying the invariance condition

8l 2 L :
X

h2S

Tl(h) ⌦ UlAhU
†
l =

X

h2S

Th ⌦Ah. (6)

We will also say that the QWCG has isotropy group L. Notice that L is generally
not a subgroup of G.

Definition 6 (Symmetric graph). A directed colored graph is symmetric if its auto-
morphism group acts transitively upon ordered pairs of adjacent vertices.

Lemma 3. Necessary condition for isotropy of a QWCG is that its Cayley graph is
symmetric.
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QUANTUM WALKS ON CAYLEY GRAPHS 5

Main problems:

(1) Given a finite dimensional Riemanian manifold M of dimension d = 2, 3, find
necessary conditions for the existence of a nontrivial isotropic QWCG quasi
isometrically embeddable in M .

(2) As in Problem 1 with M = Rd.

The case of homogeneous and isotropic Riemanian M with nonzero curvature is of
particular interest, and very little is known.

Questions: For Abelian G one reduces the diagonalization problem of AQ to finite
dimension by Fourier transform. We are not aware of an analogous procedure for
non-Abelian groups. Are there groups quasi-isometrically embeddable in H2 with
finite-dimensional irreps?

Theorem 1. A group is quasi-isometrically embeddable in Rd i↵ it is virtually
Abelian.

Proof Rd has polynomial growth at most xd () G also has growth at most xd.
By Gromov’s theorem, it follows that G is virtually nilpotent. By Scott and Pauls’
theorem if a nilpotent group G qi embeds in a Hilbert space, then G is virtually
Abelian.⌅

Homogeneous embedding of isotropic Cayley graph would imply that M has con-
stant curvature. For d = 3 the only complete, simply connected Riemaniann mani-
folds are: hyperbolic space, Euclidean space, and a unit sphere.

Remark 1. For 2 and ?? we know that the group must be virtually Abelian.

Proof [Misha Kapovich] Rd has polynomial growth at most xd. Thus, G also has
growth at most xd. By Gromov’s theorem, it follows that G is virtually nilpotent.
For nilpotent groups there is a precise formula for growth in terms of their derived
series [Bass and Guivarch] which implies that the group has to be virtually Abelian
of rank d.

Remark 2. One can prove that for QWCG Q = (G,S+, s, {Ah}h2S) with G virtually
Abelian there exists a quantum walk Q0 = (H,SH

+ , s · iH , {Bh}h2SH ) with Abelian
H ⇢ G, with finite index iH , such that

AQ0 = V AQV
†, with V : ugia ⌦  7! V ugia ⌦  = va ⌦ ei ⌦  , (13)

with {gi}i=1,...,iH being coset representatives, va with a 2 H canonical orthonormal
basis of `2(H), {ei}i=1,...,iH canonical basis in CiH ,  2 Cs, and V isomorphism
between `2(G)⌦ Cs and `2(H)⌦ Cs·iH .

[Danny Calegary] For isotropic Q with isotropy group L, one can choose H with
iH � |L|, and consider the orbit ofH under the action of L. ThenH is still symmetric.

Example 1 (Two-dimensional Weyl quantum walk). s = 2, G = Z2, the Cayley
graph is the square lattice with generators h1 and h2 two orthogonal sides of a square
tile. Modulo change of basis on C2 or a permutation of S, there is a unique QWCG
with the following transition matrices

Ah1 =
1
2

✓
1 0
i 0

◆
, A�h1 =

1
2

✓
0 i
0 1

◆
,

Ah2 =
1
2

✓
1 0
�i 0

◆
, A�h2 =

1
2

✓
0 �i
0 1

◆
. (14)

The quantum walk has isotropy group generated by the ⇡/4 rotations Z4 around any
vertex. The representation is generally projective, and corresponds to associate to
the generator any fixed phase factor.

QUANTUM WALKS ON CAYLEY GRAPHS 5

Main problems:

(1) Given a finite dimensional Riemanian manifold M of dimension d = 2, 3, find
necessary conditions for the existence of a nontrivial isotropic QWCG quasi
isometrically embeddable in M .

(2) As in Problem 1 with M = Rd.

The case of homogeneous and isotropic Riemanian M with nonzero curvature is of
particular interest, and very little is known.

Questions: For Abelian G one reduces the diagonalization problem of AQ to finite
dimension by Fourier transform. We are not aware of an analogous procedure for
non-Abelian groups. Are there groups quasi-isometrically embeddable in H2 with
finite-dimensional irreps?

Theorem 1. A group is quasi-isometrically embeddable in Rd i↵ it is virtually
Abelian.

Proof Rd has polynomial growth at most xd () G also has growth at most xd.
By Gromov’s theorem, it follows that G is virtually nilpotent. By Scott and Pauls’
theorem if a nilpotent group G qi embeds in a Hilbert space, then G is virtually
Abelian.⌅

Homogeneous embedding of isotropic Cayley graph would imply that M has con-
stant curvature. For d = 3 the only complete, simply connected Riemaniann mani-
folds are: hyperbolic space, Euclidean space, and a unit sphere.

Remark 1. For 2 and ?? we know that the group must be virtually Abelian.

Proof [Misha Kapovich] Rd has polynomial growth at most xd. Thus, G also has
growth at most xd. By Gromov’s theorem, it follows that G is virtually nilpotent.
For nilpotent groups there is a precise formula for growth in terms of their derived
series [Bass and Guivarch] which implies that the group has to be virtually Abelian
of rank d.

Remark 2. One can prove that for QWCG Q = (G,S+, s, {Ah}h2S) with G virtually
Abelian there exists a quantum walk Q0 = (H,SH

+ , s · iH , {Bh}h2SH ) with Abelian
H ⇢ G, with finite index iH , such that

AQ0 = V AQV
†, with V : ugia ⌦  7! V ugia ⌦  = va ⌦ ei ⌦  , (13)

with {gi}i=1,...,iH being coset representatives, va with a 2 H canonical orthonormal
basis of `2(H), {ei}i=1,...,iH canonical basis in CiH ,  2 Cs, and V isomorphism
between `2(G)⌦ Cs and `2(H)⌦ Cs·iH .

[Danny Calegary] For isotropic Q with isotropy group L, one can choose H with
iH � |L|, and consider the orbit ofH under the action of L. ThenH is still symmetric.

Example 1 (Two-dimensional Weyl quantum walk). s = 2, G = Z2, the Cayley
graph is the square lattice with generators h1 and h2 two orthogonal sides of a square
tile. Modulo change of basis on C2 or a permutation of S, there is a unique QWCG
with the following transition matrices

Ah1 =
1
2

✓
1 0
i 0

◆
, A�h1 =

1
2

✓
0 i
0 1

◆
,

Ah2 =
1
2

✓
1 0
�i 0

◆
, A�h2 =

1
2

✓
0 �i
0 1

◆
. (14)

The quantum walk has isotropy group generated by the ⇡/4 rotations Z4 around any
vertex. The representation is generally projective, and corresponds to associate to
the generator any fixed phase factor.

RINORMALIZZARE I QW qw non abeliani

Gruppo con cicli h c , d | c4, d4, (cd)2 i

d
c

Due famiglie di soluzioni (non connesse)

a meno di unitaria µ1± i
p
1-µ2�x

commutante con gruppo di isotropia

Soluzioni numeriche:

prima famiglia dà Weyl
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a b

Due soluzioni

R
⇥
B II

⇤
k
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⇥
B I

⇤†
-k
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Soluzione analitica:
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Quantum Cellular 
Automaton

Isotropy ⇒ statistics

Minimal dimension ⇒ Fermions

Linearity ⇒  
Quantum Cellular Automaton (free QFT)

U U† = A 

Fock space ⇒ von Neumann algebra



• Unitarity ⇒ for d=3 the only possible G is the BCC!! 

• Isotropy ⇒ Fermionic ψ (d=3)

☞ Minimal dimension for nontrivial unitary A: s=2

The Weyl QCA D'Ariano, Perinotti, 
PRA 90 062106 (2014)

Two QCAs 
connected 

by P

sα = sin
kα
√

3

cα = cos
kα
√

3

A±
k =� i�

x

(s
x
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x
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y

s
z

)

⌥ i�
y
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� i�
z
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s
z

± s
x

s
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z

)

+ I(c
x

c
y

c
z

⌥ s
x

s
y

s
z

)

A =

Z

B
d3k |kihk|⌦AkUnitary operator:



The Weyl QCA

Two QCAs 
connected 

by P

sα = sin
kα
√

3

cα = cos
kα
√

3

D'Ariano, Perinotti, 
PRA 90 062106 (2014)
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)

i∂tψ(t) ≃
i

2
[ψ(t+ 1)− ψ(t− 1)] = i

2
(A−A†)ψ(t)

“Hamiltonian”

k ⌧ 1 ☜ Weyl equation!i@t = 1p
3
�± · k 

i

2 (A
±
k �A±

k
†) = + �
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Exact solution of Dirac Quantum Walk

us start with coefficients c00 and c11. The matrices
A00 and A11 appear only for f even (see Eq. (13))
in which case one has f+2

2 odd strings τ2i+1 and f
2

even strings τ2i. A00 appears whenever σ f ∈ ΩR,
namely when the R-transitions are arranged in the
strings τ2i+1. This means that we have to count in how
many ways the r identical characters R and l identi-
cal characters L can be arranged in f+2

2 and f
2 strings,

respectively. These arrangements can be viewed as
combinations with repetitions which give

c00( f ) =
( f
2 + r
r

)( f
2 + l − 1

l

)

=

( t+x−y
2
f
2

)( t−x+y
2 − 1
f
2 − 1

)

,

where the second equality trivially follows from
Eq. (4). Similarly A11 appears whenever σ f ∈ ΩL
which gives

c11( f ) =
( f
2 + l
l

)( f
2 + r − 1

r

)

=

( t−x+y
2
f
2

)( t+x−y
2 − 1
f
2 − 1

)

.

Consider now the other two coefficients c10 and c01
counting the occurrences of A10 and A01. The last
ones appears only when f is odd (see Eq. (13)) and
then one has the same number f+1

2 of odd strings τ2i+1
and even strings τ2i. Counting the combinations with
repetitions as in the previous cases we get

c10( f ) = c01( f ) =
( f−1
2 + r
r

)( f−1
2 + l
l

)

=

( t+x−y−1
2
f−1
2

)( t−x+y−1
2
f−1
2

)

,

which concludes the derivation of the coefficients
cab( f ) in Eq. (17).
The analytical solution of the Dirac automaton can

also be expressed in terms of Jacobi polynomials
P(ζ,ρ)k performing the sum over f in Eq. (16) which
finally gives

ψ(x, t) =
∑

y

∑

a,b∈{0,1}

γa,bP(1,−t)k

(

1 + 2
(m
n

)2)

Aabψ(y, 0),

k = µ+ −
a ⊕ b + 1

2
,

γa,b = −(ia⊕b)nt
(m
n

)2+a⊕b k!
(

µ(−)ab +
a⊕b
2

)

(2)k
, (18)

where γ00 = γ11 = 0 (γ10 = γ01 = 0) for t + x − y odd
(even) and (x)k = x(x + 1) · · · (x + k − 1).

4. Conclusions

We studied the one dimensional Dirac automaton,
considering a discrete path integral formulation. The
analytical solution of the automaton evolution has
been derived, adding a relevant case to the set of
quantum automata solved in one space dimension, in-
cluding only the coined quantum walk and the disor-
dered coined quantumwalk. The main novelty of this
work is the technique used in the derivation of the an-
alytical solution, based on the closure under multipli-
cation of the automaton transition matrices. This ap-
proach can be extended to automata in higher space
dimension. For example the transition matrices of
theWeyl and Dirac QCAs in 2+1 and 3+1 dimension
recently derived in Ref. [26] enjoy the closure fea-
ture and their path-sum formulation could lead to the
first analytically solved example in dimension higher
than one.
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Fµ(k) =

Z
dq

2⇡
f(q) ̃(k2 � q)�µ'(k2 + q)

Maxwell in relativistic limit k ⌧ 1
Boson: emergent from convolution of fermions 

(De Broglie neutrino-theory of photon)

k
2~nk

2

E

B

m≤1: mass 
n-1: refraction index



The LTM standards of the theory

Dimensionless variables

0.2 0.4 0.6 0.8 1.0
m
M
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1.0
Ζ

Measure     from mass-refraction-index

Measure     from light-refraction-index

Relativistic limit:



Dirac emerging from the QCA
fidelity with Dirac for a narrowband packets  in the relativistic limit k ≃ m ≪ 1

N ≃ m
−3

= 2.2 ∗ 10
57 t = 1.2 ∗ 10

14
s = 3.7 ∗ 10

6relativistic proton: y⇒

5 ∗ 10
−28k = 10

−8
≫ mUHECRs: N ≃ k

−2
= 10

16 s⇒ ⇒

F = |⟨exp [−iN∆(k)]⟩|

∆(k) := (m2 + k
2

3
)

1

2
− ω
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+O(k4 +N
−1

k
2)=
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3kxkykz
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3
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−
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(m2 + k2

3
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24
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3
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2
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• Evolution of a narrow-band particle-state 

2d automaton
• Evolution of a localized state

superluminal



Case of study: Relativity Principle without kinematics

Dynamics (QCA eigenvalue equation)

H! = { 2 F : A = ei! } = Ker[A� ei!I] =

Z �

B
dkKer[Ak � ei!I]

! = !l(k), l = 1, . . . , rdispersion relations

Reference-frame: particular decomposition into irreps. preserving dispersion relation

Change of frame (boost, …) k0 = f(k) (!0,k0) = (!(f(k)), f(k))

Relativity principle
Ak � ei!I = ⇤̃�1

f (Ak0 � ei!
0
I)⇤f , ⇤f = ⇤f (!,k) 2 SLsr(C)

A =

Z �

B
dkAk

decomposition into irreps. of G

multiplicity (internal symmetries, matter-antimatter)

Bisio, D'Ariano, Perinotti, arXiv:1503.01017
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Relativity principle

(sin!I � n(k) · �) = ⇤†(sin!0I � n(k0) · �)⇤ ⇤ = ⇤(k,!) 2 SL2(C)

A±
k := �±(k)I � in±(k) · �±

Case of study: Relativity Principle without kinematics

Weyl QCA
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z

)

�+ = �, �� = �T

c↵ := cos(k↵/
p
3)

s↵ := sin(k↵/
p
3)

↵ = x, y, z

eigenvalue equation (sin!I � n(k) · �) (k,!) = 0

(sin!,n) 2 M4sin2 ! � |n(k)|2 = 0 dispersion relations
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D(!,k) := w(!,k)(sin!,n(k))



Dirac automaton: De Sitter covariance

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Covariance for Dirac QCA cannot leave     invariant

invariance of de Sitter norm:

for

invariance

m

Case of study: Relativity Principle without kinematics



Planck-scale effects: Lorentz covariance distortion

Transformations that leave the dispersion relation invariant

Bibeau-Delisle, Bisio, D'Ariano, 
Perinotti, Tosini, arXiv:1310.6760
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Planck-scale effects: Lorentz covariance distortion

Bibeau-Delisle, Bisio, D'Ariano, 
Perinotti, Tosini, arXiv:1310.6760

Relative locality 
R. Schützhold and W. G. Unruh, J. Exp. Theor. Phys. Lett. 78 431 (2003) 
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1106.0313 (2011)

4

ing at the group-velocity. In this construction points in
space-time are regarded as crossing points of the trajec-
tories of two particles (such points have an “extension”
due to the Gaussian profile). For a function g

k0(t, x)
peaked around k0, the map (9) can be approximated by
taking the first order Taylor expansion of k(!0

, k

0) and
!(!0

, k

0) respectively around k

0

0 and !

0(k0) in the func-
tion � (one can verify that a narrow wave-packet remains
narrow under a boost, see Fig. 4, thus confirming the va-
lidity of the approximation). This leads to the following
transformations

✓
t

0

x

0

◆
⇡

✓
�@

!

0
k @

k

0
k

@

!

0
! �@

k

0
!

◆

k

0=k

0
0

✓
t

x

◆
(10)

Since Eq. (10) defines a linear transformation of the vari-
ables x and t and the wave-packets move along straight
lines, we can interpret (10) as the transformation of the
coordinates x

p

and t

p

of a point p in space-time, namely
of the intersection of the trajectories of two particles
having k’s close to some common k0. However, the k-
dependance of the transformations (10) makes the geom-
etry of space-time observer-dependent in the following
sense. Consider a point p which is given by the intersec-
tion of four wave-packets, the first pair peaked around
k1 and the second pair peaked around k2 (k1 6= k2). Be-
cause of the k dependence in (10), a boosted observer will
actually see the first pair intersecting at a point which
is di↵erent from the one where the second pair inter-
sects (see Fig. 5). This e↵ect, first noticed in Ref. [24]
is the characteristic trait of the so-called relative locality

[25, 26]. The space-time resulting in such a way from the
automaton dynamics is “not objective”, in the sense that
events that coincide for one observer may not for another
boosted observer. The above heuristic construction is in
agreement with the assertion of Ref. [26] that relative
locality appears as an feature of all models in which the
energy-momentum space has a non flat geometry. This
can be easily seen by requiring that the transformation
(10) does not depend on k0 and remembering that for
k0 = 0 one must recover the usual Lorentz transforma-
tions.

In this letter we have shown that the quantum cellu-
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FIG. 4. (Colors online) Transformation of a Gaussian state
due to a boost for two di↵erent values of � = �0.99, �0.999
and m = 0.1 in the momentum (left) and the position (right)
representations.
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FIG. 5. (Colors online) Relative locality. In the left reference
frame, the joint intersection of four wave-packets, the first
couple having wavevector close to 0 and the second couple
close to ⇡/5, locates the point with coordinates (x, t). In
the boosted reference frame on the right, by applying the the
transformation of Eq. (8), the four wave-packets no longer
intersect at the same point.

lar automaton of Refs. [19, 20] provides a microscopic
kinematical model compatible with the recent proposals
of DSR. We obtained the nonlinear representation of the
Lorentz group in the energy-momentum space by assum-
ing the invariance of the dispersion relation of the au-
tomaton. Using the aurguments of Ref. [24] we heuristi-
cally derived a space-time that exhibits the phenomenon
of relative locality. Our analysis has been carried in the
easiest case of one space dimension, which, however, is
su�cient to the analysis of the present letter. The same
arguments can be easily generalized to three space dimen-
sions using the results of Ref. [20], leading to additional
symmetry violations, e.g. rotational covariance.
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FIG. 1. (Colors online) The automaton dispersion relation
(left) and group velocity (right) for m = 0.1, 0.2, 0.4, 0.8, 1,
from bottom to top at k = 0 (left), and at k = ⇡/2 (right).

group velocity in B1, also sees an increased group veloc-
ity in B2 since in both cases the momentum k is mapped
closer to the invariant point. Since the two physical re-
gions B1 and B2 exhibit the same kinematics they are
indistinguishable in a non interacting framework. For
massless particles the Dirac automaton dispersion rela-
tion (3) coincides with the undistorted one !2 = k

2 and
the group velocity no longer depends on k. Thus the
model we are considering does not exhibit a momentum-
dependent speed of light.

The action of the boosts (7) on the states of the au-
tomaton (disregarding the internal degrees of freedom)
reads

| i =

Z
dkµ(k)ĝ(k)|ki

L

D
���!

Z
dkµ(k) ĝ(k)|k0i =

=

Z
dkµ(k0) ĝ(k(k0))|k0i

(8)

where µ(k) = µ(!(k), k) = [2(1 � m

2) tan!(k)]�1 is
the density of the invariant measure in the k-space for
µ(!, k) in the (!, k)-space, k

0 is as in Eq. (7), and
|ki := (2(1�m

2) tan!(k))1/2|�(k)i. One can verify that
the transformation (8) is unitary. In Fig. 2 we show how
a perfectly localized state transforms under boosts.

Let us now deepen our analysis considering how the
features of the present framework a↵ect the geometry
of space and time. Under the action of the deformed
boost L

D

�

a function f̂(!, k) transforms as f̂

0(!, k) =

f̂(!0(!, k), k0(!, k)) and, following an ansatz due to
Schützhold et al. [24], one can express the boosted func-
tion in the variables t, x by conjugating the boost L

D

�

with the Fourier transform F [29] i. e.

f

0 = F�1 � L

D

�

� F f, (9)

f

0(t0, x0) =
X

x,t2Z

Z
d!0dk

0
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, k

0) e

�i�(!0
,k

0
,x,t,x

0
,t
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f(x, t),

�(!0

, k

0

, x, t, x

0

, t

0) = k(!0

, k

0)x � k

0

x

0 � !(!0

, k

0)t + !

0

t

0

.

We notice that, due to the non linearity of D, the map
(9) does not correspond to a change of coordinates from
(t, x) to (t0, x0) and therefore we cannot straightforwardly
interpret the variables t and x as the coordinates of

-3 -2 -1 0 1 2 30.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

k

»yHk
L»

-3 -2 -1 0 1 2 30.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

k

»yHk
L»

FIG. 2. (Colors online) Top figure: Delocalization of a state
localized at x = 0 after a boost with � = �0.99 for mass
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Right: momentum representation of a boosted localized state
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at time t in the position representation of a restricted
class of states that can be interpreted as moving parti-
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Delocalization under boost
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group velocity in B1, also sees an increased group veloc-
ity in B2 since in both cases the momentum k is mapped
closer to the invariant point. Since the two physical re-
gions B1 and B2 exhibit the same kinematics they are
indistinguishable in a non interacting framework. For
massless particles the Dirac automaton dispersion rela-
tion (3) coincides with the undistorted one !2 = k

2 and
the group velocity no longer depends on k. Thus the
model we are considering does not exhibit a momentum-
dependent speed of light.

The action of the boosts (7) on the states of the au-
tomaton (disregarding the internal degrees of freedom)
reads
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where µ(k) = µ(!(k), k) = [2(1 � m

2) tan!(k)]�1 is
the density of the invariant measure in the k-space for
µ(!, k) in the (!, k)-space, k

0 is as in Eq. (7), and
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2) tan!(k))1/2|�(k)i. One can verify that
the transformation (8) is unitary. In Fig. 2 we show how
a perfectly localized state transforms under boosts.
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