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2rinciples for
Quantum Theory

e The experience in Quantum
Information has led us to look at
Quantum Theory (QT) under a
completely new angle

e QT is a theory of information
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Informational derivation of quantum theory
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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Principles for Quantum Theory

P1. Causality

P2. Local discriminability

P3. Purification™

P4. Atomicity of composition
P5. Perfect distinguishability

P6. Lossless Compressibility

Book from CUP soon!
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Operational
Probabilistic Theory

The framework
Logic c Probability c OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

Notice: the probability of a
‘preparation” generally depends
on the circuit at its output.

(pi pB— = L[] B

preparation

observation

p(i, 3, k, 1, m,n, p, q|circuit)
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Operational
Probabilistic Theory

The framework transformation

Logic c Probability c OPT

@L L@

joint probabilities + connectivity

State effect

Probabilistic equivalence
classes p(i, 3, k, 1, m,n, p, q|circuit)
Notice: the probability of a G D —
transformation generally &,
depends on the circuit at G 9,
its output!!

o = L

ngp




Operational

The framework

Probabilistic Theory

Logic c Probability c OPT

joint probabilities +connectivity:

Probabillistic equivalence

classes

monolida
category

theory

Multiplication of closed circuits

G
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= p(i1,12) q(j1, J2)
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Operational

Sequential composition (associative)

Probabilistic Theory

2 {fgfx}xeX B {%y}yEY
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|dentity test
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Operational

Probabilistic Theory

Parallel composition (associative)

A {‘Q{X}XEX 5

L {%y}er D
AB = BA
Al=1A=A

A(BC) = (AB)C

AL {% ® c%y}(x,y)eXxY

BD
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{px}xeX
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Operational
Probabilistic Theory

Sequential and parallel compositions commute
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Operational
Probabilistic Theory

The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

Maximal set of
NOT independent systems
= “leat”

p(i, 3, k, 1, m,n, p, q|circuit)




Operational
Probabilistic Theory

The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

p(i, 3, k, 1, m,n, p, q|circuit)

Maximal set of
iIndependent systems
= “leaf”

q Foliation




Operational
Probabilistic Theory

States are functionals for effects

States are separating for effects (W, 5, Bi) B (D, 7, G, 60y F) )
79 79 m ol y “Ny Jq

Effects are functionals on states

Effects are separating for states

Embedding in real vector spaces p(i, §, k,1,m, n, p, g|circuit)

St(A), Sti(A), Str(A)

Eff(A), Eff;(A), Effg(A)

Effz(A) = Stp(A)"

Dimension D

Str(A) = Effp(A)"




Conditioned test (needs causality)

Operational
(e g A | B ()¢ . _A (¢) e
Probabilistic Theory L =7 %
Circuit multiplication: randomize tests
{y}. . . . ) . A %’(Z) B
l lE{ila l2:;° © 9 lg’in+19 li’lj—Za T } D A ng(f) B — Ji
i - L5 :

Coarse-graining l T Refinement

{‘%}je{jl J2se)

Is= ),

€S

Cone structure

'] P

Partial ordering Convex structure |

\
-




Operational
Probabilistic Theory State tomography

{l;};ex € EM(A) separating for states * span Eff(A)

4

Va € Eff(A), a = Z ci(@)l; ¢ € Stp(A)

ieX {Citiex 18 a dual set tor {l;};ex

p € Stj(A) deterministic

Va € Effz(A), (alp) = Y ci(a)lp)  state-tomography

1€EX

) 4

{l;}iex informationally complete for states




Principles for
Quantum Theory

{po.p1} € St(A) preparation test

lag, ai} observation test

success probability of discrimination

Psuce = (aOLOO) + (611|,01)
= (alpo) + (a1lp1 — po)

= (alp1) + (aoloo — p1)
1

= 5[1 + (a1 — aplp1 — po)]

a .= aop + a;

Metric

1
N S+ llor = poll]

[oll :=sup (ao — a110).

{ap,a }

oll = sup (apld) — 1nt (a|d
ol = sup (@fé)~ inf (aild

monotonicity

¢ € Transf{(A, B)

156l < ||0]|a



Principles for (2 —2— %)
Quantum Theory .
p(, jJI2,Y) = (ajlpi)

P?2. Local discriminability

b3, Purification p(i| 2, %) =p(i| 2, %) = p(i| Z)
4. Atomicity of composition Iff conditions: a) the deterministic effect
P5. Perfect distinguishabllity is unique; b) states are “normalizable”

P6. Lossless Compressibility
(elp)

The probabillity of preparations

IS Independent of the choice of
observations

no signaling without interaction .

marginal state

T (2 @ig - @




Principles for . N A A
Quantum Theory GE # EE = G B :b% ’ E =

>

CAS

P, Causality
P2 |Local discriminability
P3. Purification

P4, Atomicity of composition Local characterization of transformations
P5. Perfect distinguishabllity A A’

Lo o —a A A’
P6. Lossless Compressibility G B b) = (P — o @

It is possible to discriminate any pair

of states of composite systems
using only local measurements.

5

Origin of the complex tensor product

Holism
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Local effects are separating for joint states

Tomography
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Counter-examples: Real QT, Fermionic QT



Principles for
Quantum Theory

P, Causality
P?2. Local discriminability
P3. Purification

P4 |Atomicity of composition

P5. Perfect distinguishabllity
P6. Lossless Compressibility

The composition of two atomic
transformations is atomic

Complete information can be accessed
on a step-by-step basis




2rinciples for
Quantum Theory

P, Causality

P?2. Local discriminability

P3. Purification

P4, Atomicity of composition

P5.|Pertect distinguishabllity

P6. Lossless Compressibility

Every state that is not completely mixed (i.e.
on the boundary of the convex) can be
perfectly distinguished from some other state.

Falsifiability of the theory



2rinciples for
Quantum Theory

P, Causality

P?2. Local discriminability

P3. Purification

P4, Atomicity of composition
P5. Perfect distinguishabllity

P6.|Lossless Compressibility

For states that are not completely mixed
there exists an ideal compression scheme

Any face of the convex set of
states is the convex set of states of
some other system




Principles for
Quantum Theory

P, Causality

P2. Local discriminabillity

3 [Purification |
P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system
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2rinciples for
Quantum Theory

Consequences

1. Existence of entangled states:
the purification of a mixed state is an entangled state;

P1. Cau Sa”’[y the marginal of a pure entangled state is a mixed state;
P?2. Local discriminability 2. Every two normalized pure states of the same
O3 |Pyrification System are connected by a reversible transformation
P4, Atomicity of composition (¥ == (y 2H7
S L . -

0. Perfect dIStIﬂgUIShabI“ty 3. Steering: Let W purification of p. The for every
P0O. . ossless Compressibility ensemble decomposition p=) p,.a. there exists a

measurement {b, }, such that

:px<a/x £ Vx e X

Every state has a purification. For fixed =
purifying system, every two purifications of e E

the same state are connected by a reversible
transformation on the purifying system 4. Process tomography (faithful state):

o A’ A " | A’ ,
aifre: TP R0 a2 BORSHAR Mol X OB MRS tombe ) = || Ap =A'p
henggngaehsupmermatizadstate (27, ® )Y must be proportional to ¥, /Precisely, \V/’O

state space of system A and a set o énosmve probabilities {p,}.ex. Then, take a pu-
there must be a set oféopa 9}14{1%5 {Px}s Ch ghaf:&(, @ )Y = p, Y. Since the map 5. No information without disturbance

Puriﬁcatlon estabhshes an interesting correspondence between transformations and A
E
raphyy (B renSssisihanse condition implies Ry SiA R Kol il BYL ¥ 3¢ pure:
A (o @ )Y ip] ectlve—(Jsee Sect. 8.6), we conclude that <7, = p,.Z4. In other

it is clear that .27 must be equal to .27/, namely the correspondence &7 +— (&7 ® .#5)D
1s injective.



Principles for
Quantum Theory

P, Causality

P2. Local discriminabillity

3 [Purification |
P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system

Consequences

6. Teleportation

A
((D B = p, 22U 2 YxeX
Bxl

A

(. Reversible dilation of “channels”

E E
s . @F D

A A

8. Reversible dilation of “instruments”

A A
Ao FA— = B 'y B 1b,) VxeX
g —{ o

9. State-transformation cone isomorphism

10. Rev. transform. for a system make a compact Lie group
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2rinciples for
Quantum Theory

P, Causality

P2. Local discriminabllity

P3. Purification

P4, Atomicity of composition
P5. Perfect distinguishabllity
P6. Lossless Compressibility

Epistemological principles

Are they necessary”?

Fermionic quantum theory?



nformationalism:
Principles for QF

e Mechanics (QFT) derived in terms of
countably many quantum systems in
interaction

add principles

Min algorithmic complexity principle

homogeneity
locality
reversibility

linearity

ISOtro
D PY . . Restrictions
minimal-dimension ;'

Cayley gi-embedded in R

Cells labeled by g € G, |G| < N; ¢, € C%9, 0 < 54 < x©

linearity

locality unitarity

homogeneity

all 4 principles together

The interaction between systems is described by s,/ X sq4
Itmnsz'tz'on matrices AQQIIWith evolution from step t to

step t + 1 given by
— Z Aggrtgr ()

g’ eG

ZAQQIAT” r= ZAT yAgrrgr = 0gg1 1 Sg

g’

A,y #0<= A, , #0: g’ and g are interacting

1Sy| < k < oo for every g € G, where S; C G set of cells
¢’ interacting with g

All cells g € G are equivalent
= |Syl, 8¢, {Agg’ }¢'cs, independent of g

Identify the matrices A,y = Ap for some h € S with
’S| — ’Sg|

Define gh := ¢’ if A,,» = A and define A/, := A

A sequence of transitions Ap, An,y_, ... An, connects g
to itself, i.e. ghiha...hy = g, then it must also connect
any other ¢’ € G to itself, i.e. g’h1hs...hy = ¢’

The following operator over the Hilbert space £*(G) ® C*
1S unitary

A:ZTh@)Ah,

hes
where T is the right-regular representation of G on ¢*(Q)
acting as Tylg) = 19’9 ")



nformationalism:
Principles for QF

e Mechanics (QFT) derived in terms of
countably many quantum systems in
interaction

add principles

Min algorithmic complexity principle

+ locality Automata on the

* homogeneity } Quantum Cellular
il | h of
* reversibility Cayley graph of a

group G
* linearity
: Ir?wcl)rglrt?n%/ dimension M
G=<hy,ho,...|r1,ro,...>=:<S|R>

D Cayley gi-embedded in R
G virtually Abelian | |(geometric group theory)




Sketch of derivation of QW on Cayley

The homogeneity requirement means that all the sites g €
G are equivalent. In other words, the evolution must not allow
one to discriminate two sites ¢ and g’. In mathematical terms,

this requirement has three main consequences. The first one
18 that the cardinality |S,| 1s independent of g. The second
one is that the set of matrices {Agg },cs, 18 the same for every
g, whence we will 1dentify the matrices Ay, = Aj, for some
h €S with |S| =|S,|. This allows us to define gh = g’ if
Aqe = Ay. In this case, we also formally write g = g’ h!.
Since for Az, # 0 also Ay, # 0, clearly if 2 € § then also
h—! e S. The third consequence is that, whenever a sequence
of transitions i1 h, - - - hyy with h; € § connects g to 1tself, 1.e.,
ghihy ---hy = g, then it must also connect any other ¢’ € G
to itself, i.e., g'h1hy---hy = ¢'.




Sketch of derivation of QW on Cayley

We now define the graph I'(G,S), where the vertices are
elements of G, and edges correspond to couples (g,g’) with
g" = gh. The edges can then be colored with |S| colors,
in one-to-one correspondence with the transition matrices
{Apn}nes. It 1s now easy to verify that either the graph I'(G, S)
1s connected or 1t consists of n disconnected copies of the
same connected graph I'(Gy,S). Since the information in G 1s
generally redundant, consisting of n 1dentical and independent
copies of the same QCA with cells belonging to G, from
now on we assume that the graph I'(G,S) 1s connected.
One can now prove that such a graph represents the Cayley
graph of a finitely presented group with generators 4 € S and
relators corresponding to the set R of strings of elements of S
corresponding to closed paths. More precisely, we define the
free group F' of words with letters in S and the free subgroup
H generated by words in R; 1t 1s easy to check that H 1s normal
in F, thanks to homogeneity. The group G with Cayley graph
['(G,S) coincides with F/N.
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Quantum walk on Cayley graph

Theorem (Gromov): A group is quasi-isometrically
embeddable in RY iff it is virtually Abelian

e

Virtually Abelian groups

”

have polynomial growth

# points ~r¢




# points ~exp(r)

transmitted quantum information '+
decrease as exp(-r)



nformationalism:
Principles for QF

e Mechanics (QFT) derived in terms of
countably many quantum systems in
interaction

|Sotropy

e [here exists a group L of
permutations of S, transitive over

add principles S, that leaves the Cayley graph

. — — invariant
i Elgeninnie Gormiiexi) B Talpie e a nontrivial unitary s-dimensional
(projective) representation {L;} of L
- Automata on the
* locality
. bl Cayley graph of a
reversiollity group G

* linearity

e |SOtro
Do PY . . Restrictions
 minimal-dimension ;.

« Cayley gi-embedded in R¢




nformationalism:
Principles for QF

e Mechanics (QFT) derived in terms of
countably many quantum systems in
interaction

add principles

Min algorithmic complexity principle

homogeneity Quantum Cellular
- Automata on the
locality
bilit Cayley graph of a
reversiollity SOUE €
linearity
isotropy

Do . . Restrictions
minimal-dimension

Cayley gi-embedded in R

e Relativistic regime (k< 1) free QF
(Weyl, Dirac, and Maxwell)

e Ultra-relativistic regime (k~1) [Planck scale]:
nonlinear Lorentz

e QFT derived:

* without assuming Special Relativity

*without assuming mechanics (quantum ab-initio)

e QCA is a discrete theory

Motivations to keep it discrete:

1. Discrete contains continuum as special regime
2. Testing mechanisms in quantum simulations
3. Falsifiable discrete-scale hypothesis
4. Natural scenario for holographic principle
5. Solves all issues in QFT originating from
continuum:

) uv divergencies

i) localization issue

iii) Path-integral

6. Fully-fledged theory to evaluate cutoffs



Quantum walk on Cayley graph

Definition 2 (Quantum walk on Cayley graph). An s-dimensional quantum walk
on the Cayley graph (QWCG) I'(G,S4) of the finitely presented group G is the

quadruple

Q — {G7 S+787{Ah}h65}7 (3)
where
(1) s € N;
(2) YVh € S, A; € M;(C) (s x s complex matrices); Ap are called transition
matrices.
(3) the following operator is unitary over Hg := ¢*(G) @ C?
AQZZTh@)Ah, (4)
hes

Lemma 1. A s unitary if and only if all the following equations hold

( ST AJAL = ApAl =1L,
. hes hes (5)
Vg € S°/{e}, > Al Ay = > A Al = 0.
L h,h'€S, hh! ~1=g h,h'€S, hh! ~1=g
Lemma 2. Al A, = 0 if hh' is not a subword of a relator v with ||r|]| = 4, || - ||

denoting the word metric on G.



Quantum walk on Cayley graph

Remark 2. One can prove that for QWCG Q = (G, S+, s,{An}tnes) with G virtually
Abelian there exists a quantum walk Q' = (H,SY,s - img,{Bn}tnesn) with Abelian
H C G, with finite index 11, such that

Ag =VAQVT, withV 1 uge @1 — Vig,a @Y = va @ e; @, (13)

with {gi}i=1,... i, being coset representatives, v, with a € H canonical orthonormal
basis of *(H), {ei}i=1,.. i, canonical basis in C*H, 1) € C*, and V isomorphism
between £*(G) @ C* and £*(H) @ C*H

(

a,b|a?h2) (c,d|c* d¥ (cd))
7
° >0 >0 >0 >0 ° o ° o ° < ° >0 < ® >0
A A “A “A “A h A i A -
7 \ 7
o >0 >0 >0 >0 o ° o) ° o () >0< ° >0 <& ® + o + o
A A A A A A A A
a b C d
7 7
° >e >e >e >e ° ) ° S>e o< ° >e< ° >e * ® ® ®
A A A A A A A
7 \ 7
° S>e >e S>e >e o ° o ° ° ° Se< ° Se< ° + ° + °©
A A A A A A N A i A
7 7
° >0 >0 >0 >e ° o ° o ° < ) >e< ) >e ® ®

|[Danny Calegary| For isotropic ) with isotropy group L, one can choose H with
iz > |L|, and consider the orbit of H under the action of L. Then H is still symmetric.
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Automaton
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L
Quantum Cellular Automaton

(free QFT)
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The Weyl QCA D'Ariano, Perinotti,

PRA 90 062106 (2014)

== Minimal dimension for nontrivial unitary A: s=2

e Unitarity = for d=3 the only possible G is the BCC!!

¢ [sotropy = Fermionic ¢ (d=3)

Unitary operator: A = /dSk k) (k| ® Ay
B

Two QCAs S, = Sin Fa
V'3

connected k.
by D) Cn — COS ﬁ




The Weyl QCA D'Ariano, Perinotti,

PRA 90 062106 (2014)

i0p(t) = 5[t +1) — vt — 1)) = 5(A4 - AN)p(t)

AL — AT =+ 04 (seeyes £ epsys.)  “Hamiltonian”
+ 0y (CuSyCs F SzCySz)

+ 0,(CpCyS, £ 5454C)

k<1 > 10y = %Ui ki e Weyl equation! | o := (0., +0,,0.)

Two QCAS
connected
oy P




—xact solution of Dirac Quantum Walk

The analytical solution of the Dirac automaton can
also be expressed in terms of Jacobi polynomials
Pl(f’p ! performing the sum over f in Eq. (16) which

finally gives
_ m)\?
Pty =) > YasP (1 +2 (—) )Aabm, 0),
Y a,bel0,1) &
adb+1
k — /“t+ o 2 ’
2+a®b k' /,[_ab + @
Vab = _(ia@b)nt(@) ( (-) 2 ), (18)
n (2)x

where yoo = y11 =0 (Y10 = yo1 =0) for + x — y odd
(even) and (x)y, = x(x+1)---(x+k—1).



D'Ariano, Perinotti, PRA 90 062106 (2014) Bisio, D'Ariano, Perinotti, arXiv:1407.6928

Dirac QCA D Maxwell QCA &

Local coupling: Ak coupled with its inverse
with off-diagonal identity block matrix

Maxwell in relativistic limit &£ < 1

4+ Boson: emergent from convolution of fermions
Ek CPT-connected! (De Broglie neutrino-theory of photon)
_ \ - Kkl
w¥ (k) = cos Hn(cpeyc. F 5455, )] c*(k) =c (1 TP )
Dirac in relativistic limit &k < 1 |

m<71: mass

n-1: refraction index




The LTM standards of the theory

Dimensionless variables

1 _tS
r=*2cZ, t=°3=€N,

Relativistic limit: ~ ==p ¢ = /¢

Measure m from mass-refraction-index

—> ntm) =1 (32

Measure @ from light-refraction-index

P c (k)=c (1 =t ﬁ:mag;)




Dirac emerging from the QCA D'Aviano, Perintt

PRA 90 062106 (2014)
fidelity with Dirac for a narrowband packets in the relativistic limit £ ~m < 1

F = [(exp [-iNA(k)])|

Ak) == (m? + £z — wP (k)

V3kokyk,  3(kikyk.)? L _
— (mQ + é)% (m2 _|_yk_2)% | 214(m -+ ?)24_0(]34_'_]\[ 1k2)
3 3

relativistic proton: N ~ m > =922%10°" = t=1.2x 10%s = 3.7 « 106\/

UHECRs: k=107 > m = N ~ k2 =10 = 5107 %% s



superluminal *
2d automaton

 Evolution of a narrow-band particle-state e Evolution of a localized state



Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Case of study: Relativity Principle without kinematics

decomposition into irreps. of G

D

B multiplicity (internal symmetries, matter-antimatter)

Dynamics (QCA eigenvalue equation)
®

H, = {1 € F: A = e} = Ker[A — e ]| = / dk Ker[Ay — e 1]
B

dispersion relatons  w = wy(k), [ =1,...,r

Reference-frame: particular decomposition into irreps. preserving dispersion relation

Change of frame (boost, ...) k' = f(k) (WL K) = (w(f(k)), f(k))

Relativity principle

Ak — eI = A (Aw — e )Ny, Ay = As(w,k) € SL,,(C)




Case of study: Relativity

Bisio, D'Ariano, Perinotti, arXiv:1503.01017

2rinciple without kKinematics

Weyl QCA

=2 (k) —inT (k) - o™

-+ T

Co 1= COS,(ka/\/g)
Se := sin(kq/V'3)

ad=,Y,<

Sz CyCy £ Cy:8y8,

ni(k) = | Cy8yCx TF sxcysz)
)

CxCySz L SpSyCy

AT (k) = (cpcyCy F S25yS2

eigenvalue equation  (sinwl — n(k) - o)y (k,w) =0

sin® w — [n(k)|? = 0 dispersion relations (sinw,n) € M*

Relativity principle

(sinwl —n(k) - o) = Af(sinw'I —nk) - o)A A= A(k,w) € SLy(C)




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Case of study: Relativity Principle without kinematics

Action on(k, w) given by the non-linear representation of the Lorentz group

Lg:=D toLgoD D(w, k) := w(w, k)(sinw, n(k))
’gb(k, w) —> A?,b(k,, w’) A independent on K and w

The Brillouin zone
separates into four
invariant regions
diffeomorphic to balls,
corresponding to four
different particles.




Bisio, D'Ariano, Perinotti, arXiv:1503.01017

Case of study: Relativity Principle without kinematics

Dirac automaton: De Sitter covariance

Covariance for Dirac QCA cannot leave m invariant

iINnvariance of de Sitter norm:

sin® w — (1 — m?)|nk)|? —=m? =0
P SO(1,4) invariance

SO(1,4) — SO(1,3) for m — 0 O(m?)



Bibeau-Delisle, Bisio, D'Ariano,
Perinotti, Tosini, arXiv:1310.6760

Planck-scale effects: Lorentz covariance distortion

Transformations that leave the dispersion relation invariant

a)(i)(k)
’

2

w' = arcsin [y (sinw/ cos k — Btan k) cos k']
k" = arctan [y (tank — Bsinw/ cos k)]
yi= (157712

wE(k) .

v(k)

+cos (/1 — m2cosk)

T ———

—05
10

0.5
0.0
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Planck-scale effects: Lorentz covariance distortion
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Delocalization under boost

k52%7'('/5

b (z,1) Bé
) = /dku<k>g<k>|k> s, / dkepu(k) GR)|K') = /\ U\

_ /dku(k’)é(k(k/))|k/>
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