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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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Operational
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The framework
Logic c Probability ¢ OPT
joint probabilities + connectivity

p(i, 4, k, ...|circuit)

Marginal probability

me,

Z7k7

..|circuit) =

p(J] Circuit)

systems

Al_ B4
Ao 4 B
output
Aq B4
As 1 } B,
outcome
B Cg C D
o &
F G
9
L M N
RB F
P

DAG



Operational
Probabllistic Theory

The framework
Logic c Probability ¢ OPT
joint probabilities + connectivity

p(i, 4, k, ...|circuit)

Notice: the probability of a
‘preparation” generally depends
on the circuit at its output.

(pi pB— = L[] B

preparation

observation
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Operational
Probabllistic Theory

The framework

Logic ¢ Probability ¢ OPT

joint probabilities + connectivity

Probabillistic equivalence
classes

Notice: the probability of a
transformation generally
depends on the circuit at
its output!!

Aq B,
Ao 4 Bo
transformation
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Operational
Probabllistic Theory

The framework

Logic ¢ Probability ¢ OPT

joint probabilities +

Probabillistic equivalence
classes

Multiplication of closed circuits

pll A aiz
Strictly symmetric ., D: o= a) (T =B
J1 J2

monoidal category
theory

= p(i1,12) q(j1, J2)



Operational

Sequential composition (associative)

Probabllistic Theory
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Operational

Probabllistic Theory

Parallel composition (associative)
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Operational
Probabillistic Theory

Sequential and parallel compositions commute
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The framework
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iIndependent systems
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Operational
Probabllistic Theory

The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

NOT independent systems

p(i, 3, k, 1, m,n, p, q|circuit)

Gt

= @ ©

4

D

Sn




Operational
Probabllistic Theory

The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity

p(i, 4, k, ...|circuit)

Maximal set of
iIndependent systems
= “leat”

p(i, 3, k, 1, m,n, p, q|circuit)
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The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity
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Maximal set of
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q Foliation

p(i, 3, k, 1, m,n, p, q|circuit)
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The framework

Logic c Probability ¢ OPT

joint probabilities + connectivity
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Operational
Probabillistic Theory

Paring notation:

p € St(A),a € Eff(A), (P

States are functionals for effects

States are separating for effects (Wi, 5, By) |BELL (D, 7, 1, 60 Yy) )
79 79 m ol »y Ny <q

Effects are functionals on states

Effects are separating for states

Embedding in real vector spaces p(i, 7, k, 1, m,n, p, q|circuit)

St(A), Sti(A), Str(A)

Eff(A), Eff;(A), Effg(A)

Effz(A) = Stp(A)"

Dimension Da

Str(A) = Effp(A)"




Conditioned test (needs causality)
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(e g A | B ()¢ . _A (4) e
Probabilistic Theory 47 = %0
Circuit multiplication: randomize tests
{y}. . . . ) . A %’(Z) B
l lE{ila l2:;° © 9 lg’in+19 li’lj—Za T } D A ng(f) B — Ji
i " Lo :

Coarse-graining l T Refinement

{‘%}je{jl J2se)

Is= ),

€S

Cone structure

'] P

Partial ordering Convex structure |

\
-




Principles for
Quantum Theory

{00, 01} € St(A) preparation test

lag, ai} observation test

success probability of discrimination

Psuce = (aOLOO) + (611|,01)
= (alpo) + (a1lp1 — po)

= (alp1) + (aoloo — p1)
1

= 5[1 + (a1 — aplp1 — po)]

a .= aop + a;

Metric

1
N S+ llor = poll]

[oll :=sup (ao — a110).

{ap,a }

oll = sup (apld) — 1nt (a|d
ol = sup (@fé)~ inf (aild

monotonicity

¢ € Transf{(A, B)
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Principles for (2 —2— %)
Quantum Theory o
p(, jJI2,Y) = (ajlpi)

1 {Causality | 3

P?2. Local discriminabillity
P3. Purification p(i| X, %) =p(i|Z,%") = p(i|Z)

4. Atomicity of composition [ff conditions: a) the deterministic effect
P5. Perfect distinguishability IS unigue; b) states are “normalizable”

P6. Lossless Compressibility

(e]p)

The probabillity of preparations

IS Independent of the choice of

observations

no signaling without interaction

marginal state
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2rinciples for
Quantum Theory

P, Causality

P2.|Local discriminabllity

P3. Purification

P4, Atomicity of composition
P5. Perfect distinguishabillity
P6. Lossless Compressibility

It is possible to discriminate any pair

of states of composite systems
using only local measurements.
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2rinciples for
Quantum Theory

P, Causality

P2.|Local discriminability A A

23. Purification E ? '} C i{ g

i < B b
4. AtomICItyl OT COrlﬂpOSI.J[IIOﬂ Local characterization of transformations

P5. Perfect distinguishability A A’

of a ’
P6. Lossless Compressibility G = (P ] il iy

It is possible to discriminate any pair

of states of composite systems
using only local measurements.
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Local effects are separating for joint states

Tomography

Counter-examples: Real QT, Fermionic QT



2rinciples for
Quantum Theory

P, Causality
P?2. Local discriminabillity
P3. Purification

P4 |Atomicity of composition

P5. Perfect distinguishabllity
P6. Lossless Compressibility

The composition of two atomic
transformations is atomic

Complete information can be accessed
on a step-by-step basis




Principles for
Quantum Theory

21, Causality

P2, Local discriminability

P3. Purification

P4, Atomicity of composition

P5.|Perfect distinguishabllity

P6. Lossless Compressibility

Every state that is not completely mixed (i.e.
on the boundary of the convex) can be
perfectly distinguished from some other state.

Falsifiabllity of the theory



Principles for
Quantum Theory

21, Causality

P2, Local discriminability

P3. Purification

24, Atomicity of composition
25, Perfect distinguishabllity

P6.|Lossless Compressibility

For states that are not completely mixed
there exists an ideal compression scheme

Any face of the convex set of
states is the convex set of states of
some other system




2rinciples for
Quantum Theory

P, Causality

P2. Local discriminabllity

P4, Atomicity of composition
P5. Perfect distinguishabillity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system




Principles for

Consequences
Quantum Theory

1. Existence of entangled states:
the purification of a mixed state is an entangled state;

P Causa”ty the marginal of a pure entangled state is a mixed state;
P2, Local discriminability 2. Every two normalized pure states of the same
O3 |Pyrification System are connected by a reversible transformation
P4, Atomicity of composition (¥ == (v PPq# -2
S . . .

0. Perfect dIStlﬂgUIShabI“ty 3. Steering: Let W purification of p. The for every
P0O. . ossless Compressibility ensemble decomposition p=) p a, there exists a

measurement {b, }, such that

:px(a/x = Vxe X

Every state has a purification. For fixed N
purifying system, every two purifications of E

the same state are connected by a reversible
transformation on the purifying system 4. Process tomography (pure faithful state):

E:%AIZGZMN »%p:%,p
vp

5. No information without disturbance
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Consequences

1. Existence of entangled states:
the purification of a mixed state is an entangled state;

P Causa”ty the marginal of a pure entangled state is a mixed state;
P2, Local discriminability 2. Every two normalized pure states of the same
O3 |Pyrification System are connected by a reversible transformation
P4, Atomicity of composition (¥ == (v PPq# -2
S . . .

0. Perfect dIStlﬂgUIShabI“ty 3. Steering: Let W purification of p. The for every
P0O. . ossless Compressibility ensemble decomposition p=) p a, there exists a

measurement {b, }, such that

Every state has a purification. For fixed -
g e P = p, (a, -2 Vx € X
purifying system, every two purifications of B B
. X
the same state are connected by a reversible
transformation on the purifying system 4. Process tomography (pure faithful state):
Puriﬁcati(?n .establishes an interesting correspondence between transformations and A o A’ A o7 A’ ,
states. This is easy to see: let us take a S?t' of states {'a.x'l x € X} that span the whole E — G » % p — % p
state space of system A and a set of positive probabilities {p.}.ex. Then, take a pu- B B
rification of the mixed state p = }, p, a,—say ¥ € PurSt(AB). Now, if two trans- \v/ IO
formations <7 and .7’ satisfy
C C AT 5. No information without disturbance
b d = | ¥ ;

it is clear that .27 must be equal to .27/, namely the correspondence &7 +— (&7 ® .#5)D
1s injective.
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P, Causality

P2. Local discriminabllity

P4, Atomicity of composition
P5. Perfect distinguishabillity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system

different. If we take a pure state ¥ € PurSt(AB) that can be used for process tomog-
raphy, then the no-disturbance condition implies )’ (<7, ® #g)¥Y = V. But ¥ is pure:
hence, each unnormalized state (<7, ® #g)¥ must be proportional to . Precisely,
there must be a set of probabilities {p,} such that (<7, ® Zg)¥ = p,'P. Since the map
o — (of @ )Y is injective (see Sect. 8.6), we conclude that <7, = p,.Z4. In other

Consequences

1. Existence of entangled states:
the purification of a mixed state is an entangled state;
the marginal of a pure entangled state is a mixed state;

2. Every two normalized pure states of the same
System are connected by a reversible transformation

(v

B

G

B % B

3. Steering: L et W purification of p. The for every

ensemble decomposition p=p p a, there exists a
measurement {b, }, such that
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4. Process tomography (pure faithful state):
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P, Causality

P2. Local discriminabllity

P4, Atomicity of composition
P5. Perfect distinguishabillity
P6. Lossless Compressibility

Every state has a purification. For fixed
purifying system, every two purifications of

the same state are connected by a reversible
transformation on the purifying system

Consequences

6. Teleportation

A
((D B = p, 22U 2 YxeX
Bxl

A

7. Reversible dilation of “channels”

E E
s . @F D

A A

8. Reversible dilation of “instruments”

A A
Ao FA— = B 'y B 1b,) VxeX
g —{ o

9. State-transformation cone isomorphism

10. Rev. transform. for a system make a compact Lie group
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This Is more or less what | wanted to say

Thank you for your attention



