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We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect
distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of
theories of information processing that can be regarded as standard. One postulate—purification—singles out
quantum theory within this class.
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I. INTRODUCTION

More than 80 years after its formulation, quantum theory
is still mysterious. The theory has a solid mathematical foun-
dation, addressed by Hilbert, von Neumann, and Nordheim
in 1928 [1] and brought to completion in the monumental
work by von Neumann [2]. However, this formulation is based
on the abstract framework of Hilbert spaces and self-adjoint
operators, which, to say the least, are far from having an
intuitive physical meaning. For example, the postulate stating
that the pure states of a physical system are represented by
unit vectors in a suitable Hilbert space appears as rather
artificial: which are the physical laws that lead to this very
specific choice of mathematical representation? The problem
with the standard textbook formulations of quantum theory
is that the postulates therein impose particular mathematical
structures without providing any fundamental reason for this
choice: the mathematics of Hilbert spaces is adopted without
further questioning as a prescription that “works well” when
used as a black box to produce experimental predictions. In
a satisfactory axiomatization of quantum theory, instead, the
mathematical structures of Hilbert spaces (or C* algebras)
should emerge as consequences of physically meaningful
postulates, that is, postulates formulated exclusively in the
language of physics: this language refers to notions like
physical system, experiment, or physical process and not to
notions like Hilbert space, self-adjoint operator, or unitary
operator. Note that any serious axiomatization has to be based
on postulates that can be precisely translated in mathematical
terms. However, the point with the present status of quantum
theory is that there are postulates that have a precise mathe-
matical statement, but cannot be translated back into language
of physics. Those are the postulates that one would like to
avoid.

The need for a deeper understanding of quantum the-
ory in terms of fundamental principles was clear since
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the very beginning. Von Neumann himself expressed his
dissatisfaction with his mathematical formulation of quan-
tum theory with the surprising words “I don’t believe in
Hilbert space anymore,” reported by Birkhoff in [3]. Re-
alizing the physical relevance of the axiomatization prob-
lem, Birkhoff and von Neumann made an attempt to un-
derstand quantum theory as a new form of logic [4]:
the key idea was that propositions about the physical world
must be treated in a suitable logical framework, different from
classical logics, where the operations AND and OR are no longer
distributive. This work inaugurated the tradition of quantum
logics, which led to several attempts to axiomatize quantum
theory, notably by Mackey [5] and Jauch and Piron [6] (see
Ref. [7] for a review on the more recent progresses of quantum
logics). In general, a certain degree of technicality, mainly
related to the emphasis on infinite-dimensional systems, makes
these results far from providing a clear-cut description of
quantum theory in terms of fundamental principles. Later
Ludwig initiated an axiomatization program [8] adopting an
operational approach, where the basic notions are those of
preparation devices and measuring devices and the postulates
specify how preparations and measurements combine to give
the probabilities of experimental outcomes. However, despite
the original intent, Ludwig’s axiomatization did not succeed
in deriving Hilbert spaces from purely operational notions, as
some of the postulates still contained mathematical notions
with no operational interpretation.

More recently, the rise of quantum information science
moved the emphasis from logics to information processing.
The new field clearly showed that the mathematical principles
of quantum theory imply an enormous amount of information-
theoretic consequences, such as the no-cloning theorem [9,10],
the possibility of teleportation [11], secure key distribution
[12–14], or of factoring numbers in polynomial time [15]. The
natural question is whether the implication can be reversed: is
it possible to retrieve quantum theory from a set of purely
informational principles? Another contribution of quantum
information has been to shift the emphasis to finite dimensional
systems, which allow for a simpler treatment but still possess
all the remarkable quantum features. In a sense, the study
of finite dimensional systems allows one to decouple the
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The quantum walk has isotropy group generated by the
⇡/4 rotations Z4 around any vertex. The representation
is generally projective, and corresponds to associate to
the generator any fixed phase factor.

Example 2 (Three-dimensional Weyl quantum walk).
s = 2, G = Z3, the Cayley graph is the BCC (body-
centered cubic) lattice, with generators {h1, h2, h3, h4}
and relator h1 + h2 + h3 + h4 = 0. Modulo change of
basis on C2 the quantum walks are the following

Ahi = ⇣⇤Bi, Ah�i = ⇣Bi+2mod4, ⇣ =
1± i

4
. (16)

B1 =

✓
1 0
1 0

◆
, B2 =

✓
0 1
0 1

◆
, (17)

B3 =

✓
0 �1
0 1

◆
, B4 =

✓
1 0
�1 0

◆
.

Each quantum walk has isotropy group L = Z2 ⇥ Z2 the
Klein group, corresponding to the Abelian group of ⇡ ro-
tations around the three cubic axes, with unitary projec-
tive representation given by the 2⇥ 2 matrices R↵ = i�↵

(↵ = x, y, z), Rt = �I2, with �↵ the Pauli matrices

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆
, (18)

with relators

RxRy = �Rz, and cyclic permutations, R2
↵ = �I2, ↵ = x, y, z

(19)

Remark 3. The quantum walks in Examples 1 and 2 are
the only isotropic QWCG with Abelian G that are quasi-
isometrically embeddable in Rd, with d = 2, 3. These
has been derived in Ref. [?], and in the relativistic limit
give the Weyl equation, which is the building block of the
quantum-automata framework for quantum field theory.

3. Note on the derivation of the QWCG from

principles

We assume the following requirements for the interac-
tions defining the QW evolution: 1) linearity, 2) unitar-
ity, 3)locality, 4) homogeneity, and 5) isotropy.

Cells labeled by g 2 G, |G|  @

Linearity

The interaction between systems is described by sg0 ⇥ sg
transition matrices Agg0 with evolution from step t to
step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t)

Unitarity

lin
ea

rit
y
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4. Note on the derivation of the QWCG from

principles

We assume the following requirements for the interac-
tions defining the QW evolution: 1) linearity, 2) unitar-
ity, 3)locality, 4) homogeneity, and 5) isotropy.

Cells labeled by g 2 G, |G|  @;  g 2 Csg , 0 < sg < 1
Linearity

The interaction between systems is described by sg0 ⇥ sg
transition matrices Agg0 with evolution from step t to
step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t).

Unitarity

X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Agg0 6= 0 () Ag0g 6= 0: g0 and g are interacting

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
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with relators

RxRy = �Rz, and cyclic permutations, R2
↵ = �I2, ↵ = x, y, z
(19)

Remark 3. The quantum walks in Examples 1
and 2 are the only isotropic QWCG with Abelian
G that are quasi-isometrically embeddable in Rd,
with d = 2, 3. These has been derived in Ref. [?],
and in the relativistic limit give the Weyl equa-
tion, which is the building block of the quantum-
automata framework for quantum field theory.

3. Note on the derivation of the QWCG

from principles

We assume the following requirements for the
interactions defining the QW evolution: 1) linear-
ity, 2) unitarity, 3)locality, 4) homogeneity, and 5)
isotropy.

Cells labeled by g 2 G, |G|  @

Linearity

The interaction between systems is described by
sg0 ⇥ sg transition matrices Agg0 with evolution
from step t to step t+ 1 given by

 g(t+ 1) =
X

g02G

Agg0 g0(t).

Unitarity

X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Sg ✓ G set of cells g0 interacting with g (Agg0 6=
0) |Sg|  k < 1 for every g 2 G.

Homogeneity

All cells g 2 G are equivalent =) |Sg| and {Agg0}g02Sg

independent of g.

Identify the matrices Agg0 = Ah for some h 2 S
with |S| = |Sg|

Define gh := g0 if Agg0 = Ah

A sequence of transitions AhNAhN�1 . . . Ah1 con-
nects g to itself, i.e. gh1h2 . . . hN = g, then it
must also connect any other g0 2 G to itself,
i.e. g0h1h2 . . . hN = g0.

un
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X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

Agg0 6= 0 () Ag0g 6= 0: g0 and g are interacting

|Sg|  k < 1 for every g 2 G, where Sg ✓ G set of cells
g0 interacting with g

Homogeneity

All cells g 2 G are equivalent
=) |Sg|, sg, {Agg0}g02Sg independent of g

Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|

Define gh := g0 if Agg0 = Ah and define Ag0g := Ah�1

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

�(G,S): Colored directed graph with vertices g 2 G, and
edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in {Ah}h2S

Either the graph �(G,S) is connected, or it consists of
n disconnected identical copies of the same connected
graph. W. l. g. assume �(G,S) connected

Define the free group F of words with letters in on S and
the free subgroup H generated by words in R =) H is
normal in F .

Suppose the word problem is solvable =) G = F/N
group with �(G,S) Cayley graph with generators h 2 S
(relators words in the set R of strings corresponding to
closed paths)

No self-interactions =) S = S+ [ S�, where S� := S�1
+

Self-interactions =) S = S+ [ S� [ {e}

Unitarity + homogeneity

The following operator over the Hilbert space `2(G)⌦Cs

is unitary

A =
X

h2S

Th ⌦Ah,

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i
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X

g0

Agg0A
†
g00g0 =

X

g0

A†
gg0Ag00g0 = �gg00Isg

Locality

g0 interacting with g: Agg0 6= 0
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Homogeneity
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Identify the matrices Agg0 = Ah for some h 2 S with
|S| = |Sg|
Define gh := g0 if Agg0 = Ah

A sequence of transitions AhNAhN�1 . . . Ah1 connects g
to itself, i.e. gh1h2 . . . hN = g, then it must also connect
any other g0 2 G to itself, i.e. g0h1h2 . . . hN = g0

Define the colored graph �(G,S) with vertices g 2 G,
and edges (g, g0) with g0 = gh. Color the edges with |S|
colors, in one-to-one correspondence with the transition
matrices in

{Ah}h2S . It is now easy to verify that either the graph
�(G,S) is connected, or it consists of n disconnecte d
copies of the same connected graph �(G0, S). Since the
information in G is generally redundant, consisting in n
identical and independent copies of the same QW with
cells belonging to G0, from now on we will assume that
the graph �(G,S) is connected. One can now prove that
such a graph represents the Cayley graph of a finitely
presented group with generators h 2 S and relators cor-
responding to the set R of strings corresponding to closed
paths. More precisely, if we define the free group F of
words with letters in on S and the free subgroup H gen-
erated by words in R, it is easy to check that H is normal
in F . The group G with Cayley graph �(G,S) coincides
with F/N .

In the elementary case there are no self-interactions,
and the set S is then S = S+ [ S�, where S� is the
set of inverses of the elements of S+. In case of self-
interactions, we include the identity e in S, which then
becomes S = S+ [ S� [ {e}. The requirements of uni-
tarity and homogeneity correspond to assuming that the
following operator over the Hilbert space `2(G) ⌦ Cs is
unitary

A =
X

h2S

Th ⌦Ah, (20)

where T is the right-regular representation of G on `2(G)
acting as Tg|g0i = |g0g�1i.
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FIG. 2. Cayley graph of G = ha, b|aba�1b�1i. The graph is
isotropic.

FIG. 3. Cayley graph of G = ha, b|a2b�2i. The graph is
isotropic.

CLOSURE

Proposition 2. All the Ah (with h 2 S) are not full

rank.

Proof. The unitarity condition
P

h�h0=h00 AhA
†
h0 = 0

with h00 = 2h leads to AhA
†
�h = 0. Then either Ah

is full rank and A†
�h = 0 (against hypothesis) or both

Ah and A†
�h are not full rank. ⌅

Proposition 3. For s = 2, if isotropy holds all the Ah

with h 2 S and |S+| = d belong to a ring/group/albegra

(vedere cosa e’) made of at most d2 elements.

Proof. Being s = 2, the Ah have rank equals to 1. Then
a generic Ah can be written as Ah = |⌘hih#h|. The com-

FIG. 4. Cayley graph of G = ha, b|a5, b4, (ab)2i. The graph is
NOT isotropic.

FIG. 5. Cayley graph of G = ha, b|a5, b5, (ab)2i. The graph is
isotropic.

position of two arbitrary Ah, Ak leads to

AhAk = |⌘hih#h| |⌘kih#k| = h#h|⌘ki |⌘hih#k|.

Thanks to isotropy we have h#h|⌘ki = c for every ⌘k,#h.
⌅

Remark 2. For s = 2. For G Abelian, and the automaton

a
b
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an Abelian QW with quantum cell 
dimension multiple of s. 



Quantum walk on Cayley graph

Theorem: A group is quasi-isometrically embeddable in Rd iff  
it is virtually Abelian

Virtually Abelian groups 
have polynomial growth 
(Gromov)

# points ~rd



• G hyperbolic

3

FIG. 2. Cayley graph of G = ha, b|aba�1b�1i. The graph is
isotropic.

FIG. 3. Cayley graph of G = ha, b|a2b�2i. The graph is
isotropic.

CLOSURE

Proposition 2. All the Ah (with h 2 S) are not full

rank.

Proof. The unitarity condition
P

h�h0=h00 AhA
†
h0 = 0

with h00 = 2h leads to AhA
†
�h = 0. Then either Ah

is full rank and A†
�h = 0 (against hypothesis) or both

Ah and A†
�h are not full rank. ⌅

Proposition 3. For s = 2, if isotropy holds all the Ah

with h 2 S and |S+| = d belong to a ring/group/albegra

(vedere cosa e’) made of at most d2 elements.

Proof. Being s = 2, the Ah have rank equals to 1. Then
a generic Ah can be written as Ah = |⌘hih#h|. The com-

FIG. 4. Cayley graph of G = ha, b|a5, b4, (ab)2i. The graph is
NOT isotropic.

FIG. 5. Cayley graph of G = ha, b|a5, b5, (ab)2i. The graph is
isotropic.

position of two arbitrary Ah, Ak leads to

AhAk = |⌘hih#h| |⌘kih#k| = h#h|⌘ki |⌘hih#k|.

Thanks to isotropy we have h#h|⌘ki = c for every ⌘k,#h.
⌅

Remark 2. For s = 2. For G Abelian, and the automaton
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transmitted quantum information 
decrease as exp(-r)

# points ~exp(r)

→ exponential growth



Informationalism: 
Principles for QFT

• QFT derived in terms of countably 
many quantum systems in interaction 

Min algorithmic complexity principle

add principles

Quantum Cellular 
Automata on the 
Cayley graph of a 
group G

}
• linearity 
• isotropy 
• minimal-dimension 
• Cayley qi-embedded in Rd

Restrictions}
• homogeneity  
• locality 
• reversibility

• There exists a group L of 
permutations of S+, transitive over 
S+ that leaves the Cayley graph 
invariant 

• a nontrivial unitary s-dimensional 
(projective) representation {Ll} of L 
such that: 

A =

∑

h∈S

Th ⊗Ah =

∑

h∈S

Tlh ⊗ LlAhL
†
l

Isotropy

G virtually Abelian



Informationalism: 
Principles for QFT

• without assuming Special Relativity

• QCA is a discrete theory

•Ultra-relativistic regime (k~1) [Planck scale]: 
nonlinear Lorentz

• Relativistic regime (k≪1): free QFT 
(Weyl, Dirac, and Maxwell)

•QFT derived:

•without assuming mechanics (quantum ab-initio)

1. Discrete contains continuum as special regime 
2. Testing mechanisms in quantum simulations 
3. Falsifiable discrete-scale hypothesis 
4. Natural scenario for holographic principle 
5. Solves all issues in QFT originating from 

continuum:
i) uv divergencies 
ii) localization issue 
iii)Path-integral

Motivations to keep it discrete:

6. Fully-fledged theory to evaluate cutoffs

• QFT derived in terms of countably 
many quantum systems in interaction 

Min algorithmic complexity principle

add principles

Quantum Cellular 
Automata on the 
Cayley graph of a 
group G

}
• linearity 
• isotropy 
• minimal-dimension 
• Cayley qi-embedded in Rd

Restrictions}
• homogeneity  
• locality 
• reversibility

G virtually Abelian



• Unitarity ⇒ for d=3 the only possible G is the BCC!! 

• Isotropy ⇒ Fermionic ψ (d=3)

☞ Minimal dimension for nontrivial unitary A: s=2

The Weyl QCA
D'Ariano, Perinotti, PRA 90 062106 (2014)

Two QCAs 
connected 

by P
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Unitary operator: A =

Z �
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The Weyl QCA

Two QCAs 
connected 

by P

sα = sin
kα
√

3

cα = cos
kα
√
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i∂tψ(t) ≃
i

2
[ψ(t+ 1)− ψ(t− 1)] = i

2
(A−A†)ψ(t)

“Hamiltonian”

k ⌧ 1 ☜ Weyl equation!i@t = 1p
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D'Ariano, Perinotti, PRA 90 062106 (2014)
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Dirac QCA Maxwell QCA ⌦�

E
±
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=

(

nA
±
k

imI
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±
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E
±

k CPT-connected!

Dirac in relativistic limit k ⌧ 1
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D'Ariano, Perinotti, PRA 90 062106 (2014) Bisio, D'Ariano, Perinotti, arXiv:1407.6928

Fµ(k) =

Z
dq

2⇡
f(q) ̃(k2 � q)�µ'(k2 + q)

Maxwell in relativistic limit k ⌧ 1
Boson: emergent from convolution of fermions 

(De Broglie neutrino-theory of photon)

k
2~nk

2

E

B

m≤1: mass 
n-1: refraction index

Local coupling:     coupled with its inverse 
with off-diagonal identity block matrix

Ak



Exact solution of Dirac (d=1) and Weyl (d=1,2,3)

us start with coefficients c00 and c11. The matrices
A00 and A11 appear only for f even (see Eq. (13))
in which case one has f+2

2 odd strings τ2i+1 and f
2

even strings τ2i. A00 appears whenever σ f ∈ ΩR,
namely when the R-transitions are arranged in the
strings τ2i+1. This means that we have to count in how
many ways the r identical characters R and l identi-
cal characters L can be arranged in f+2

2 and f
2 strings,

respectively. These arrangements can be viewed as
combinations with repetitions which give

c00( f ) =
( f
2 + r
r

)( f
2 + l − 1

l

)

=

( t+x−y
2
f
2

)( t−x+y
2 − 1
f
2 − 1

)

,

where the second equality trivially follows from
Eq. (4). Similarly A11 appears whenever σ f ∈ ΩL
which gives

c11( f ) =
( f
2 + l
l

)( f
2 + r − 1

r

)

=

( t−x+y
2
f
2

)( t+x−y
2 − 1
f
2 − 1

)

.

Consider now the other two coefficients c10 and c01
counting the occurrences of A10 and A01. The last
ones appears only when f is odd (see Eq. (13)) and
then one has the same number f+1

2 of odd strings τ2i+1
and even strings τ2i. Counting the combinations with
repetitions as in the previous cases we get

c10( f ) = c01( f ) =
( f−1
2 + r
r

)( f−1
2 + l
l

)

=

( t+x−y−1
2
f−1
2

)( t−x+y−1
2
f−1
2

)

,

which concludes the derivation of the coefficients
cab( f ) in Eq. (17).
The analytical solution of the Dirac automaton can

also be expressed in terms of Jacobi polynomials
P(ζ,ρ)k performing the sum over f in Eq. (16) which
finally gives

ψ(x, t) =
∑

y

∑

a,b∈{0,1}

γa,bP(1,−t)k

(

1 + 2
(m
n

)2)

Aabψ(y, 0),

k = µ+ −
a ⊕ b + 1

2
,

γa,b = −(ia⊕b)nt
(m
n

)2+a⊕b k!
(

µ(−)ab +
a⊕b
2

)

(2)k
, (18)

where γ00 = γ11 = 0 (γ10 = γ01 = 0) for t + x − y odd
(even) and (x)k = x(x + 1) · · · (x + k − 1).

4. Conclusions

We studied the one dimensional Dirac automaton,
considering a discrete path integral formulation. The
analytical solution of the automaton evolution has
been derived, adding a relevant case to the set of
quantum automata solved in one space dimension, in-
cluding only the coined quantum walk and the disor-
dered coined quantumwalk. The main novelty of this
work is the technique used in the derivation of the an-
alytical solution, based on the closure under multipli-
cation of the automaton transition matrices. This ap-
proach can be extended to automata in higher space
dimension. For example the transition matrices of
theWeyl and Dirac QCAs in 2+1 and 3+1 dimension
recently derived in Ref. [26] enjoy the closure fea-
ture and their path-sum formulation could lead to the
first analytically solved example in dimension higher
than one.
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The LTM standards of the theory

Dimensionless variables

Measure     from mass-refraction-index

Measure     from light-refraction-index

Relativistic limit:



Dirac emerging from the QCA
fidelity with Dirac for a narrowband packets  in the relativistic limit k ≃ m ≪ 1

N ≃ m
−3

= 2.2 ∗ 10
57 t = 1.2 ∗ 10

14
s = 3.7 ∗ 10

6relativistic proton: y⇒

5 ∗ 10
−28k = 10

−8
≫ mUHECRs: N ≃ k

−2
= 10

16 s⇒ ⇒

F = |⟨exp [−iN∆(k)]⟩|

∆(k) := (m2 + k
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• Evolution of a narrow-band particle-state 

2d automaton
• Evolution of a localized state

superluminal



The relativity principle



Virtually Abelian QW

A =

Z �

B
dkAk

n(k) ·T :=
i

2
(Ak −A†

k)

T := (I,T) = (Tµ) Lin(Cs)T basis fortraceless

(sinωI − n(k) ·T)ψ(k,ω) = 0

Akψ(k,ω) = eiωψ(k,ω)
Dynamics: eigenvalue equation

n(k) analytic in k

For each value of    there are 
at most    eigenvalues               

k
s {ωl(k)}

n(k) analytic in k +  finite-dim irrep

ωl(k) continuous

dispersion relations branches



Symmetries and Relativity Principle

Bisio, D'Ariano, Perinotti, in progress

Change of reference-frame: (ω,k) → (ω′,k′) = Lβ(ω,k)

Lβ invertible (gen. non continuous) over [−π,π]× B

Lie group (including also inversion, charge conjugation,…){Lβ}β∈G

G0 Gid-component of preserve the branches

GG0 ,
depend on 
the QW!

there exists a pair of invertible matrices         and        such that 
the following identity holds:

Γ̃βΓβ

Covariance/symmetry of the dynamics:

 generally depending also onΓ̃βΓβ and (ω,k)  (continuously)

(sinωI − n(k) ·T) = Γ̃−1
β (sinω′I − n(k′) ·T)Γβ

change of reference-frame just a reshuffling of irreps: 
k → k′(k)
Lβ(ω,k) = (ω(k′),k′(k))

the definition of the change of reference-frame is the 
same for the whole class of virtually Abelian QW



Symmetries and Relativity Principle

Bisio, D'Ariano, Perinotti, in progress

ω′ = ω, k′ = k, Γλ,k = Γ̃λ,k = eiλ(k)
Simplest symmetry: “gauge” transformation

(includes the group of “translations” of the Cayley graph)

(sinωI − n(k) ·T) = Γ̃−1
λ,k(sinω

′I − n(k′) ·T)Γλ,k



Relativity Principle for Weyl QW

Weyl QW
eigenvalue equation (sin!I � n(k) · �) (k,!) = 0

sin2 ! � |n(k)|2 = 0

p(f)µ σµψ(k,ω) = 0

D(f)(ω,k) := f(ω,k)(sinω,n(k)) =: p(f)D(f) :

L(f)
β := D(f)−1LβD(f) is well defined on Disp(A)

f(ω,k)for suitable choice of Lβ matrix of the Lorentz group one has:and

light-like
(ω,k) ∈ Disp(A) ⊂ [−π,π]× B

(sinω,n(k)) ∈ M4

Bisio, D'Ariano, Perinotti, arXiv:1503.01017



L(f)
β := D(f)−1LβD(f)

Non-linear Lorentz group
[−π,π]× Bacting on

Lβ linear Lorentz

D(f)(kµ) = p(f)µ

Disp(A)leaving               invariant  

(sinωI − n(k) · σ) = Λ̃†
β(sinω

′I − n(k′) · σ)Λβ

Λβ ∈ SL2(C) independent of (kµ)

Relativistic covariance of dynamics

Relativity Principle for Weyl QW

Bisio, D'Ariano, Perinotti, arXiv:1503.01017



Bisio, D'Ariano, Perinotti, arXiv:1503.01017
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Dirac automaton: De Sitter covariance (non linear)

Covariance for Dirac QCA cannot leave     invariant

invariance of de Sitter norm:

for

invariance

m

Relativity Principle for Dirac QW

Bisio, D'Ariano, Perinotti, in progress

Disp(A):



Nonlinear Lorentz for Dirac d=1

Transformations that leave the dispersion relation invariant

A. Bibeau-Delisle, A. Bisio, G. M. D'Ariano, 
P. Perinotti, A. Tosini, EPL 109 50003 (2015) 
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Planck-scale effects: Lorentz covariance distortion

Relative locality 
R. Schützhold and W. G. Unruh, J. Exp. Theor. Phys. Lett. 78 431 (2003) 
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1106.0313 (2011)

4

ing at the group-velocity. In this construction points in
space-time are regarded as crossing points of the trajec-
tories of two particles (such points have an “extension”
due to the Gaussian profile). For a function g

k0(t, x)
peaked around k0, the map (9) can be approximated by
taking the first order Taylor expansion of k(!0

, k

0) and
!(!0

, k

0) respectively around k

0

0 and !

0(k0) in the func-
tion � (one can verify that a narrow wave-packet remains
narrow under a boost, see Fig. 4, thus confirming the va-
lidity of the approximation). This leads to the following
transformations

✓
t

0

x

0

◆
⇡

✓
�@

!

0
k @

k

0
k

@

!

0
! �@

k

0
!

◆

k

0=k

0
0

✓
t

x

◆
(10)

Since Eq. (10) defines a linear transformation of the vari-
ables x and t and the wave-packets move along straight
lines, we can interpret (10) as the transformation of the
coordinates x

p

and t

p

of a point p in space-time, namely
of the intersection of the trajectories of two particles
having k’s close to some common k0. However, the k-
dependance of the transformations (10) makes the geom-
etry of space-time observer-dependent in the following
sense. Consider a point p which is given by the intersec-
tion of four wave-packets, the first pair peaked around
k1 and the second pair peaked around k2 (k1 6= k2). Be-
cause of the k dependence in (10), a boosted observer will
actually see the first pair intersecting at a point which
is di↵erent from the one where the second pair inter-
sects (see Fig. 5). This e↵ect, first noticed in Ref. [24]
is the characteristic trait of the so-called relative locality

[25, 26]. The space-time resulting in such a way from the
automaton dynamics is “not objective”, in the sense that
events that coincide for one observer may not for another
boosted observer. The above heuristic construction is in
agreement with the assertion of Ref. [26] that relative
locality appears as an feature of all models in which the
energy-momentum space has a non flat geometry. This
can be easily seen by requiring that the transformation
(10) does not depend on k0 and remembering that for
k0 = 0 one must recover the usual Lorentz transforma-
tions.

In this letter we have shown that the quantum cellu-
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FIG. 4. (Colors online) Transformation of a Gaussian state
due to a boost for two di↵erent values of � = �0.99, �0.999
and m = 0.1 in the momentum (left) and the position (right)
representations.
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FIG. 5. (Colors online) Relative locality. In the left reference
frame, the joint intersection of four wave-packets, the first
couple having wavevector close to 0 and the second couple
close to ⇡/5, locates the point with coordinates (x, t). In
the boosted reference frame on the right, by applying the the
transformation of Eq. (8), the four wave-packets no longer
intersect at the same point.

lar automaton of Refs. [19, 20] provides a microscopic
kinematical model compatible with the recent proposals
of DSR. We obtained the nonlinear representation of the
Lorentz group in the energy-momentum space by assum-
ing the invariance of the dispersion relation of the au-
tomaton. Using the aurguments of Ref. [24] we heuristi-
cally derived a space-time that exhibits the phenomenon
of relative locality. Our analysis has been carried in the
easiest case of one space dimension, which, however, is
su�cient to the analysis of the present letter. The same
arguments can be easily generalized to three space dimen-
sions using the results of Ref. [20], leading to additional
symmetry violations, e.g. rotational covariance.
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group velocity in B1, also sees an increased group veloc-
ity in B2 since in both cases the momentum k is mapped
closer to the invariant point. Since the two physical re-
gions B1 and B2 exhibit the same kinematics they are
indistinguishable in a non interacting framework. For
massless particles the Dirac automaton dispersion rela-
tion (3) coincides with the undistorted one !2 = k

2 and
the group velocity no longer depends on k. Thus the
model we are considering does not exhibit a momentum-
dependent speed of light.

The action of the boosts (7) on the states of the au-
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reads
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2) tan!(k))1/2|�(k)i. One can verify that
the transformation (8) is unitary. In Fig. 2 we show how
a perfectly localized state transforms under boosts.

Let us now deepen our analysis considering how the
features of the present framework a↵ect the geometry
of space and time. Under the action of the deformed
boost L
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a function f̂(!, k) transforms as f̂

0(!, k) =

f̂(!0(!, k), k0(!, k)) and, following an ansatz due to
Schützhold et al. [24], one can express the boosted func-
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We notice that, due to the non linearity of D, the map
(9) does not correspond to a change of coordinates from
(t, x) to (t0, x0) and therefore we cannot straightforwardly
interpret the variables t and x as the coordinates of
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localized at x = 0 after a boost with � = �0.99 for mass
m = 0.1. Bottom figure: Left: momentum representa-
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points in a continuum space-time interpolating the au-
tomaton cells: this may be regarded as manifestation of
the quantum nature of space-time. One can then adopt

FIG. 3. (Colors online) Two coincidences of travelling wave-
packets in the automaton evolution of Eq. (2) .

the heuristic construction of Ref. [24], interpreting phys-
ically the coordinates (x, t) in terms of the baricenter x

at time t in the position representation of a restricted
class of states that can be interpreted as moving parti-
cles, namely narrow-band Gaussian wave-packets mov-

Delocalization under boost

For narrow-band states 
we can linearize Lorentz 
transformations around 
k=k0 and we get k-
dependent Lorentz 
transformations
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dkµ(k) ĝ(k)|k0i =

=

Z
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