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I N T R O D U C T I O N

1 The world is everything that is the case.
1.1 The world is the totality of facts, not of things.

Ludwig Wittgenstein [Tractatus
Logico-Philosophicus]

Atomism is the principle of natural philosophy according to which everything
is constituted by fundamental and indivisible bits of matter, called atoms. This
idea was theorized by the ancient Greek philosopher Democritus and gave rise
to a long-standing debate that went on for centuries.
The first attempt to formalise this principle in physics was made by Bernoulli
in his treatise Hydrodynamica, which opened the way to the kinetic theory of gases.
The subsequent development of Statistical Mechanics was a first, vivid example
of how fundamental laws may lead to emergent behaviours.
In 1827, the botanist Robert Brown reported in [1] the empirical evidences of
“the general existence of active molecules in organic and inorganic bodies” and
contributed to open an academic discussion about the atomistic hypothesis. Ein-
stein, in 1905 (the Annus Mirabilis), correctly explained the phenomenon in [2],
furnishing a mathematical description of the microscopic mechanism underly-
ing the motion of a particle suspended in a fluid. Such a model for the dynamical
evolution of a system is precisely a random walk (rw).

rws are ubiquitous in science and play an important role in many disciplines.
One of their most interesting and relevant features is that rws exhibit emergent
complexity, despite the simplicity of the rules governing their evolution. This
property is even more prominent when considering the quantum counterpart of
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4 Introduction

a classical random walk, namely the quantum walk (qw).
qws have gained a well founded mathematical structure (see e.g. [3–8]) and
aroused interest in Computer Science and in Quantum Information, since they
proved to be an useful tool in designing efficient quantum algorithms [9–11].
qws have been extensively taken into account in lattice gauge theories [12–16], fur-
nishing an appropriate computational tool to overcome the severe mathematical
problems that arose in Quantum Field Theory (qft).
In his pioneering paper [17], Bialynicki-Birula realised the potential fundamen-
tality held by qws when applied to qft: the author thus shed light on a possible
intrinsic connection between the particular geometry of a lattice and free quan-
tum fields’ evolution.

Considering the description of free quantum fields provided by qft as the
emergent trait of a discrete fundamental mechanism is a very fascinating idea
and entails serious implications, of both physical and philosophical nature. This
is evocative of Wheeler’s and Feynman’s paradigm of physics as information pro-
cessing [18].
The program of founding physical laws on informational principles has been re-
cently considered by Giacomo Mauro D’Ariano et al. ; in [19] D’Ariano, Perinotti
and Chiribella provide an axiomatization of finite-dimensional Quantum Theory,
which is then derived from a set of informational axioms. In [20–27], the author
proposed to take qws as the fundamental physical law at Planck-scale, support-
ing the idea of a discrete spacetime (for both experimental and theoretical dis-
cussions about violations of Lorentz symmetry at Planck-scale, see e.g. [28–34]).
This framework is characterized by an operational perspective, as defined by
Bridgman in [35]: “We mean by any concept nothing more than a set of op-
erations; the concept is synonymous with the corresponding set of operations”.
Moreover, it leans on the Deutsch-Church-Turing thesis [36, 37], as rephrased in
[22]: “Every finite experimental protocol is perfectly simulated by a finite quan-
tum algorithm”.
qft is lacking of both an operational definition of the concept of field and of a
rigorous theory of measurement1. This is a delicate matter; some have proposed to
overcome these issues through the informational paradigm.
Appealing to first principles in physics is a suggestive idea, a fortiori in the per-
spective of reconsidering physics’ basic tenets. A possible way to accomplish

1 In [38] Feynman argues: “There might be something wrong with the old concept of continuous
functions. How could there possibly be an infinite amount of information in any finite volume?”



0.1 scope and contents 5

this program is questioning about the physical postulates which cannot be re-
nounced.

The model presented, which is quantum ab initio, regards quantum fields as
emergent from a network of countably many quantum system in mutual inter-
action, requiring a strict notion of locality. This fundamental emergence from
interacting neighbouring sites has been taken into account as an attempt of go-
ing over the idea of object in physics, recovering a theory describing events (in
the spirit of Wheeler’s famous quote: “It from bit”).
One of the consequences of considering a self-interacting quantum network is
that the metric is derived from pure event-counting2.

0.1 scope and contents

In this thesis work we will review the paper [40], in which qws over Cayley
graphs are extensively studied for abelian groups, giving a large-scale Dirac
evolution from the informational and operational postulates aforementioned.
We will then propose a procedure that resorts to a group-theoretical treatment; it
will be performed in the position space, allowing to regard the large-scale limit as
a coarse-graining of the quantum network, where one discards an ancillary system.
In order to do this, we find a closed-form expression for the regularized abelian
walks and then we study the corresponding dispersion relation.
Since non-abelian qws have been hardly studied, we will provide the first ex-
amples of non-abelian qws satisfying the assumptions of locality, homogeneity,
isotropy and unitarity, studying their dispersion relations as well. The regulariza-
tion procedure is crucial in the non-abelian case, since it allows to define the
momentum (otherwise it would not be possible) and hence to study the dynami-
cal behaviour of non-abelian qws as well.
The results obtained have relevance in the scope of studying the qws’ renormal-
ized dynamics; furthermore, they trace a path for this model in comprehending
whether the four assumptions are crucial in order to derive Dirac evolution and
whether the renormalized qws could exhibit a different kind of dynamics.

2 From [39]: “Emergence from events has an operational motivation in requiring that every physical
quantity—including space-time—be defined through precise measurement procedures”.





Part I

Q U A N T U M WA L K S A N D
R E N O R M A L I Z AT I O N





1

R A N D O M WA L K S

In this chapter a discrete model for the dynamical evolution of a system will be
presented: the random walk (rw).
rws are ubiquitous in science and play a role of great importance in many areas,
such as physics, computer science, biology and quantitative finance.
We will introduce the concept of rw from a historical point of view, accounting
then the recent applications and theoretical perspectives.

1.1 classical random walks

Considering classical systems, i.e. moving particles, the idea of rw was intro-
duced in science with the observations of the botanist Robert Brown in 1827,
which are reported in [1].
Brown observed through a microscope the random motion of some pollen grains
suspended in water and thus fed the long-standing debate about the existence
of atoms. The phenomenon was regarded as an experimental evidence of the
presence of fundamental “bricks” constituting matter and was named after its
discoverer: Brownian motion.

In [2] Einstein theorized the emergence of Brownian motion as a statistical
result due to collisions with molecules at a microscopic level; he obtained an
equation for the evolution of the probability p(x, t) of finding at x the macro-
scopic particle which undergoes the rw, recognising it as a diffusion equation.

9



10 random walks

Assigning a stochastic variable to the position of the particle, the general equa-
tion in 1d for the time evolution of the probability density function is

∂tp(x, t) = −∂x (v(x, t)p(x, t)) + ∂2x (D(x, t)p(x, t)) ,

known as Fokker-Planck equation. D and v are respectively the diffusion and
the drift coefficients.
The processes described are time-continuous Markov processes, namely stochastic
memoryless processes.

One can consider discrete processes as well, in both space and time. Therefore
the particle will evolve, step by step, over neighbouring sites of a lattice, with
some transition probability rules depending on the particular walk.

1.2 quantum random walks

rws were firstly extended to a quantum version in [3], where a one-dimensional
discrete model is presented. Measurements of the z-component of a spin-12 parti-
cle are set up to discriminate the direction of motion at each step and the authors
show that quantum interference effects the average path length, which can be
much larger than the maximum allowed path in the corresponding classical rw.
Subsequently, models for quantum walks (qws) resorted to a unitary evolution for
the system, accounting the evolution for both the position and the spin degrees
of freedom; a unitary operator is used to describe the walk and the intrinsic
degree of freedom is called coin system (see [4]).
Markov processes give interesting results studying even studying quantum dy-
namical systems, e.g. leading to generalized Schrödinger equations in the form
of Fokker-Planck equations, e.g. in [41]. In [40], the authors derive a dispersive
Schrödinger dfferential equation through a qw:

i∂tψ(x, t) = ±
[

v · ∇+
1

2
D
(
∇T∇

)
ψ(x, t)

]
ψ(x, t)

(see next chapters for a discussion).

In the general case of a qw over a discrete lattice Λ with arbitrary internal
degree of freedom, the coin system is represented by an Hilbert space Hx

∼= Cs

(s integer) for each lattice site x: this is called a cell structure for the qw.
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Definition 1.1 (Quantum walk). Let Λ be a lattice and Nx a finite subset of Λ.
A qw over Λ with the neighbourhood scheme Nx is a unitary operator

A : Hx −→
⊕
i∈Nx

Hi

|ψ〉x 7−→ A |ψ〉x .

The total Hilbert space of the system is the direct sum

H =
⊕
x∈Λ

Hx

and by linearity of A one has

A |ψ〉 = A
∑
x∈Λ

|ψ〉x =
∑
x∈Λ

∑
y∈Nx

Uxy |ψ〉y .

H is unitarily equivalent to `2(Λ) ⊗ Cs, where `2(Λ) is the space of square
summable complex functions defined on the lattice.

1.3 lattice models for free quantum fields

In [42] Dirac pointed out the analogies between classical and quantum mechan-
ics, proposing a method for discussing trajectories for the motion of a particle
in quantum mechanics. This is a seminal Lagrangian method for reconciling a
classical approach with quantum mechanics.
With [43], Feynman pushed forward Dirac’s idea and gave a generalised proce-
dure for a path-integral formulation of quantum mechanics.
These efforts arose also from the need of giving a relativistically invariant de-
scription of quantum system –which was totally lacking at the time– and were
of crucial importance in order to give a mathematical formulation to Quantum
Field Theory (qft).

Serious mathematical problems initially plagued a perturbative approach to
qft, such as divergences in calculations, therefore a renormalization approach of
the theory was needed and this procedure is now mathematically well founded
(see e.g. in [44] by ’t Hooft).
Unfortunately, qft is still suffering from both conceptual and mathematical is-
sues well explained in [45, 46].
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On one hand, these difficulties arise from the fact that the renormalization
schemes are of mathematical nature, therefore it is a quite abstract procedure,
without a physical interpretation (Dirac himself, in [47], was critical about this
solution); on the other hand, this approach is not suitable for the whole qft: we
know indeed that a quantum field theory of gravity is non-renormalizable.

For these reasons, lattice gauge theories have been taken into account as dis-
crete approximations of qft; e.g. Nakamura in [12] proposed a model for free
quantum fields using non-standard analysis, giving Dirac equation in the con-
tinuum limit. In [14, 15], the authors reach the same limit considering a quantum
lattice gas.
However, lattice theories were initially regarded as mere computational tools
[13, 16]. In his pioneering work [17], Bialynicki-Birula firstly pointed out that
Weyl dynamics on a lattice (in the continuum limit) necessarily follows from few
assumptions.

The derivation of the renormalization schemes is carried on at the price of vi-
olating some basic physical tenets, e.g. Lorentz symmetry in lattice-regularization.
In the qw’s framework new phenomenology is theorized. Due to the discreteness
of the model, all continuous symmetries of qft are no longer valid, but space-
time and mechanics are emergent from an exact, fundamental mechanism. In
this quantum network, isotropy is recovered through quantum superpositions
of the different paths, recovering the usual dynamics of high-energy physics
(Fermi scale).
Finally, as the authors notice in [40], it is interesting to point out that this model
incorporates the main ingredients of the microscopic theories of gravity of Ja-
cobson and Verlinde (see [48, 49]).



2

Q U A N T U M WA L K S O V E R C AY L E Y G R A P H S

The formalism adopted resorts to a formulation based on Group Theory and
Graph Theory. We will recall some basic definitions and results regarding these
topics, pointing out their relevance for the scope of this work.

2.1 notions of group theory

The lattice sites are meant to be identified with elements of a group, therefore
we recall the definition:

Definition 2.1 (Group). Let G be a set and • a binary operation on G. The pair (G, •)
is a group if it satisfies the following group axioms:

– G is closed under the binary operation, i.e.

• : G×G −→ G

(g1,g2) 7−→ g1 • g2 = g1g2

– ∀g1,g2,g3 ∈ G, (g1g2)g3 = g1(g2g3)

– ∃! e ∈ G such that ∀g ∈ G, eg = ge = g

– ∀g ∈ G ∃ g−1 ∈ G (called inverse of g) such that g−1g = gg−1 = e

The result of the binary operation (or group law) depends in general on the
order of composition of two elements of G. Groups for which this is not the case
are called abelian.

13



14 quantum walks over cayley graphs

Definition 2.2 (Generating set). Given a group G, a generating set S = S+ ∪ S−

for the group (where S− collects the inverses of S+) is a subset such that every element
of G can be written as a word (i.e. a combination under the group law) of finitely many
elements of S.
The elements of S+ are called generators ofG. The cardinality of the smallest generating
set of a group G is called rank of the group.

From the group axioms follows that every element of G has unique inverse
and this implies that S+ and S− are in one-to-one correspondence.

We now need a way to express the walk over element of a group.

Definition 2.3 (Irreducible representation). An irreducible representation (irrep)
Π of a group G over a vector space W is a homomorphism from G to GL(W) which has
no invariant subspace but the trivial ones.

A reducible representation for the qw would imply a splitting of the walk into
direct sums of more elemental, irreducible walks.
In the following chapters we will consider unitary completely reducible representa-
tions, namely such that, ∀g ∈ G, Π(g) is a direct sum of irreps which are unitary
operators. As a useful results of Group Theory, we can mention that unitary ir-
reducible representations of abelian groups are one-dimensional. Moreover, we
will require Π injective, namely it is a faithful representation.

If a subset H ⊆ G is itself a group under the binary operation defined on G, H
is called a subgroup of G. In the present work we will be interested in partitions
of a group induced by a subgroup: this motivates the following definitions.

Definition 2.4 (Left cosets). Let G be a group and H a subgroup of G. The left cosets
of H in G are the equivalence classes defined by the equivalence relation

g1,g2 ∈ G, g1 ∼ g2 ⇐⇒ ∃ h ∈ H : g1h = g2

The left cosets of H in G are of the form cjH, for some cj ∈ G (called coset
representatives). Furthermore, by definition, every element of G belongs to one
and only one left coset of H, therefore the left cosets are disjoint and induce a
partition of G. Considering an alphabet J such that

⋃
j∈J cjH = G, the cardinality

of J is called index of H in G.

Definition 2.5 (Virtually abelian group). Let G be a group and H a subgroup of G.
G is said virtually abelian if H is abelian and has finite index in G.
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2.2 cayley graphs

We now provided some preliminary definitions in order to introduce the “ambi-
ent space” of the quantum walks considered: the Cayley graph of a group.

Definition 2.6 (Normal subgroup). A subgroup N of a group G is called a normal
subgroup if

∀n ∈ N and ∀g ∈ G, g−1ng ∈ N

A subgroup is normal if it is invariant under the operation just defined, which
is called conjugation and defines an equivalence relation, the conjugacy.
If one aggregate equivalent element of a group, this preserves the group struc-
ture and gives rise to a:

Definition 2.7 (Quotient group). Given a group G and a normal subgroup N, the
quotient group G/N is the set of all the left cosets of N in G endowed with the group
law of G.

The next definitions are introductory to a very powerful tool, the presentation
of a group, which is connected to Cayley graphs and turns out to be very useful
in order to characterize and visualize groups in a variety of fashions.

Definition 2.8 (Free group). Given a generating set S, the free group FS generated
by S is the group whose elements can be uniquely expressed words on S.

Given an arbitrary group, the equality of two words on a generating set could
follow from either the group axioms (particularly from the property of the in-
verses) or by virtue of some other relations which characterize the group itself,
such as am = e for some integer m (cyclic conditions) or ab = ba (abelian-
ity) (e.g. for a,b generators). Free groups lack of such relations and equalities
between their elements follow solely from group axioms.

Definition 2.9 (Conjugate closure). Given a group F and a set R of words, the con-
jugate closure of R in F is the group generated by the conjugates of R, namely the set:
{g−1rg | g ∈ F, r ∈ R}.

Definition 2.10 (Presentation of a group). Given a generating set S = S+ ∪ S− and
a set R of words on S, let FS be the free group on S and N the conjugate closure of R in
FS. Then

G ∼ 〈S+|R〉

is said a presentation of the quotient group G = FS/N.
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The words in R are called relators; since the conjugate closure of R is the small-
est normal subgroup of FS which contains R, one can take the quotient FS/N
and this assures that, in the resulting group G, the expressions in R will coin-
cide with the identity. For the free group, in fact, R is trivial.

A given presentation completely specifies the properties of a group (modulo
isomorphisms), but the viceversa is not true: there exist in general infinitely many
possible presentations for a given group.

Definition 2.11 (Cayley graph). Let G be a group and S+ a set of generators for G.
Given a set V (whose elements are called vertices) and a set E whose elements are
ordered pair of vertices (called edges), the Cayley graph Γ(G,S+) is the pair (V ,E)
constructed as follows:

a. a vertex is assigned to each g ∈ G;

b. a different color is assigned to each f ∈ S+;

c. an edge is assigned to the pair (g, fg) for any g ∈ G and f ∈ S+.

Figure 1: The Cayley graph of the free group.



2.2 cayley graphs 17

One can see that different presentations of the same group give rise to different
Cayley graphs, e.g.

Z ∼ 〈g1,g2 | g1g2g
−1
1 g−12 〉

leads to a simple square lattice, while

Z ∼ 〈g1,g2,g3 | gigjg
−1
i g−1j , g2(g1g3)−1〉

is associated with an hexagonal lattice for the group of integers.

A Cayley graph can be endowed with a metric:

Definition 2.12 (Word metric). For any g element of G, its word norm |g| with
respect to a generating set S is the number of letter of the shortest word over S which is
equal to g.
Given g1,g2 ∈ G such that g1w = g2, the distance d (g1,g2) in the word metric is
|w|.

A lattice together with the word metric (also called counting metric) becomes
a metric space. In the following, we will consider mapping from Cayley graph
to Euclidean spaces and it is convenient to define a correspondence which al-
lows to compare metrics between them. This is provided by a quasi-isometric
embedding.

Definition 2.13 (Quasi-isometric embedding). Given two metric spaces (M1,d1)
and (M2,d2), a function

f : (M1,d1) −→ (M2,d2)

is a quasi-isometric embedding if there exist some constants A > 1 and B,C > 0

such that

• ∀u, v ∈M1, 1Ad1(u, v) −B 6 d2(f(u), f(v)) 6 Ad1(u, v) +B

• ∀w ∈M2 ∃ z ∈M2 such that d2(w, f(z)) 6 C

The counting metric is not equivalent to the Euclidean metric due to the so
called Weyl tile argument (see [50]). The existence of a quasi-isometric embed-
ding between e.g. a simple square d-dimensional lattice and Rd means, intu-
itively, that the two metrics are equivalent apart from the constant bound

√
d.
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If there exist a quasi-isometric embedding between two Cayley graphs, the un-
derlying groups are said quasi-isometric.

The last important result in the scope of this work is the following:

Theorem 2.1 (Quasi-isometric rigidity of Zd). If a finitely generated group is quasi-
isometric to Zd, then it has a finite index subgroup isomorphic to Zd.

Remark 2.1. Since Zd is quasi-isometric to Rd and quasi-isometry is an equivalence
relation, we can state that if a finitely generated group G is quasi-isometric to Rd, then
G is virtually abelian.

With regard to section 1.2, we conclude this chapter pointing out that in the
following we will consider qws defined on `2 (G)⊗Cs, for some group G whose
Cayley graph satisfies the physical assumptions exposed in the next chapter.



3

W E Y L A N D D I R A C E Q U AT I O N S F R O M Q W s

We will enunciate the assumptions of the model presented, together with the
general framework; then the derivations of Weyl and Dirac qws will be retraced
in their main points.

3.1 assumptions and formalism

The scope of [40] is to derive the standard description of free quantum fields as
emergent from a qw on a lattice, whose sites are a denumerable set of identical
quantum systems in mutual interaction.
As already discussed, qws over Cayley graphs are those under study; in order
to recover the usual Euclidean space and metric in the limit of large scales, the
authors require that the Cayley graph is quasi-isometrically embeddable in Rd,
namely the underlying group is virtually abelian.

The main physical assumptions are:

1. Locality: every site interacts with a finite number of nearest neighbour sites;

2. Homogeneity: universality of the physical law;

3. Isotropy: there is no favoured direction of interaction;

4. Unitarity: the evolution operator is a unitary operator.

19



20 weyl and dirac equations from qws

These can be easily formalized giving a group-theoretical description of the
walk over a Cayley graph. Intuitively, each site is identified with an element g
of a group G and is linked by generators to a set of other sites, which constitute
the nearest neighbours in mutual interaction with g.
Since the lattice is supposed to be an infinite and denumerable set and it will
be identified with G, the group under consideration will be an infinite group
endowed with discrete topology.

The locality assumption implies that the cardinality of the generating set S if
finite, i.e. G is a finitely generated group.
With regards to homogeneity, a distinction can be done between a weak concept of
homogeneity and a strong one. The weak assumption states that the cardinality of S
must not depend on the site (which is trivially granted by the definition itself of
Cayley graph). On the other hand, in [40] a stronger assumption of homogeneity
is required: the walk must be translationally invariant, namely the evolution
operator commutes with the shift operator Σ(f) on the lattice site—defined as
Σ(f) |ψ〉x = |ψ〉fx for f ∈ S—namely

AΣ(f) |ψ〉x =
∑
x ′∈Nfx

|ψ〉x ′ = Σ(f)A |ψ〉x =
∑
x ′∈Nx

|ψ〉fx ′ .

This entails Cayley graphs Γ(G,S) with G abelian. This abelianity assumption
is not the most general, since it rules out virtually abelian groups, however it
implies G ∼= Zd.1

The evolution of the walk is represented by an evolution operator A, whose
general expression is

A =
∑
f

Tf ⊗Af, (1)

acting on the Hilbert space `2 (G)⊗Cs (Tg =
∑
g ′∈G |g · g ′〉 〈g ′| being a unitary,

faithful and completely reducible representation of the group G).
The isotropy assumption can be formalized into the minimal requirement that
there exists a faithful unitary representation Uc of some group transitive over
S+ such that the invariance

A =
∑
f∈S

Tf ⊗Af =
∑
f∈S

Tcf ⊗UcAfU†c (2)

1 Anyhow, it is interesting to notice that the homogeneity assumption is a purely topological property,
not a metrical one.
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under the action of this group holds2.
The hypothesis of unitarity is the most natural one, since it is a standard require-
ment that time evolution must preserve norms.

Imposing unitarity on A, one can find the transition matrices {Af}f∈S for the
coin system of the walk (such a derivation makes use of the isotropy assumption
as well).
Accordingly, the unitarity conditions are

AA† = A†A = Te ⊗ 1s,

which imply

∑
ff ′−1=g

AfA
†
f ′ =

∑
f−1f ′=g

A
†
fAf ′ = 0 (with g 6= e) (3)

and the normalization condition

∑
f∈S

AfA
†
f =
∑
f∈S

A
†
fAf = 1s. (4)

Finally, it can be shown that as necessary condition for isotropy one can always
assume, modulo a local unitary,

∑
f∈S

Af = 1s. (5)

Assuming therefore G = Zd, one can see that the states of the form

|k〉 = 1

(2π)
d
2

∑
x∈G

e−ik·x |x〉 (6)

are the joint eigenvectors of the translations Tg, with eigenvalues eik·g:

Tg |k〉 =
1

(2π)
d
2

∑
x∈G

e−ik·x |x + g〉 = 1

(2π)
d
2

∑
x ′∈G

e−ik·(x ′−g) ∣∣x ′〉

2 We point out that the isotropy assumption allows to select one particular walk (or a restricted class
of walks sharing common properties) among an infinite admissible family.
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=
eik·g

(2π)
d
2

∑
x ′∈G

e−ik·x
′ ∣∣x ′〉 ≡ eik·g |k〉 ,

where abelian notation is used. In fact, eik·g is simply a one-dimensional unitary
irrep of an abelian group isomorphic to Zd, while the class of states (6) are just
the wavefunctions of the field in the k-space.
The first Brillouin zone is defined by the following constraint:

B =
{

k
∣∣−π 6 k · f̃j 6 π, j = 1, . . . ,d

}
,

where
{

f̃j
}d
j=1

is the dual basis of Zd
∗, for any choice of independent vectors

{fj}dj=1 in the direct space.
We can therefore use the eigenvectors |k〉 in order to diagonalize the Tf and,
since the automaton is invariant under translations, equation (1) thus reads

A =
∑
f

∫
B
dk |k〉 〈k| eik·f ⊗Af

=

∫
B
dk |k〉 〈k|⊗

(∑
f

eik·fAf

)
=:

∫
B
dk |k〉 〈k|⊗Ak.

(7)

Through this representation of G, it is convenient to interpret k · f̃j as the mo-
mentum components, likewise to the standard procedure in solid state physics
(specifically studying crystal structures).

The field undergoes a discrete-time evolution governed by the unitary opera-
tor A: the n-th discrete-time step is given by

|ψ (n)〉 = (A)n |ψ (0)〉 .

In the momentum representation, the eigenvalues of (7) will be of the form
eiωj(k), where ωj(k) can be interpreted as a dispersion relation, i.e. an energy
versus momentum relation3.

3 As mentioned in section 1.2, the qw’s large scale limit gives rise to a dispersive Schrödinger
equation, whose drift coefficient is ∂ω

∂kj
(as a group velocity) and the diffusion one is the matrix

∂2ω
∂ki∂kj

; interpreting ω as an energy is a usual analogy in physics, whereas in the present context
this interpretation of the dispersion relation needs a fully interacting theory, where energy can
be exchanged between systems. However, the analogy here considered for free fields can be well
founded a posteriori at least in the relativistic limit, in view of the emergence of the usual field
equations. In this framework, the Planck length lP , time tP and mass mP conceptually represent
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In the cases s = 2 and d = 1, 2, 3 for a massless field, the unique admissible
(with respect to the initial assumptions) Cayley graphs of Zd are found to be
those whose vertices are the the integers lattice for d = 1, the simple square lat-
tice for d = 2 and the BCC lattice (body-centered cubic) for d = 3. The assumption
of unitarity is crucial in order to discriminate between the different topologically
inequivalent graphs and select the unique valid set of transition matrices (mod-
ulo some symmetries). It is interesting to notice that in d = 2 can be shown that
if one takes e ∈ S, Ae must be vanishing.
Since in this work we will take into account Cayley graphs quasi-isometrically
embeddable in R2, we show the results for the 1d and the 2d walks.

3.2 the weyl qw

In both 1d and 2d cases, the eigenvalues of (7) are of the form ω±(k) and give
in the relativistic limit (small momenta) the dispersion relation

ω± (k) −−−−→
|k|�1

±|k|.

The one-dimensional case is trivial from this point of view, since the transition
matrices are

A+ =

1 0

0 0

 , A− =

1 0

0 0


and ω± (k) = ±k already holds at all scales.
In the two-dimensional case, instead, the transition matrices are

A+x =
1

2

 1 0

−1 0

 , A+y =
1

2

1 0

1 0

 ,

A−x =
1

2

0 1

0 1

 , A−y =
1

2

0 −1

0 1

 ,

(8)

and the dispersion relation is given by

ω± (kx,ky) = ± arccos
[
1

2
(coskx + cosky)

]
. (9)

just digital-analog conversion factors in order to recover physical quantities at the usual Fermi
scale of high-energy physics ( h = mPl

2
Pt

−1
P ).
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However, both the 1d and the 2d case exactly approximate the usual dispersion
relation.

Moreover, an asymptotic approach for the time evolution is performed defin-
ing an interpolating Hamiltonian as

e−iHI(k) := Ak

and taking its finite-difference counterpart, namely Im (Ak) = sinHI (k). Invert-
ing this last expression and expanding HI (k) to the first order in k, finally

i∂t |ψ (k, t)〉 = HI (k) |ψ (k, t)〉 ' 1√
d
σ · k |ψ (k, t)〉

holds and the Weyl equation is recovered in the asymptotic limit.

3.3 the dirac qw

With regard to the massive case, the identical transition Te is introduced.
In 1d a qw for s = 2 can be derived with the same methods presented e.g. in
appendix A.1, since a Dirac spinor is two-dimentional in d = 1.
The corresponding transition matrices turn out to be:

A+ =

ν 0

0 0

 , A− =

ν 0

0 0

 , Ae =

 0 im

im 0

 .

where m,ν are reals and m2+ν2 = 1. The parameter m is the mass of the walk.
In 2d it is needed s = 4, thus two Weyl walks are coupled in a suitable way and
the mass term is alike introduced.
It is then shown that the only possible local fashion to couple two walks is

AD =

νAk im1

im1 νA
†
k

 ≡∑
f

eik·f

νAf 0

0 νA
†
f

+ im (σx ⊗ 1) , (10)
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where, again, m2 + ν2 = 1.
The phases of the eigenvalues give the dispersion relation

ω± (kx,ky,ν) = ± arccos
[ν
2
(coskx + cosky)

]
. (11)

in the 2d case (the 1d is obtained identifying kx = ky).
The relativistic limit (small momentum and mass) gives

ω± (k,ν) −−−−→
|k|�1

±
√
k21 + k

2
2 +m

2.

The approximate Dirac equation is restored with the same asymptotic approach
of Weyl approximate equation.
The interpolating Hamiltonian gives

i∂t |ψ (k,ν, t)〉 '
(
ν√
d
α · k +mβ

)
|ψ (k, t)〉 := HD (k,ν) |ψ (k, t)〉 ,

where ν −−−→
m�1

1 and so HD (k,ν) tends to the Dirac Hamiltonian and

β = γ0 ≡ 1⊗ σx,

αi = γ0γi,

γi ≡

 0 σi

−σi 0

 ,

in Weyl (or chiral) representation.
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R E N O R M A L I Z AT I O N F R A M E W O R K

4.1 motivations

As it has been illustrated in the previous chapters, from the physical point of
view it is interesting to study the behaviour of a qw in the neighbourhood of
local minima of the dispersion relation versus the momenta1. In the works pre-
sented, this approach allowed to investigate the limit of the qw for small mo-
menta and to find a differential equation, linear in k, describing the large scale
dynamics of the walk.

This procedure is exactly performed in the momentum space, but it does not
carry any piece of information about the positions (or direct) space, namely it
does not allow to rewrite a large space scale version of the evolution operator of
the qw. This is a first, straightforward motivation of the new approach to the
asymptotic limit that is provided in the present work.
Moreover, the formalism presented so far exploits assuming the hypothesis of
abelianity of the group underlying the walk. This is a radical assumption, but it
is crucial in order to be able to define a momentum space of the qw and thus
study its dynamical behaviour at any scale.
Nevertheless, the more compelling and fundamental request made on the group
pertains its Cayley graph and is the quasi-isometric embeddability in Rd, which
traces a direction to the purpose of recovering some direct space as emergent.

1 Following the analogy discussed in chapter 3, we can say that, intuitively, a minimum of energy
corresponds to a particle state.

27
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However, from section 2.2 we know that abelian groups are not the only class
of groups holding this feature, which is granted in general by virtually abelian
groups (of which abelian group are a special case).
Accordingly, there is no profound reason to rule out virtually abelian groups a
priori, but, at the same time, taking into account non-abelian groups gives rise
to difficulties in providing a natural definition of a mathematical object to be
interpreted as the momentum.
Abelian groups, in fact, admit one-dimensional unitary irreducible representa-
tions, which are then parametrized by complex unitary numbers whose phases
are interpretable as momenta. However, unitary irreducible representations of
non-abelian groups in general are not one-dimensional. Even if one found a non-
abelian qw, yet there would not be a straightforward notion of momentum, so
that a differential equation in the momentum space would be hardly derived. Ac-
cordingly the second motivation to study a new asymptotic approach is finding
a procedure to induce a dispersion relation versus some notion of momentum
for a non-abelian walk.

4.2 basic ideas : regularization and renormalization

The idea of regularizing the description of a lattice in order to study its statistical
behaviour at a larger scale resorts to a procedure first proposed in [51]. In this
work, the interacting sites of the Ising model are regularly grouped into larger
cells which are then treated as single sites of a new, coarse-grained lattice. Aver-
aging the behaviour of the resulting blocks, one is then able to make a statistical
description of the lattice; this procedure is know as block-spin renormalization.

In the scope of the present work, qws over virtually abelian groups are taken
into account. Exploiting the definition of virtual abelianity, one can attempt a
sort of “coarse-graining” of the Cayley graph considered, regularizing the lat-
tice and resorting to an abelian version of it.
The basic idea is to perform a tiling of the lattice and this is achieved partition-
ing the group G under consideration into left cosets of an abelian subgroup H.
The vertices of the Cayley graph of G are thus grouped into elemental tiles that
tessellate the embedding space and become the nodes of a new, coarse-grained
graph.
This procedure consists in finding a regularized expression of the walk in terms
of the generators of H and assigning the behaviour of the single sites of the orig-
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inal group G to additional degrees of freedom, which are eventually discarded
in order to study the renormalized action of the walk.

Figure 2: An example of block-site regularization.

4.3 renormalizing the qws

Firstly we will provide a formal definition of the intuitive notion of “tiling of a
lattice”.

Definition 4.1 (Regular tiling). Let G be a virtually abelian group and let H be an
abelian subgroup of G of finite index. If G is a finitely generated infinite group and
H ∼= Zd, we say that a left cosets partition

l⋃
j=1

cjH = G (with c1 = e)

is a regular tiling (of order l) of the Cayley graph of G.

It is implicit in the previous definition that the Cayley graph of G is quasi-
isometrically embeddable in Rd, since otherwise the subgroup H ∼= Zd would
be of infinite index.
In general the cosets partition is not unique, namely the cosets representatives
are not uniquely determined by H; nevertheless, only the proprieties of H in G
are relevant in order to carry on the regularization of a qw and not the choice of
the cj, which is arbitrary in this context.

Remark 4.1. Being H a group, the sublattice defined by the first coset is the Cayley
graph corresponding to some presentation of Zd.
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Since the cosets are mutually disjoint by definition (they define an equivalence class),
the lattices defined by all the cosets cjH are mutually disjoint sublattices of the Cayley
graph of G; moreover, since

⋃l
j=1 cjH = G, the union of these sublattices fulfils the

whole Cayley graph.
Chosen a regular tiling, the cosets representatives cj are elements of G whose action
on the subgroup H allows to move between the sublattices and one can consider the
collection of the cosets representatives {c1, c2, . . . , cl} as the elemental tile of this regular
tessellation.

Remark 4.2. In case of G isomorphic to Zd, any subgroup H ∼= Zd defines a regular
tiling of G.
A suitable kind of tessellation for the purposes of the present work will be taken into
account when studying qws over purely abelian groups.

In view of the scope of the regularization procedure, it is worth noting the
following important property of a coset partition: from the disjointness of the
cosets it follows that every g ∈ G admits a unique decomposition in terms of cj
and x ∈ H. This means that each element of G is in one-to-one correspondence
with an element of the form

(
x, cj

)
. qw’s evolution in the direct space is repre-

sented on H = `2 (G): it is then useful to try to split this space exploiting the
correspondence just showed.
Indeed, since all infinite-dimensional separable Hilbert spaces are isometrically
isomorphic, one can find an isometric mapping between H and K = `2 (H)⊗
Cl (for any given integer l).
Given an orthonormal basis {|j〉}l−1j=0 for Cl, let’s define the isometry

UH : H −→ K ,∣∣cjx〉 7−→ |x〉 ⊗ |j〉 ,

represented by the operator

UH :=
∑
j

∑
x∈H

|x〉 |j〉
〈
cjx
∣∣ .

It is immediate to check that UH is an isometry:

U
†
HUH =

∑
j,j ′

∑
x,x ′∈H

∣∣cjx〉 〈cj ′x ′∣∣ 〈x∣∣ x ′
〉 〈
j
∣∣ j ′〉

=
∑
j

∑
x∈H

∣∣cjx〉 〈cjx∣∣ = TH
e ≡ 1H ;
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furthermore, due to the uniqueness of the decomposition of G previously de-
fined, it is also a unitary mapping:

UHU
†
H =

∑
j,j ′

∑
x,x ′∈H

|x〉
〈
x ′
∣∣⊗ |j〉

〈
j ′
∣∣ 〈cjx∣∣ cj ′x ′〉︸ ︷︷ ︸

δj,j ′δx,x ′

≡
∑
x∈H

|x〉 〈x|⊗
∑
j

|j〉 〈j| = TK
e ≡ 1K .

We can exploit the fact that the unitary irreducible representations of an abelian
group are one-dimensional and define, even in non-abelian cases, the following
classes of states of H :

|k〉j :=
1

(2π)
d
2

∑
x∈H

e−ik·x
∣∣cjx〉 ,

which are mapped to

UH |k〉j =
1

(2π)
d
2

∑
j ′

∑
x,x ′∈H

e−ik·x
〈
cj ′x ′

∣∣ cjx〉 ∣∣x ′〉 ∣∣j ′〉
=

1

(2π)
d
2

∑
x∈H

e−ik·x |x〉 |j〉 ≡ |k〉H |j〉 .

As already discussed in section 4.1, if G is non-abelian it is not possible to diago-
nalize (and thus regularize) the translations on G directly over the |k〉j, because

Tf |k〉j =
1

(2π)
d
2

∑
x∈H

e−ik·x
∣∣fcjx〉 = 1

(2π)
d
2

∑
x ′∈H

e−ik·(c
−1
j f

−1cj ′(f)x ′) ∣∣cj ′(f)x ′〉
=

1

(2π)
d
2

e−ik·(c
−1
j f

−1cj ′(f))
∑

x ′∈H
e−ik·x

′ ∣∣cj ′(f)x ′〉 ≡ e−ik·(c−1j f−1cj ′(f)) |k〉j ′(f) ,

(since in the change of variable c−1j f−1cj ′(f) is equal to xx ′−1 ∈ H by definition)
and in general j ′(f) 6= j.

Remark 4.3. Note that, if the subgroup H is normal, the |k〉j are the invariant spaces
of Th, the generators of the translations of H:

∀ h ∈ SH ∃ x̃ ∈ H : hcj = cjx̃,
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and one has

Th |k〉j =
1

(2π)
d
2

∑
x∈H

e−ik·x
∣∣hcjx〉 = 1

(2π)
d
2

∑
x ′∈H

e−ik·(x ′−x̃) ∣∣cjx ′〉 ≡ eik·x̃ |k〉j .

In K we have(
UHTfU

†
H

)
· |k〉H |j〉 =

(
UHTfU

†
H

)
·UH |k〉j

= UH · Tf |k〉j ≡ e
−ik·(c−1j f

−1cj ′(f)) |k〉H
∣∣j ′ (f)〉 ,

namely |k〉H is the invariant space of the UHTfU
†
H := T̃f.

The regularized generators T̃f map `2 (H) into itself (up to a phase factor
dependent on the generator f) and possibly change the new “internal” degree
of freedom on Cl. Then this mapping allows to diagonalize the generators of
G over the momentum space of K exploiting their action on the additional
degrees of freedom.
The regularized evolution operator will be given by

R [A] := (UH ⊗ 1)A (UH ⊗ 1)† =
∑
f

T̃f ⊗Af. (12)

4.4 theoretical applications

As already pointed out, this procedure works for virtually abelian groups in
general and then in particular for abelian groups.

The cases of walks over G = Zd have been extensively studied and the dis-
persion relations for the unique admissible Weyl and Dirac qws (for d = 1, 2, 3)
have been found as discussed.
The renormalization procedure allows to re-express these walks in a regularized
form after having fixed a regular tessellation of the lattices for d = 1, 2; we will
then iterate the regularization scheme to the scale desired, reaching a new ex-
pression for the abelian walks.
After having regularized the abelian walks, their action on `2 (H) is obtained
marginalizing on Cl: one applies the regularized walk on the density operators
on `2 (H)⊗Cl and then traces out the additional degree of freedom.
Finally, two points will be discussed:
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• One could ask if and how the dispersion relation of the coarse-grained
walks changes.

• One can apply to some particular states the regularized walk.

On the other hand, two elementary non-abelian qws in 2d will be derived and
this procedure will be applied to them, in order to recover a physical momentum
and study their dispersion relations.
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R E N O R M A L I Z AT I O N O F Q W s O V E R A B E L I A N
G R O U P S

In the following, we shall make use of most of the results shown in chapter 3.

5.1 one-dimensional weyl qw

In the 1d case we have G = Z: the group presentation is trivial (one generator,
no relators), we can use the additive notation for the group composition and the
only generator will be denoted by 1.
A regular tiling of order l is given by

Z =

l−1⋃
j=0

(
cj +H

)
,

where the cosets representatives are cj = j for j = 0, . . . , l), H = lZ ∼= Z and its
generator is l1.
Let’s define the invariant spaces under T±l:

|k〉j :=
1

(2π)
1
2

∑
x∈H

e−ixk |x+ j〉 .

1 Technically, (lZ,+) is an ideal of the ring (Z,+, ·); however it has a group structure isomorphic to
Z and we will treat it as a group. Accordingly, in the following we shall make use of the notation
lx in order to indicate the generator of lZ expressed in terms of the generator of Z: this notation
stands for “l-th power of x under the additive group law”.

37
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Let’s now evaluate the regularized generators of the translations in `2 (H)⊗Cl,
namely T̃±1 = UHT±1U

†
H; by definition of UH (provided a convenient scaling of

the element of H), one has:

T̃+1 =

l−1∑
j,j ′=0

∑
x,x ′∈Z

|x〉
〈
x ′
∣∣⊗ |j〉

〈
j ′
∣∣ 〈lx+ j| T+1 ∣∣lx ′ + j ′〉︸ ︷︷ ︸

=δlx+j,lx ′+j ′+1

=
∑
x

|x+ 1〉 〈x|⊗ |0〉 〈l− 1|+
∑
x

|x〉 〈x|⊗
l−1∑
j=1

|j+ 1〉 〈j|

(13)

and

T̃−1 =

l−1∑
j,j ′=0

∑
x,x ′∈Z

|x〉
〈
x ′
∣∣⊗ |j〉

〈
j ′
∣∣ 〈lx+ j| T−1 ∣∣lx ′ + j ′〉︸ ︷︷ ︸

=δlx+j,lx ′+j ′−1

=
∑
x

|x− 1〉 〈x|⊗ |l− 1〉 〈0|+
∑
x

|x〉 〈x|⊗
l−1∑
j=1

|j− 1〉 〈j| ,

(14)

namely the T̃±1 perform a periodic shift among the different cosets of H in G (i.e.
on the additional degree of freedom of Cl). Furthermore, every matrix element
of the shift is associated either with a translation or with the identical transition
on the “coarse-grained space” `2 (H); one can simultaneously diagonalize TH+1
and THe over their joint eigenvectors in momentum space:

THe ≡
∑
x

|x〉 〈x| =
∫
B
dk |k〉 〈k| ,

TH± ≡
∑
x

|x± 1〉 〈x| =
∫
B
dk |k〉 〈k| e±ik.

Accordingly, one can easily express regularized walk on `2 (H)⊗Cl trough the
l× l shift matrices

Z+
l :=



0 0 · · · 0 eik

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, Z−

l :=



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

e−ik 0 0 · · · 0


.
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These are unitary matrices for which the identity Z+
l =

(
Z−
l

)† holds (they are
each other’s inverse). Moreover, one can easily show that the eigenvalues of Z±l
are just e±i(

k
l+

2π
l j) (j = 0, . . . , l− 1).

Equation (12) reads

R [A] =

∫
B
dk |k〉 〈k|⊗Z+

l ⊗A+1 +

∫
B
dk |k〉 〈k|⊗Z−

l ⊗A−1

=

∫
B
dk |k〉 〈k|⊗

(
Z+
l ⊗A+1 +Z

−
l ⊗A−1

)
=:

∫
B
dk |k〉 〈k|⊗R [A]k ,

and the new dispersion relation is obtained diagonalizing Z±l :

R [A]k =

∑
j

e+i(
k
l+

2π
l j) |j〉 〈j|

⊗A+1 +

∑
j

e−i(
k
l+

2π
l j) |j〉 〈j|

⊗A−1 =

=
∑
j

|j〉 〈j|⊗
(
e+i(

k
l+

2π
l j)A+1 + e

−i(kl+
2π
l j)A−1

)
︸ ︷︷ ︸

:=W(k,j)

. (15)

The diagonal blocks in (15) represent just l Weyl walks with shifted and scaled
momenta and it’s straightforward to find the dispersion relations

ωj (k) = ±
(
k

l
+
2π

l
j

)
.

Fixing an order l of coarse-graining, one can iterate this procedure n times.
Indeed, taken a regular tiling of H by H ′ and recursively defining the n-th step
as T (n)+1 := UH ′T

(n−1)
+1 UH ′

†, one has

T
(2)
+1 ≡ UH ′T

(1)
+1UH ′

†

= TH
′

+ ⊗ (|0〉 〈l− 1|)⊗2 + TH ′e ⊗

l−1∑
j=0

|j+ 1〉 〈j|⊗ |0〉 〈l− 1|+ 1⊗
l−1∑
j=0

|j+ 1〉 〈j|


=

∫
dk |k〉 〈k|⊗

Z+
l ⊗ |0〉 〈l− 1|+ 1⊗

l−1∑
j=0

|j+ 1〉 〈j|


=
∑
j

∫
dk |k〉 〈k|⊗

|j〉 〈j|⊗
e+i(kl+ 2π

l j) |0〉 〈l− 1|+
l−1∑
j ′=0

∣∣j ′ + 1〉 〈j ′∣∣

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=
∑
j,j ′

∫
dk |k〉 〈k|⊗ |j〉 〈j|⊗

∣∣j ′〉 〈j ′∣∣ e+i( kl2+ 2π

l2
j+ 2π

l j
′
)
, (16)

and

T
(2)
−1 ≡ UH ′T

(1)
+1

†
UH ′

† ≡ T (2)−1

†
, (17)

leading again to shifted and rescaled Weyl walk dispersion relation.
One can notice that the momenta are rescaled by a constant factor, depending on
the order of regular tiling and of iteration; k ∈ [−π,+π]: one can therefore define
a rescaled momentum through the change of variable k̃ = k

l , with k̃ ∈
[
−π
l , +π

l

]
.

This is a general feature of regularization, as it will seen in the next sections.

5.2 one-dimensional dirac qw

We briefly recall the features of the Dirac qw, presented in chapter 3. The main
differences with respect to the massless case are:

• The introduction of the identical transition in the position space, i.e. Te
associated with Ae = imσx (the real parameter m is the mass of the walk).

• Due to the locality and unitarity of the coupling, the transition matrices
are:

A+1 := ν |+〉 〈+| , A−1 := ν |−〉 〈−| ,

with m2 + ν2 = 1. T̃±1 are found as in the previous sections, while

T̃e ≡ UHTeU†H = THe ⊗ 1

trivially holds.
As before, one finds

R [A] =

∫
B
dk |k〉 〈k|⊗

(
Z+
l ⊗A+1 +Z

−
l ⊗A−1 + 1⊗Ae

)
=:

∫
B
dk |k〉 〈k|⊗R [A]k

and can simultaneously diagonalize the Z±l and 1, finding

R [A]k =
∑
j

e+i(
k
l+

2π
l j) |j〉 〈j|⊗A+1 +

∑
j

e−i(
k
l+

2π
l j) |j〉 〈j|⊗A−1 +

∑
j

⊗Ae
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=
∑
j

|j〉 〈j|⊗
(
e+i(

k
l+

2π
l j)A+1 + e

−i(kl+
2π
l j)A−1 +Ae

)
︸ ︷︷ ︸

:=D(k,j)

.

The diagonal blocks in the previous equation represent just l Dirac walks with
shifted and rescaled momenta:

D(k, j) ≡

νe+i(kl+ 2π
l j) im

im νe−i(
k
l+

2π
l j)

 ,

therefore the dispersion relation of the regularized walk is

ω± (k, j) = ± arccos
{
ν cos

[
k

l
+
2π

l
j

]}
Again, one can iterate this procedure, finding

T
(2)
e = TH

′
e ⊗ 1⊗ 1 =

∑
j,j ′

∫
dk |k〉 〈k|⊗ |j〉 〈j|⊗

∣∣j ′〉 〈j ′∣∣ ;
then, using (16) and (17), this leads to an expression D (k, j, j ′) as before.
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Figure 3: Plot of ω versus (k,ν), dispersion relation of the regularized 1d Dirac qw for
l = 3 and one iteration step. One can notice the “folded” branches of the
original dispersion relation (this was already exhibited in the 1d case, which
was trivial from this point of view.). As m approaches to saturating the Dirac
mass bound m = 1, ν approaches to zero and the dispersion relation tends to
flatness.
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5.3 two-dimensional weyl qw

For d = 2, the only massless unitary qw is found on G ∼= Z2 and

G ∼ 〈x,y | xyx−1y−1〉, (18)

whose Cayley graph is just that whose vertices form the simple-cubic lattice.
Infinitely many types of tiling of G can be performed taking a subgroup H ∼= Z2,
but we will consider without loss of generality those achieved by H = lZ×mZ.
The other tilings are achieved simply by taking into account H = H1 × H2
(H1,H2 ∼= Z), where the generators of H1,H2 are not proportional (in the sense
of footnote on page 37) to those of G.
An advantage of grouping vertices into rectangular tiles is that this preserves
the graph structure.
The 2d case is more interesting than the 1d one because of the existence of two
independent directions, which can give rise to anisotropic coarse-grainings.

Figure 4: The Cayley graph of Z2 corresponding to the presentation (18).

The regular tilings of order l×m are defined as a partition

G =

l−1⋃
i=0

m−1⋃
j=0

(ix+ jx+H) ;
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G and H are isomorphic and identically presented, while the generators of H
are expressed in terms of those of G as lx and my.
Clearly, due to the abelianity of the group, the tiling is invariant under the swap-
ping of x and y (and accordingly of l and m).

By virtue of the regular tiling here defined, we can express the mapping oper-
ator as

UH =
∑
i,j

∑
x,y∈Z

|x〉 |i〉 |y〉 |j〉 〈lx+ i| 〈my+ j| .

UH maps independently the generators of the two directions x,y, i.e.

T̃+x =

(∑
x

|x+ 1〉 〈x|⊗ |0〉 〈l− 1|+
∑
x

|x〉 〈x|⊗
l−1∑
i=1

|i+ 1〉 〈i|

)
⊗
∑
y,j

|y〉 〈y|⊗ |j〉 〈j|

=:

∫
B
dk |k〉 〈k|⊗X+

l ⊗ 1m,

T̃+y =
∑
x,i

|x〉 〈x|⊗ |i〉 〈i|

∑
y

|y+ 1〉 〈y|⊗ |0〉 〈m− 1|+
∑
y

|y〉 〈y|⊗
m−1∑
j=1

|j+ 1〉 〈j|


=:

∫
B
dk |k〉 〈k|⊗ 1l ⊗ Y+m,

(and clearly T̃−x = T̃
†
+x, T̃−y = T̃

†
+y) where the x,y shift matrices have been

defined analogously to the 1d case.
The 2d regularized walk thus reads:

R [A] =

∫
B
dk |k〉 〈k|⊗X+

l ⊗ 1m ⊗A+x +

∫
B
dk |k〉 〈k|⊗X−

l ⊗ 1m ⊗A−x

+

∫
B
dk |k〉 〈k|⊗ 1l ⊗ Y+m ⊗A+y +

∫
B
dk |k〉 〈k|⊗ 1l ⊗ Y−m ⊗A−y

=:

∫
B
dk |k〉 〈k|⊗

∑
h∈S

(Bh ⊗Ah) =:

∫
B
dk |k〉 〈k|⊗R [A]k .

Simultaneously diagonalizing the Bh:

R [A]k =
∑
i,j

∫
B
dk |k〉 〈k|⊗ |i〉 〈i|⊗ |j〉 〈j|⊗

(
e+i(

kx
l + 2π

l i)A+x + e
−i(kxl + 2π

l i)A−x

+ e
+i
(
ky
m + 2π

m j
)
A+y + e

−i
(
ky
m + 2π

m j
)
A−y

)
≡
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≡
∑
i,j

∫
B
dk |k〉 〈k|⊗ |i〉 〈i|⊗ |j〉 〈j|⊗W

(
kx

l
+
2π

l
i,
ky

m
+
2π

m
j

)
, (19)

namely l×m shifted and scaled Weyl qws.
Iteration is straightforwardly performed in each direction separately as in the
1d case.
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Figure 5: Plot of ω versus
(
k̃x, k̃y

)
, dispersion relation of the regularized 2d Weyl qw

for the anisotropic regular tiling l = 1,m = 2 (one iteration step). One can
notice the “folded” branches of the original dispersion relation around the y
component only.

5.4 two-dimensional dirac qw

The regularization of the 2d massive case is formally identical to the previous
case examined.
Two Weyl walks are coupled and the transition matrices become

Af −→

νAf 0

0 νA
†
f

 , Ae −→

 0 im1

im1 0

 .

The Dirac qw has the usual form

A =
∑
f∈S

Tf ⊗Af + Te ⊗Ae,
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so that one can regularize the massless part in the same way as in (19) by linear-
ity, while the massive contribute reads

UH (Te ⊗Ae)UH = T̃He ⊗ 1l ⊗ 1m.

The Dirac regularized walk is obtained combining the 2d massless case with
the derivation of the 1d massive walk, leading to the l×m shifted and rescaled
dispersion relations

ω± (kx,ky, i, j) = ± arccos
{
ν

2

[
cos
(
kx

l
+
2π

l
i

)
+ cos

(
ky

m
+
2π

m
j

)]}
.

5.5 discarding the additional degree of freedom

In section 4.4 we gave a renormalization procedure valid for qws over abelian
groups, which consists in performing a regularization of the walk, applying the
corresponding evolution operator to some state and then tracing out the addi-
tional degrees of freedom, in order to obtain a “coarse-grained” walk.
This procedure gives in general mixed states as a result: in [22] it is explained
that “mixing can be always regarded as the result of discarding an environment,
otherwise everything being describable in terms of pure states and reversible
transformations” (this is entailed from the postulate of purification [19]). This fact
is strictly connected with the irreversibility of the evolution. Accordingly, in gen-
eral renormalizing a walk is equivalent to make it irreversible.

In view of this general feature, it is worth noticing that on one hand irre-
versible have been hardly studied so far; on the other hand, in the 1d massless
case there exist states which preserve purity after having discarded the addi-
tional degree of freedom, namely the eigenstate of A in the momentum repre-
sentation (which are the element of the canonical basis of C2).

Let’s therefore take a state

∣∣ψ±〉 =∑
x∈T

g(x) |x〉 |±〉 ,

with T being a set collecting any site in the interior of some tile—provided it
contains no site in the boundary of the tile under consideration—and g(x) some
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weight factors.
The regularized evolution of |ψ〉 is given by

∣∣ψ ′±〉 := R [A]UH
∣∣ψ±〉 = R [A] |T〉 ⊗

∑
j∈T

g(xj) |j〉

⊗ |±〉 ,

and, since A± = |±〉 〈±|, R [A] selects just one of the corresponding regularized
translations T̃±; moreover, as inferred from the form of (13) and (14), it performs
a periodic shift on the elements of the additional space without selecting a shift
on the tile space, thus the additional internal space remains factorized:

∣∣ψ ′±〉 ≡ |T〉 |J〉 |±〉 .

|J〉 is normalized—since |ψ〉 is—and the factorization is a sufficient condition for
the renormalization procedure to be reversible:

Tr2
∣∣ψ ′±〉 〈ψ ′±∣∣ = |T〉 〈T |⊗ |±〉 〈±| .



6

R E N O R M A L I Z AT I O N O F Q W s O V E R N O N - A B E L I A N
G R O U P S

6.1 qw over a virtually abelian group

Let’s consider the group G1 of rank 2 endowed with the following presentation

G1 ∼ 〈a,b | a2b−2〉. (20)

The Cayley graph of G1 is that whose vertices form the simple square lattice,
quasi-isometrically embeddable in R2: indeed, as discussed in section 2.2, G1 is
virtually abelian.

Figure 6: The Cayley graph of G1 corresponding to the presentation (20).

47
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One of its free abelian subgroups H ∼= Z2 of finite index is generated by h2 = a2,
h4 = a−1b. Some regular tessellations of the Cayley graph of G1 are achieved
by the cosets partitions

G1 = H∪ fH, f ∈ S1 (21)

namely H is of index 2. The sublattice induced by H is given by the following
presentation

H ∼ 〈h1,h2,h3,h4 | h1 − (h2 − h4) , h3 − (h2 + h4)〉, (22)

(abelian notation is used since H ∼= Z2) which gives rise to a Cayley subgraph
of degree 8 which tessellates the Cayley graph of G1. In terms of the generators
of G1 one has h1 = ba and h3 = ab.

In appendix A.1 it is derived the corresponding evolution operator B for the
qw over the Cayley graph of G1. The resulting transition matrices {Aq}q∈S1 are
the same of the two-dimensional abelian case (see (8)), provided the following
identifications:

a↔ y, b↔ x, a−1 ↔ −x, b−1 ↔ −y (23)

Due to the normality of H in G1, in view of the remark 4.3 we can define the
invariant spaces under the Th:

|k〉0 :=
1

2π

∑
x∈H

e−ik·x |x〉 , |k〉1 :=
1

2π

∑
x∈H

e−ik·x |fx〉 .

Evaluating the action of the generator of G1 on the |k〉j, one can reconstruct
the renormalized non abelian walk R [B], which will be written in terms of the
8 generators of H and their inverses. In order to do so, we have now to fix a
regular tiling of the Cayley graph of G1, e.g. the one with f = a; from (21),
however, it is interesting to note that the action of the generators of G1 and their
inverses on a left coset of H takes values in the other, because f2 ∈ H ∀f and of
course fH ≡ aH for disjointness of cosets. This fact is useful in order to write an
expression for R [B].
One has:

Ta |k〉0 = |k〉1 , Ta |k〉1 = e
ik2 |k〉0 ,

Tb |k〉0 = e
ik4 |k〉1 , Tb |k〉1 = e

ik1 |k〉0 ,
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Ta−1 |k〉0 = e
−ik2 |k〉1 , Ta−1 |k〉1 = |k〉0 ,

Tb−1 |k〉0 = e
−ik1 |k〉1 , Tb−1 |k〉1 = e

−ik4 |k〉0 .

It follows this off-diagonal expression for the renormalized walk

R [B]k =

 0 Bk

B ′k 0

 ,

with
Bk = eik2Aa + e

ik1Ab +Aa−1 + e−ik4Ab−1 ,

B ′k = Aa + e
ik4Ab + e

−ik2Aa−1 + e−ik2Ab−1 .
(24)

Exploiting the relators in (22) and the isotropy group representation derived in
A.1, equations (24) read

Bk = ei
k1
2

(
ei
k3
2 Aa + e

i
k1
2 Ab + e

−i
k1
2 Aa−1 + e−i

k3
2 Ab−1

)
:= ei

k1
2 W1,

B ′k = e−i
k1
2

(
ei
k1
2 Aa + e

i
k3
2 Ab + e

−i
k3
2 Aa−1 + e−i

k1
2 Ab−1

)
:= e−i

k1
2 σzW1σz,

Defining

V :=

1 0

0 e−i
k1
2 σz

 ,

one has

R [B]k = V

 0 W1σz

W1σz 0

V† ≡ V (σx ⊗W1σz)V
†.

Accordingly, the eigenvalues of R [B]k are those of σx⊗W1σz; since σx = |0〉 〈0|−
|1〉 〈1|, R [B]k is unitarily equivalent to the block diagonal operatorW1σz 0

0 −W1σz

 .

Resorting to A.1 and to the correspondence (23), it’s easy to see that

iW1σz ≡W

(
k1 + π

2
,
k3 + π

2

)
,
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thus the four eigenvalues of R [B]k are

±λ+, ±λ− with λ± := e
±i arccos

{
1
2

[
cos k1+π2 +cos k3+π2

]}
−iπ2 ,

namely the same of the Weyl qw up to some shifts for the momenta and the
energy.

Up to now we worked on the set I of transition matrices found in A.1, leading
to R [B]k ≡ R

[
BI
]

k; in A.1 two sets of matrices are actually found and it is
interesting to investigate if they are connected in some physically meaningful
way.
Through a block diagonal change of basis matrix, we see that R

[
BI
]

k is unitarily
equivalent to  0 σzW1

σzW1 0

 .

On the other hand, one finds in A.1 that BII is connected to BI through a local
antiunitary transformation on the AIIq , therefore R

[
BII
]

k is, by linearity, unitar-
ily equivalent to  0 Wt

1σz

Wt
1σz 0

 ,

which is just R
[
BI
]†
−k (up to a change of basis).

This means that the two regularized walks are connected by PT symmetry, where

P : k 7−→ −k (parity),

T : A 7−→ A† (time reversal).

This physical interpretation of P symmetry can be attempted in view of the fact
that the non-abelian walk has been regularized, recovering an abelian walk and
enabling to define significantly physical quantities (such as the momentum).

6.2 qw over a group with cyclic generators

Let’s consider the group G2 of rank 2 endowed with the following presentation

G2 ∼ 〈a,b | a4,b4, (ab)2〉. (25)
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Also in this case the Cayley graph of G2 is that whose vertices form the simple
square lattice and G2 is virtually abelian; one of its free abelian subgroups of
finite index H ∼= Z2 is generated by h1 = b−1a, h2 = ab−1.

Figure 7: The Cayley graph of G2 corresponding to the presentation (25).

Some regular tessellations of the Cayley graph of G2 are achieved by the cosets
partition

G2 =

3⋃
j=0

fjH, f ∈ S2. (26)

The sublattice induced by H in G2 gives rise to a simple square Cayley subgraph
that tessellates the Cayley graph of G2.
This time the subgroup H is not normal in G2, hence it is not possible to define
the invariant spaces under the Th.

In appendix A.2 it is derived the corresponding evolution operator C for the
qw over the Cayley graph of G2. Unlike the case of G1, the resulting transition
matrices {Aq}q∈S2 are different from the two-dimensional abelian case.
Let’s fix a regular tiling, e.g. f = a, and define the spaces:

|k〉j :=
1

2π

∑
x∈H

e−ik·x
∣∣ajx〉 , j = 0, 1, 2, 3.
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As in the previous case, in order to find R [C] one has to compute:

Ta |k〉0 = |k〉1 , Ta−1 |k〉0 = |k〉3 ,

Ta |k〉1 = |k〉2 , Ta−1 |k〉1 = |k〉0 ,

Ta |k〉2 = |k〉3 , Ta−1 |k〉2 = |k〉1 ,

Ta |k〉3 = |k〉0 , Ta−1 |k〉3 = |k〉2 ,

Tb |k〉0 = e
−ik1 |k〉1 , Tb−1 |k〉0 = e

ik2 |k〉3 ,

Tb |k〉1 = e
ik2 |k〉2 , Tb−1 |k〉1 = e

ik1 |k〉0 ,

Tb |k〉2 = e
ik1 |k〉3 , Tb−1 |k〉2 = e

−ik2 |k〉1 ,

Tb |k〉3 = e
−ik2 |k〉0 , Tb−1 |k〉3 = e

−ik1 |k〉2 .

It follows this block expression for the renormalized walk

R [C]k =

 Ck1 C
′
k2

C
′
−k2

C−k1

 ,

with

Ck =

 0 Aa−1 + eikAb−1

Aa + e
−ikAb 0

 ,

C
′
k =

 0 Aa + e
−ikAb

Aa−1 + e−ikAb−1 0

 .

(27)

In order to find the eigenvalues of R [C]k for the case I of appendix A.2, we
compute

(
R
[
CI
]

k

)2, namely:

 C2k1 +C
′
k2
C
′
−k2

Ck1C
′
k2

+C
′
k2
C−k1

C
′
−k2

Ck1 +C−k1C
′
−k2

C
′
−k2

C
′
k2

+C2−k1

 .

Since CkC
′

k ′ = −C
′

k ′C−k, the off-diagonal blocks vanish; moreover, both the
diagonal blocks are equal to

2ζ±ζ∓

1 0

0 1

 .
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Accordingly, the eigenvalues of R
[
CI
]

k are just
(
2ζ±ζ∓

) 1
2 ≡ 1,−1.

The peculiar feature of this qw is that ωj 6= ωj (k), so R
[
CI
]

k is an abelian walk
which lead to a non dispersive Schödinger equation (see the footnote on page
23). The factors ζ± are not relevant in order to distinguish the walks in some
relevant way.

The case II is not unitarily equivalent to the I:

R
[
CII
]

k =

 Dk1 D
′
k2

D
′
−k2

D−k1

 ,

with

Dk =

 0 σx
(
AI
a−1 + e

ikAI
b−1

)
σx

AIa + e
−ikAIb 0

 ,

D
′
k =

 0 AIa + e
−ikAIb

σx
(
AI
a−1 + e

−ikAI
b−1

)
σx 0

 .

Numerical analysis of the eigenvalues of R
[
CII
]

k gives the usual large scale

limit to the two-dimensional Weyl dispersion relation ω (k) =
√
k21 + k

2
2.

Resorting to remark A.4, instead, case I can “transit” through different interest-
ing behaviours, as shown and discussed in the figures below.
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Figure 8: Case already discussed in the present section: b = 0, U± = 1, which gives a
flat dispersion relation.
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Figure 9: Intermediate case: mass effect. The two cones of the dispersion relation are
detached. “Mass parameter” a = 0.01, b =

√
1− a2. The Dirac dispersion

relation tends to flatness for ν approaching to zero, i.e. m approaching to 1
(here ν→ b, m→ a), as seen in figure 3 on page 41.
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Figure 10: Weyl transition: a = 0 and U− = −iσx, as expected in view of the analogy
noticed above.



C O N C L U S I O N S

La contingenza, che fuor del quaderno
de la vostra matera non si stende,

tutta è dipinta nel cospetto etterno;
necessità però quindi non prende

se non come dal viso in che si specchia
nave che per torrente giù discende.

Dante Alighieri [Divina Commedia, Paradiso,
Canto XVII]

In this work we have studied the dynamical model known as random walk.
The applicative scopes of rws are extensive and have been largely explored dur-
ing the 19th century.
rws have been extended to the quantum case: a quantum walk (qw) shows even
more interesting emergent behaviours due to the interference of the quantum
paths.
In the last two decades they have been also taken into account as the fundamen-
tal mechanism governing systems at ultra-relativistic energies, namely at Planck
scale, where violations of Lorentz symmetry are hypothesised.

We have studied a peculiar model in this purview, namely qws over Cayley
graphs, with homogeneity and locality of interactions as main requirements.
This model have been studied by the autors of [40, 52, 53] in the perspective of
re-founding Quantum Field Theory and it gives emergent Weyl and Dirac evolu-
tion in the large-scale limit.
The thought-provoking idea of the discreteness of spacetime at a fundamental

55
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level is grounded on informational and operational principles.
In [54] it is shown how this kind of walk exhibits relative locality, a feature of
doubly-special relativity (which is a deformed Lorentz symmetry theorized by
Amelino-Camelia in [55]).

In this thesis work we firstly considered abelian qws. We found a closed-
form expression for renormalizing the walks in the position space; we studied
the resulting dispersion relations, which have been found to be invariant with
respect to the non-regularized case (up to some shifts and rescalings).
Subsequently, we took the large-scale limit performing a coarse-graining of the
quantum network, finding that in general this gives rise to an irreversible walk,
as expected. A reversible (i.e. preserving unitarity) evolution can be found in the
Weyl 1d case.
Through a group-theoretical treatment, we have been able to provide a rigorous
renormalization of non-abelian qws, furnishing the first examples of this kind
of walks. In the non-abelian case the regularization procedure becomes crucial,
as discussed during the thesis.
The dispersion relations of the non-abelian walks studied exhibit features that
are similar to the abelian case. Besides, three peculiar issues have to be pointed
out:

• Although we studied a group with cyclic conditions resorting to an abelian
version of it, we founded a flat dispersion relation, meaning that the prop-
erties of the original group are inherited by the procedure of renormal-
ization. This fact attests the correctness of the framework and entails that
abelian walks can exhibit a variety of behaviour (provided the extension
of the cell structure).

• The concept of strong homogeneity (mentioned in 3.1) is an emergent feature
in this framework.

• Mass effects can be obtained with this procedure without coupling two
Weyl walks.

6.3 future perspectives

There is still room for exploring new features of both the model and of the renor-
malization framework.
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Non-abelian qw may be a fruitful subject of study. The class satisfying the phys-
ical assumptions is fixed (virtually abelian groups) and proved to give quite
different behaviours with respect to the abelian class. Further investigations are
possible also for the 3d case, which has been explored for G ∼= Z3 only.
In literature, irreversible qws (appeared renormalizing the abelian walks) have
been hardly studied. Moreover, in [39] “the operational procedure of building up
the coordinate system introduces an in-principle indistinguishability between
neighboring events, resulting in a network that is coarse-grained”: this is analo-
gous to the coarse-graining of the walk’s lattice, making potentially interesting
to study boosts also in this context.
Lastly, a thorough characterization of the admissible graphs (and of the related
qws over them) might hopefully allow to comprehend whether Dirac dynamics
(apart from non-dispersive cases) is an emergent general feature from a geomet-
ric point of view.





Part III

A P P E N D I X





A
D E R I VAT I O N O F Q W s O V E R N O N - A B E L I A N G R O U P S

a.1 first example of a virtually abelian qw

Let’s take the group G1 endowed with the following presentation

G1 ∼ 〈a,b | a2b−2〉.

We solve the unitarity conditions for B =
∑
q∈S1

Tf ⊗Aq acting on `2 (G1)⊗C2.

Taking i, j assuming values in S+1 with i 6= j, from the conditions (3), one
obtains the sets of equations:

AiAj−1
† = Ai

†Aj−1 = 0 (28)

and
AiAj

† +Ai−1Aj−1
† = Ai

†Aj +Ai−1
†Aj−1 = 0

AiAi−1
† +AjAj−1

† = Ai
†Ai−1 +Aj

†Aj−1 = 0
(29)

Every complex square matrix admits the so called polar decomposition, namely

∀M ∈M (2× 2, C) ∃ V ∈M (2× 2, C) unitary,

P ∈M (2× 2, C) semi-positive definite : M = VP
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Taking a polar decompositionAq = VqPq (q ∈ S1) and considering that Pq = P†q,
equations (28) become

ViPiPj−1Vj−1
† = 0 (30)

PiVi
†Vj−1Pj−1 = 0 (31)

Resorting to the Sylvester rank inequality for 2× 2 matrices, which states rkD+

rkE 6 rkDE + 2, equations (30) imply that rkPi + rkPj−1 6 2: none Pq can
be full rank unless some Pq ′ is null rank, but this is excluded by the isotropy
assumption. Then rkPq = 1. Furthermore, still from (30), one can write:

Pi = αi |+i〉 〈+i| , Pj−1 = αj−1 |−i〉 〈−i|

with αq > 0 and {|+i〉 , |−i〉} orthonormal bases for C2.

On the other hand, from equations (31) one finds that 〈+i|Vi†Vj−1 |−i〉 = 0

and, since Vi†Vj−1 is unitary, it must be diagonal on the basis {|+i〉 , |−i〉} (and
its entries are phase factors for unitarity).
Moreover, the Vq are not uniquely determined by the polar decomposition, since
the Aq are not full rank.
In fact, if Ai = ViPi holds for a Vi, there exists an infinite class of unitary
matrices V ′i such that Ai = V ′iPi. Let’s take e.g. the matrix of the form

V ′i = Vi
(
|+i〉 〈+i|+ eiθi |−i〉 〈−i|

)
;

this is unitary and exactly observes the polar decomposition for Ai. In view
of the fact that the same considerations hold for Aj−1 , one can always fix this
“gauge freedom” computing

V ′i
†
V ′j−1 = e

iθ
j−1 〈+i|Vi†Vj−1 |+i〉 |+i〉 〈+i|+ e−iθi 〈−i|Vi†Vj−1 |−i〉 |−i〉 〈−i|

and arbitrarily posing eiθj−1 〈+i|Vi†Vj−1 |+i〉 = 1 and e−iθi 〈−i|Vi†Vj−1 |−i〉 = 1,
so that

V ′i
†
V ′j−1 = 1 =⇒ V ′j−1 = V

′
i
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holds.
This allows to write:

Aa = αaV |+a〉 〈+a| , Ab−1 = αb−1V |−a〉 〈−a| ,

Ab = αbW |+b〉 〈+b| , Aa−1 = αa−1W |−b〉 〈−b| .
(32)

Equations (29), exploiting the (28), then imply

AiAj
†Ai = 0

AiAi−1
†Ai = 0

Ai−1Aj−1
†Ai−1 = 0

Ai−1Ai
†Ai−1 = 0

Inserting equations (32), these are equivalent to

〈+a| −b〉 〈−b|W†V |+a〉 = 0,

〈−a| +b〉 〈+b|W†V |−a〉 = 0,

〈+a| +b〉 〈+b|W†V |+a〉 = 0,

〈−a| −b〉 〈−b|W†V |−a〉 = 0.

(33)

Considering that 〈+a| −b〉 = 0 ⇔ |+a〉 = |+b〉 ⇔ 〈−a| +b〉 = 0 (up to phase
factors that would not appear in the Aq), for the (33) to be satisfied there are
two cases only:

I
|+a〉 = |+b〉

|−a〉 = |−b〉

}
=⇒ 〈+b|W†V |+a〉 = 〈−b|W†V |−a〉 = 0

II

〈−b|W†V |+a〉 = 〈+b|W†V |−a〉 = 0

Let’s note that anyhow just two of the matrix elements which appear in (33) can
be zero: indeed, if ab absurdo this would not be the case, let’s define U any of the
possible matrices which connect the two orthonormal bases found; thus U†W†V
would have at least three vanishing matrix elements, but this is absurd for it is
unitary.
Accordingly, the two cases are
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I
|+a〉 = |+b〉 := |+〉

|−a〉 = |−b〉 := |−〉

}
=⇒ 〈+|W†V |+〉 = 〈−|W†V |−〉 = 0

II
|+a〉 = |−b〉 := |+〉

|−a〉 = |+b〉 := |−〉

}
=⇒ 〈+|W†V |+〉 = 〈−|W†V |−〉 = 0

In both cases one thus has V :=W (µ |+〉 〈−|+ ν |−〉 〈+|).
Plugging these results in (29), in both cases one finds:

αaαa−1 = −αbαb−1ν∗µ∗

αaαb = −αa−1αb−1νµ

}
=⇒ µν = −1, αa−1 = αb := β, αa = αb−1 := α

namely

I

Aa = ανW |−〉 〈+|

Ab = βW |+〉 〈+|

Aa−1 = βW |−〉 〈−|

Ab−1 = −αν∗W |+〉 〈−|

II

Aa = ανW |−〉 〈+|

Ab = βW |−〉 〈−|

Aa−1 = βW |+〉 〈+|

Ab−1 = −αν∗W |+〉 〈−|

and the two cases are connected through the simple swap b↔ a−1.
From the normalization (4) it straightforwardly follows that β =

√
1−α2, while

from the isotropy condition (5), W is found simply substituting the Aq and
inverting the resulting relation, leading to

WI =

√1−α2 αν∗

−αν
√
1−α2

 .
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Finally, the transition matrices for case I are:

AIa = α

 α 0
√
1−α2ν 0

 , AIb =
√
1−α2

 α 0

−αν 0

 ,

AIa−1 =
√
1−α2

0 αν∗

0 α

 , AIb−1 = α

0 −
√
1−α2ν∗

0 α

 .

As one can easily verify, a unitary matrix X such that XAIaX† = AIb must be di-
agonal and so it would multiply the entries of AIa by a phase factor; accordingly,
the transitive action 2 of the isotropy group on S+1 imposes α2 = 1−α2, namely
α = 1√

2
.

Let’s define the unitary U (ν) :=
(
1 0
0 ν

)
: by direct computation, one can verify

that U (ν)Aq (ν)U (ν)† = Aq (1). By linearity of B, this implies that with a local
unitary conjugation one can remove the dependence from the phase factor ν: the
transition matrices I are then the same (up to a permutation of indexes) found
in [40], namely:

AIa =
1

2

1 0

1 0

 , AIb =
1

2

 1 0

−1 0

 ,

AIa−1 =
1

2

0 1

0 1

 , AIb−1 =
1

2

0 −1

0 1

 .

Remark A.1. Case I and case II are connected by an antiunitary transformation; explic-
itly, it holds

Y
(
AIq
)t
Y† = AIIq , Y =

1√
2
(1 + iσy) .

In section 6.1 it is provided the physical interpretation of this connection.
The unitary matrix which represents the action of the isotropy group of B is σz.

Remark A.2. While, though it does not exist a unitary transformation between the two
sets of matrices found for B, but they are the same up to an antiunitary transformation,
yet it exists neither a unitary nor an antiunitary which connects the abelian set with the
non abelian one.
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a.2 second example of a virtually abelian qw

Let’s now consider a group of rank 2 with cyclic generators, namely

G2 ∼ 〈a,b | a4,b4, (ab)2〉.

We solve the unitarity conditions for C =
∑
q∈S2

Tq ⊗Aq acting on `2 (G2)⊗C2.

Taking i, j assuming values in S+2 with i 6= j, from the conditions (3), one
obtains the sets of equations:

Ai−1Aj−1
† = Ai−1

†Aj−1 = 0

AiAj
† = Ai

†Aj = 0
(34)

and
AiAi−1

† +Ai−1Ai
† = Ai−1

†Ai +Ai
†Ai−1 = 0

AiAj−1
† +Aj−1Ai

† = Ai−1
†Aj +Aj

†Ai−1 = 0
(35)

Taking a polar decomposition for the Aq similarly to what has been done in A.1,
the following form of the transition matrices follows:

Aa = αaV |+a〉 〈+a| , Ab = αbV |−a〉 〈−a| , (36)

Aa−1 = αa−1W |+a−1〉 〈+a−1 | , Ab−1 = αb−1W |−a−1〉 〈−a−1 | . (37)

with αq > 0 and {|+q〉 , |−q〉} orthonormal bases for C2.
Combining (35) with (34), one then obtains:

Ai−1Ai
†Aj−1 = 0,

AiAi−1
†Aj = 0,

AjAi−1
†Ai = 0,

Aj−1Ai
†Ai−1 = 0.
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By virtue of the same reasoning carried on in A.1 and inserting the Aq, the last
equations are equivalent to

〈+a| +a−1〉 〈−a−1 |W†V |+a〉 = 0,

〈−a| −a−1〉 〈+a−1 |W†V |−a〉 = 0,

〈+a| −a−1〉 〈+a−1 |W†V |+a〉 = 0,

〈−a| +a−1〉 〈−a−1 |W†V |−a〉 = 0.

(38)

Accordingly, the possible cases are two, similarly to A.1, namely:

I

Aa = αaµW |+〉 〈+|

Ab = αbνW |−〉 〈−|

Aa−1 = αa−1W |+〉 〈+|

Ab−1 = αb−1W |−〉 〈−|

II

Aa = αaµW |+〉 〈+|

Ab = αbνW |−〉 〈−|

Aa−1 = αa−1W |−〉 〈−|

Ab−1 = αb−1W |+〉 〈+|

with µ,ν phase factors and each of them can be equal either to i or to −i. The
two cases are connected through the swap a−1 ↔ b−1.
Finding W and imposing the normalization and isotropy condition as done in
A.1, one finally finds the AIq: defining ζ± := ±i+12 , the transition matrices are

AIa = ζ±

1 0

0 0

 , AIb = ζ±

0 0

0 1

 ,

AIa−1 = ζ
∓

1 0

0 0

 ≡ AIa†, AIb−1 = ζ
∓

0 0

0 1

 ≡ AIb†.
Remark A.3. Case I and case II are connected by the swap a−1 ↔ b−1; however, it
exists neither a unitary nor an antiunitary which connects the two cases: transposition
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affects just ζ±, while a unitary matrix which takes Aa−1 in Ab−1 and the other way
around would necessarily swap also Aa and Ab.
It is worth noting that an antiunitary transformation does not change the unitarity
conditions (and in this sense two sets can be regarded as equivalent, uniquely deter-
mined by the 3), but viceversa it might be false in general that these are in one-to-one
correspondence with the relators of a given presentation.

Remark A.4. The unitary matrix which represents the action of the isotropy group of
C is σx.
The sets of matrices found are actually four, since in both the main cases the multiplica-
tive constant can assume two values: in section 6.1 it is provided an explanation of this
fact.
Furthermore, one has to take into account that by left multiplication of a unitary matrix
which commutes with σx—whose general form is

U± = a1± ibσx for a,b > 0 and a2 + b2 = 1—

the unitarity conditions do not change, so cases I and II define an entire class of transition
matrices for C.
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