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Sommario

In questa tesi viene affrontato lo studio di un modello dinamico discreto, gli Auto-
mi Cellulari Quantistici, che costituiscono l’estensione quantistica dei corrispettivi
classici, gli Automi Cellulari. Gli automi cellulari quantistici sono costituiti da una
collezione di sistemi quantistici collocati nei siti di un reticolo; in più si richie-
de che questi sistemi quantistici interagiscano localmente con un certo numero
(finito) di loro vicini, che vanno a formare l’intorno di ogni cella. Inoltre si impo-
ne l’omogeneità delle interazioni in base al principio dell’universalità della legge
fisica.

In questo lavoro vengono considerati gli automi di Dirac e Weyl nel settore di
particella singola in una e due dimensioni spaziali rispettivamente. L’obiettivo
che ci si era prefissi era applicare a questo caso l’approccio a path-integral discreto,
riducendo quindi l’evoluzione a N passi dell’automa a una somma combinatoria
su tutti i possibili cammini che connettono due punti del reticolo su cui esso stesso
è definito.

Come risultato di questa analisi, si è ottenuta un’espressione analitica per la
soluzione della dinamica degli automi nei due casi considerati. Specificatamente,
fissando una coppia di punti sul reticolo si può cercare la matrice di transizione
complessiva che descrive l’evoluzione dello stato del grado di libertà interno tra
i due punti. La soluzione ottenuta consiste quindi nell’espressione esplicita dei
coefficienti delle matrici di transizione associate a ciascuna possibile traslazione
del reticolo.





C O N T E N T S

1 introduction 1

2 cellular automata 3

2.1 Classical Cellular Automata 5

2.2 Quantum Cellular Automata 6

2.3 Quantum Walks 7

2.3.1 Quantum Walks versus Quantum Cellular Automata 8

2.4 The Dirac Quantum Cellular Automaton 8

2.4.1 Dirac automaton in (1+ 1)-dimensions 10

2.4.2 Weyl automaton in (2+ 1)-dimensions 10

2.4.3 Symmetries 11

3 sum over histories 13

3.1 Feynman’s Path Integral 13

3.2 Path Integral for Quantum Walks 15

3.2.1 Basic ideas 15

3.2.2 General formulation 17

4 dirac solution in 1-dimension 19

5 weyl solution in 2-dimensions 25

5.1 Preliminary analyses 25

5.1.1 Basic properties 25

5.1.2 Directed paths 28

5.1.3 Recurrence relations 30

5.2 General case solution 35

5.2.1 Fundamental result 35

5.2.2 Counting techniques 36

5.2.3 Cycles 42

6 conclusions 47

6.0.4 Future perspectives 48

references 49

v





L I S T O F F I G U R E S

Figure 1 Two examples of neighbourhood schemes for a cell x. 3

Figure 2 The Game of Life so called glider. 4

Figure 3 Paths connecting two points A and B. 14

Figure 4 Paths in a square lattice 16

vii





1 I N T R O D U C T I O N

In this work we study the properties and features of a model of discrete dynam-
ics which is called Quantum Cellular Automaton (qca) and it is the extension to

the quantum world of classical Cellular Automata (ca).

A qca describes the discrete-time evolution of a lattice of finite-dimensional
quantum systems. The characteristic traits of this model are a strict notion of
locality, requiring that each quantum system interacts with a finite number of
neighbours, and translational invariance. The inherent simplicity of these mod-
els is overcome by the surprising complexity of their emergent behaviours. The
ca paradigm was introduced by John von Neumann [65] and, apart an initial
skepticism and lack of attention, it has received during the years more and more
contributions. qcas have been a subject of investigation in the fields of Computer
Science and Quantum Information, where they found a rigorous mathematical for-
malisation and an extensive study of their general features [3, 7, 9, 37, 45, 60].

The interest in this models was also motivated by their application in design-
ing efficient quantum algorithms. Indeed, qcas are proved to provide polynomial
speedups for a number of relevant problems [6, 30, 52] and Childs et al. [18] have
shown how qcas allow an exponential speedup for an oracular problem.

Recently, discrete-dynamics models similar to cellular automata have been con-
sidered with the aim to describe the evolution of a relativistic particle, hence
evolving according to the Klein-Gordon or the Dirac equations. We can mention
some examples of these approaches like the quantum lattice Boltzmann [63], the
quantum lattice gases [54] and the qca framework [11, 62, 73]. Such a perspective
was at the core of the considerations of R. P. Feynman and J. A. Wheeler [39]
regarding the connections between Physics and information processing.

This is also the spirit of the recent research program of D’Ariano [20, 21, 23, 24]
in the scope of giving fully informational foundations to Quantum Theory [19]. The
successful results of these ideas opened the way to give informational premises
also to Quantum Field Theory, which is the most fundamental and successful the-
oretical framework for present physics. In a recent paper [22], D’Ariano and
Perinotti were able to derive a qca from four postulates which gives, in the large-
scale limit, the Weyl and Dirac equations.

In the literature one can find two different approaches to analyse the evolution
of an automaton. A first way consists in the study of the automaton in the momen-
tum space, providing both exact analytical solutions and approximate solutions
in the asymptotic limit of very long times. The other one employs the discrete
version of the path-integral formulation, consisting in expressing the probability
amplitude for the transition between states of two systems located at two different

1



introduction

sites of the lattice as a combinatorial sum over all possible paths connecting the
two sites.

The authors in [22] have already given the analytic solution in the momentum
space. In the present work we will focus instead on the second approach, ob-
taining an analytic solution in the position representation for the Dirac and Weyl
automata in one and two spatial dimensions respectively. For the one dimensional
case, we can mention other analytical results as the one for the Hadamard walk by
Ambainis et al. [7], that for the generalised Hadamard walk and for the disordered
quantum walks by Konno [49, 48] and the one for the finite-differences Dirac
equation obtained by Kauffman and Pierre Noyes [42]. The mono-dimensional
automaton model considered in this thesis, derived in [12, 13] or in the afore-
mentioned paper of D’Ariano and Perinotti [22], is different from these previous
models and the analytic solution we have obtained for the Weyl automaton in two
spatial dimensions constitutes one of the few examples of exactly solved models
in dimension greater than one. Furthermore, these results will be very useful
in analysing the large-scale behaviour of these automata. In particular, one can
study how the isotropy of the causal cone is recovered thanks to the interference
of the quantum paths.
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2 C E L L U L A R A U TO M ATA

Model of discrete-dynamics, the Cellular Automaton (ca) paradigm is very fas-
cinating, showing high emergent complexity, arising from simple rules.

Originally this model was introduced and studied by Stanislaw Ulam and John
von Neumann when they were colleagues at the Los Alamos National Laboratory in
the 1940s. Ulam was studying models of crystal growth, while von Neumann
was committed to devising and developing self-replicating systems [65]. The results
of this pioneering research were eventually systematised in [56].

The cas are models describing a discrete dynamics (in time and space) based
on local interactions between adjacent sites (or cells) of a n-dimensional lattice
or more generally between sites belonging to a specified (finite) neighbourhood.
Moreover, to each cell is associated a certain (finite) number of states (e. g. dead or
alive) and an update rule which gives the new state of the cell, depending on the
state of the other cells in the neighbourhood. For an example of different schemes
see figure 1.

It was only when the John Conway’s Game of Life was presented by Gardner
[34] in 1970 that the ca paradigm obtained wide notoriety. The Game of Life is a
very simple automaton characterised by an infinite 2-dimensional grid of square
cells which can assume only two states: dead or alive. The update rules for this
automaton are:

(i) any live cell with fewer than two live neighbours dies, as if caused by under-
population;

(ii) any live cell with two or three live neighbours lives on to the next generation;

(iii) any live cell with more than three live neighbours dies, as if by overcrowding;

(iv) any dead cell with exactly three live neighbours becomes a live cell, as if by
reproduction.

x

(a) von Neumann
neighbourhood.

x

x + N

(b) Moore neigh-
bourhood.

Figure 1: Two examples of neighbourhood schemes for a cell x.
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cellular automata

Figure 2: The Game of Life so called glider.

Surprisingly, such elementary rules give origin to very interesting behaviours,
depending on the initial configuration. Very simple patterns can show complex
global behaviours, such as systems of alive cells moving coherently on the grid,
stationary configurations and oscillators. Among these peculiar patterns, we can
cite the gliders as in figure 2. This particular pattern exhibits a surprising be-
haviour. Its evolution has a period of 4 generations to regain its original shape,
meanwhile translating on the grid. The glider is the simplest propagating entity
of the Game of Life. One can also build guns to periodically emit such gliders.

It was only with the paper by physicist Stephen Wolfram [70] that the cas re-
ceived a deep analysis and the first serious formalisation. As models of discrete
dynamics the cas resemble the evolution of physical systems as long as they can
be described in the scope of Classical Mechanics. This fact was a limitation to the
spread of the study of the automata in connection with Theoretical Physics. There
were various attempts to overcome such limitations, extending the concept of ca
to the quantum world as first suggested by Richard Phillips Feynman in his seminal
paper [31]. Such extensions go by the name of Quantum Cellular Automata (qcas)
and are the main object of study of this work of thesis.

In relation to cas there are other models of discrete dynamics which are called
Random Walks (rws) and Quantum Walks (qws), first introduced by Aharonov, Davi-
dovich, and Zagury [2]. These models simulate a single-particle evolution on
a discrete lattice, while, on the contrary, the automata can accommodate many
particles in local interaction. We can say that the one-particle sector of a qca is,
actually, a qw.

There were several attempts to extend the notion of classical cas to the quantum
case. For a brief review of some notions of qca one can see the paper of Wiesner
[67], where she highlights the differences between the various meaning of such
quantum extensions to the classical automata. The study of qcas began with
Grössing and Zeilinger in [38] where they first coined the term. Later, there were
other studies that led to many results in the field of Quantum Information with
the works in [9, 37, 60], regarding the theory of qcas. For qws we can mention
the references in [3, 7, 45]. The theory we are studying here is based on the
notion of Quantum Cellular Automaton as defined by Reinhard F. Werner in the
aforementioned paper [60].
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2.1 classical cellular automata

2.1 classical cellular automata
We have introduced above the concept of ca and qca giving some intuition about
the features of these models. Here we will rigorously formalise the ideas we have
exposed.

Let us now begin giving the formal definition of a cellular automaton. Here
we will consider only cubic infinite lattices, even in the quantum case, keeping
in mind that in the literature one can find more general approaches, resorting to
aspects of Graph Theory and connections with Geometric Group Theory, as one can
notice from [8, 22, 53, 72].

Definition 2.1 (Lattice translation maps). Let DZd be a set of functions defined
on the lattice with values in a set D. Then we can define translations τx of these
functions as:

τx : DZd −→ DZd

c 7−→ τx[c]

with

τx[c](y) := c(y− x), ∀y ∈ Zd.

Definition 2.2 (Cellular Automaton). A (classical) Cellular Automaton (ca) is a 4-
tuple (L, A,N, T) consisting in:

(i) a d-dimensional cubic lattice L = Zd of cells (or sites);

(ii) a (finite) alphabet of symbols A, which constitutes the set of cell states;

(iii) a finite neighbourhood scheme N ⊂ L;

(iv) a local transition rule T : AN → A.

The cardinality |A| is called the (local) cell dimension. The functions c ∈ AL are the
(classical) configurations of the cells, assigning to each lattice site a symbol of the
alphabet. Moreover, supposing that the configuration at time t is ct, then the new
configuration at time t+ 1 can be obtained as:

ct+1(x) = T
[
τ−x[ct]

∣∣
N

]
, ∀ x ∈ L.

Remark 2.1 (Global transition map). It is apparent how the local transition rule
induces a global, parallel transition of all the lattice sites:

T : AL −→ AL

c 7−→ T[c]

defined as:

T[c](x) := T
[
τ−x[c]

∣∣
N

]
, ∀ x ∈ L.
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cellular automata

2.2 quantum cellular automata
We present here the extension of the concept of cellular automata to the quantum
world. Intuitively, we can imagine that such an extension is characterised by some
lattice where in each site there is a quantum system in local unitary interaction
with its neighbours. A naive implementation of these ideas would clearly follow
such lines of thought.

In practice, one can assume that each cell x of the lattice is equipped with a
Hilbert space Hx, identical to the others, replacing the alphabet A of symbols of the
classical case. Then one could think that the quantum systems located in each site
interact between each other via a unitary operator U, requiring such interactions
to be local. This means that this operator would be defined on the infinite tensor
product

⊗
x∈LHx. Unfortunately, the resulting space would not be in general a

Hilbert space.
To overcome these limitations it is effective to work in the Heisenberg picture

rather than in the Schrödinger one. So, following the authors in [60] we will give
an algebraic definition of a qca.

Instead of associating to each site an Hilbert space, we associate to them the ob-
servable algebra Ax, denoted the cell structure. These algebras are all isomorphic
to the algebra Ms(C), i. e. the algebra of s× s complex matrices. If we consider a
finite subset Λ ⊂ L, the associated algebra is the tensor product A(Λ) =

⊕
x∈ΛAx.

Whenever Λ1 ⊂ Λ2 ⊂ L, we can consider the natural injection A(Λ1) ↪→ A(Λ2),
by tensoring with unit operators, so that we can regard A(Λ1) as a subalgebra of
A(Λ2). With these identifications, are well defined the products AB of observable
belonging to algebras located at different sites of the lattice. Moreover, since ten-
soring with the identity does not change the norm, we obtain a normed algebra of
local observables, whose extension and completion Werner and Schumacher denote
as the quasi-local algebra A(L).

Remark 2.2 (Lattice translations operators). Here the translations τx are isomor-
phisms of the local-observable algebras:

τx : A(Λ) −→ A(Λ+ x)

A 7−→ τx(A).

Definition 2.3 (Quantum Cellular Automaton). A Quantum Cellular Automaton
(qca) is a 4-tuple (L,A,N,T) consisting in:

(i) a d-dimensional cubic lattice L = Zd of quantum systems;

(ii) an algebra A of local observables, which constitutes for every site the cell
structure;

(iii) a finite neighbourhood scheme N ⊂ L;

(iv) a unital homomorphism T : A(L) → A(L) of the quasi-local algebra A(L)

generated by A.

The homomorphism T satisfies the following properties:
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2.3 quantum walks

(i) it commutes with the lattice translations τx, ∀ x ∈ L;

(ii) it satisfies the locality condition: T(A(Λ)) ⊂ A(Λ+N), ∀Λ ⊂ L, |Λ| ∈N+.

Remark 2.3 (Local transition rule). The local transition rule is the homomorphism
obtained restricting the action of T to the one-site algebra A ≡ A0:

T := T
∣∣
A
: A→ A(N).

Conversely, if one is given a local transition rule T : A → A(N), then the global
homomorphism can be recovered from its homomorphism property:

T

(⊗
x∈Λ

Ax

)
=
∏
x∈Λ

Tx(Ax), ∀Λ ⊂ L, |Λ| ∈N+,

where Tx is the homomorphism defined by:

Tx : Ax −→ A(x+N)

Ax 7−→ Tx(Ax) := (τx ◦ T ◦ τ−x)(Ax).

In the equations above we have made use of the identification between local ob-
servables of A and their injections into larger algebras, tensoring with identity
operators. The proof of these facts can be found in the aforementioned paper of
Schumacher and Werner [60].

2.3 quantum walks
Among the discrete evolution models we can mention also the Random Walks (rws)
in the classical case and the Quantum Random Walks (qws) for their quantum exten-
sion. Intuitively, a classical rw is the description of a particle moving in discrete
time steps over neighbouring points of a lattice with certain probabilities.

A quantum version of such a model was first introduced in [2] where was con-
sidered a 1 dimensional lattice and measurements of the z-component of the spin
of a 1

2 -spin particle decide whether it moves to the right or to the left. Subse-
quently, the measurements were substituted by specifying an evolution operator
of the internal degree of freedom, which is called coin system. Rigorous analysis
of qws can be found in [1, 7, 43, 55].

For a qw the global space associated to the lattice of quantum systems is

H =
⊕
x∈L

Hx,

i. e.the direct sum of the single site Hilbert spaces Hx, rather than the tensor
product. Each Hx is then the cell structure of the qw. So, now we can give the
following definition.

Definition 2.4 (Quantum Random Walk). A Quantum Random Walk (qw) is a 4-
tuple (L,C,N,U) consisting in:
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cellular automata

(i) an infinite lattice L ⊆ Zd;

(ii) a finite Hilbert space C, denoted the cell structure of the qw;

(iii) a finite neighbourhood scheme N ⊂ L;

(iv) a unitary operator
U : H −→ H

|ψ〉 7−→ U |ψ〉 ,

where H is the total Hilbert space H =
⊕
xHx and Hx ' C.

Moreover, the action of U has to satisfy the locality requirement:

U |ψ〉 ∈
⊕
x∈Nx

Hx, ∀ |ψ〉 ∈ Hx,

where Nx = x+N.

Remark 2.4. If we consider the case in which Hx ' Cn and L = Zd, then the total
Hilbert space of the qw is

H ' l2
(
Zd
)
⊗Cd.

2.3.1 Quantum Walks versus Quantum Cellular Automata
As we have seen from the definitions we have given thus far, the two notions of
qws and qcas are not in general not coincident. One way to see this fact is thinking
of the classical case. A rw is the description of the discrete evolution of a single
particle moving on a lattice, whereas a ca can describe, in general, a many-particle
system. Intuitively, as long as the particles do not collide the ca can be regarded
really as a rw.

In the quantum case, there exists a correspondent analogy. In fact, if we require
the automaton unitary operator U to be linear and if we add the notion of a
vacuum state, the resulting dynamics can be regarded as the dynamics of a single
particle moving on the lattice. In this way we can identify the qca with a qw.
Conversely, as pointed out by Schumacher and Werner [60], one could ”second
quantise“ a qw, obtaining a qca whose single-particle sector is the given qw. In
this work, we have studied only the single-particle sectors of the Weyl and Dirac
qcas.

2.4 the dirac quantum cellular automaton
Numerical methods has been widely used as tools to obtain approximated results
from physical theories, permitting phenomenological predictions, where analyti-
cal and exact calculations are not affordable. In order to make theoretical entities
computationally tractable, one has to provide some way to discretise the underly-
ing physical law.
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2.4 the dirac quantum cellular automaton

This led, in the framework of Quantum Field Theory, to approaches like Lattice
Gauge Theory [46, 47] adopted to provide approximations of the underlying con-
tinuous dynamics of quantum fields. Subsequently, some authors have proposed
to apply the paradigm of qcas to quantum fields. For example, we can mention
the pioneering paper of Bialynicki-Birula [11], where the automaton describes a
discrete classical-field dynamics, from which the Weyl and Dirac equations can be
recovered in the continuum limit. Similar models, describing classical relativistic
fields, were developed also in the context of lattice-gas simulations by Meyer [54]
and Yepez [73].

All these approaches are considered only as discrete approximations of an un-
derlying, more fundamental, dynamics. Only classical cellular automata have
been contemplated as microscopic mechanisms, following the ideas of Feynman
and Wheeler [39] in considering Physcics as information processing. For example,
we can mention the works of ’t Hooft [64] and Wolfram [69]. Recently, also quan-
tum cellular automata have been considered by G. M. D’Ariano [20, 21, 23, 24] as a
possibility for a microscopic fundamental description of physical processes. The
large scale dynamics is then recovered in the continuum limit.

We have already presented the qca on an infinite cubic lattice, but in principle
it is possible to extend the concept to more general graphs with arguments of Ge-
ometric Group Theory as has been done by D’Ariano and Perinotti [22] in deriving
the Weyl and Dirac automata. Specifically, the authors considered the family of
Bravais lattices. Then in their derivation, they show how basic physical require-
ments on the geometric properties of the automaton select only the cubic lattice (in
(2+ 1)-dimensions) and the body centred one (in (3+ 1)-dimensions).

Let us briefly summarise here the postulates from which they were able to
derive the Weyl and Dirac automata:

(I) unitarity of the evolution;

(II) locality of the interactions;

(III) homogeneity of the interaction topology;

(IV) isotropy under lattice symmetries.

Moreover, they have selected the automaton with minimal complexity, that is
the minimal dimension of the Hilbert space associated to the internal degree of
freedom. Under such assumptions Paolo Perinotti and Giacomo Mauro D’Ariano
were able to derive the unique automaton (modulo discrete symmetries) which
describes, in the large scale limit, the Weyl equation. Then, coupling two such
automata in the only possible way to respect these assumptions, one obtains the
unique automaton (again modulo symmetries) which describes the Dirac equa-
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cellular automata

tion. This automaton can be characterised in its qw sector with a unitary operator
U over the space l2(L)⊗Cs, which can be written as:

U =
∑
h∈Ω

Th ⊗Ah, (1)

where Ω is the set of generators of the group whose Cayley’s graph is the lattice
L over which the qca is defined. Here the operators Th are the lattice translations
acting over elements of l2(L) as:

Th |n〉 = |n+ h〉 , ∀ |n〉 ∈ l2(L).

The complex matrices Ah are the transition matrices acting on the internal degree
of freedom of the lattice sites. As pointed out by the authors in [22], the unitarity
condition is particularly restrictive in selecting the possible forms these matrices
can assume. Now we want to briefly report the two specific cases we have studied
in this work. Namely, the Dirac automaton in 1 spatial dimension and the Weyl
automaton in 2 spatial dimensions. In the next chapters we will give some more
insights on the properties of these automata along with an explicit expression for
their evolution at arbitrary discrete times.

2.4.1 Dirac automaton in (1+ 1)-dimensions
Retaining the expression of the full unitary operator in equation (1), we can give
here the explicit expression for the transition matrices in this case. The minimal
internal dimension for the present case is s = 2. Since the spatial lattice is the
linear graph Z, we have only two generators for the lattice translations, namely
a particle can move to the right or to the left. Furthermore, as this automaton
has mass, in order to describe the Dirac field in the continuum limit, we have to
consider a matrix associated to the identity element of the group Z. That is, we
have to allow the particle to remain still in a lattice site; the only effect in this case
is a change in the state of the internal degree of freedom. So, we have the three
matrices:

AR =

(
n 0

0 0

)
, AL =

(
0 0

0 n

)
, AM =

(
0 im

im 0

)
, (2)

where the unitarity constraint requires that n2 +m2 = 1, n > 0, m > 0.

2.4.2 Weyl automaton in (2+ 1)-dimensions
For the 2 spatial dimensions, we have considered only the Weyl automaton, that
is, an automaton describing the Weyl mass-less field in the large scale limit. More-
over, since in this case the spin reduces to the helicity states, the internal dimension
is still s = 2. In this case the lattice is the square lattice Z2, therefore the possible
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2.4 the dirac quantum cellular automaton

translations are 4 and so are the transition matrices (we have not to consider the
mass term):

AR =

(
1 0

−ν 0

)
, AU =

(
1 0

ν 0

)
,

AL =

(
0 ν∗

0 1

)
, AD =

(
0 −ν∗

0 1

)
,

(3)

where the unitarity imposes that |ν| = 1.

2.4.3 Symmetries
The isotropy property for these automata is expressed, in general terms, by the
covariance of the automaton U under the action of some group G of symmetries of
the lattice:

g ·U =
∑
h∈Ω

g · (Th ⊗Ah) =
∑
h∈Ω

Tg·h ⊗ VgAhV†g = U, ∀g ∈ G, (4)

where g · (·) denotes the action of the group G and Vg is an its (unitary) repre-
sentation. In the specific case of the Weyl automaton in 2 spatial dimensions, as
pointed out by Perinotti and D’Ariano in their paper, the actual symmetries are
given by the rotations of π2 on the lattice.
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3 S U M O V E R H I S TO R I E S

Based on ideas of Paul Adrien Maurice Dirac [27, 28], Richard Phillips Feyn-
man presented in his remarkable paper [32] the space-time formulation of

Quantum Mechanics, using functional methods which are called path integrals.
Later, this different approach to Quantum Mechanics was developed in collabora-
tion with Hibbs in [33].

Today this approach has become a fundamental tool in characterising Quantum
Field Theories [4, 25, 36, 41, 58]. Although it has such successful applications, it
suffers from mathematical difficulties. The main issue with a naive implementa-
tion of the ideas of the path integral as originally formulated by Feynman is the
fact that there not exist an infinite dimensional Lebesgue measure on the space
of continuous functions, besides the trivial one [40]; stated in other words, every
(translation-invariant) measure that is not identically 0 assigns an infinite measure
to every open subset of the space of paths. Motivated by these considerations, dur-
ing the years there were several attempts to give a precise meaning to the concept
of an integral – i. e., an infinite sum – over such a space of paths [4, 5, 17, 26].

3.1 feynman’s path integral
The aim of the path integral formulation of Quantum Mechanics is to generalise
the Hamilton’s principle of Classical Mechanics. The Principle of Stationary Action
in the Hamilton sense says that a classical system described by a Lagrangian L
defined on the tangent bundle of the configuration space of the system TC takes
those paths which make the action functional stationary:

S[q] :=

∫t2
t1

L(q(t), q̇(t); t)dt.

More precisely, assuming that this functional is Fréchet-differentiable and consid-
ering proper variations of a given curve

(t, ε) 7→ qε(t) = q(t) + εh(t),

namely (differentiable) curves with fixed endpoints, the statement is that the
Gâteaux derivative of the action vanishes for all such variations:

DS[q] ◦h = 0, ∀h ∈ X(C), h(t1) = h(t2) = 0,

where X(C) is the set of smooth vector fields. It can be proved [44, 57] that in this
way one obtains the Euler-Lagrange equations of motion:

d
dt
∂L

∂q̇
−
∂L

∂q
= 0.
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sum over histories

Figure 3: Paths connecting two points A and B.

So we see that the path, given some initial conditions, a classical particle actually
follows is obtained as an extremum of a suitable functional.

Instead, when we look at the Quantum World we can no more associate a path
in the physical space to a quantum particle. The concept of a trajectory has no
meaning according to the standard formulation of Quantum Mechanics. But the
thoughts of Dirac were oriented towards the possibility of formulating an Action
Principle even in the Quantum World. From earlier preliminary studies in his
Ph.D. thesis with John Archibald Wheeler, Feynman developed a new different
formulation of Quantum Mechanics which generalises the classical Action Princi-
ple.

In Quantum Mechanics, suppose we have a particle in an initial state |x0, t0〉,
that is we know the particle at time t0 is localised in x0. Then we may ask what is
the probability of finding the particle in x at a later time t. According to the Born
rule this is given by the squared modulus of the probability amplitude:

ψ(x, t) = 〈x, t|x0, t0〉 .

If we think classically for a moment, we may ask which path the particle has
actually travelled. But, of course, there are ℵ1-infinitely many paths connecting
the two points (x0, t0) and (x, t) in space-time; for example we can consider the
case sketched in figure 3 (the image is taken from Wikipedia.org [68]).

So, now comes the basic idea of path-integrals: we have to sum (integrate) all
these contributions, according to the principles of Quantum Mechanics [61, 29].
The next step is to work out how each path contributes to the total amplitude.
According to Feynman each path contributes equally in magnitude and the phase
factor is given by:

exp
(

i
 h
S[q; t1, t2]

)
,
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3.2 path integral for quantum walks

where S is the classical action computed on a path q. Then using the stationary
phase approximation [71], we can see that the paths which will give the more sig-
nificant contributions to the sum are the classical ones, preserving in this way the
correct classical limit.

3.2 path integral for quantum walks
In the previous section we have given some sketches of the concept of the path
integral, which is, in practice, a sum over all the histories of a physical system.
Now we will focus on discrete quantum systems and we will see in more details
how the idea of a sum over histories applies in this case. An example of this
model is due to Feynman in his Checkerboard Model for a relativistic electron [33].

3.2.1 Basic ideas
Let us imagine a world in which one can go only through discrete steps. That
is, one is allowed to go from one point (or site) of this world to another and
there are no halfway pit stops. There are clearly many ways to define a set of
rules according to which one can move through such a world. In general such
a construction gives origin to a graph [14, 66]. The points in this world are the
vertices (or nodes) of the graph and the possible connections – we will also call
them transitions – are its edges. The rules we define determine the type of the
graph and the properties of its edges, characterising in this way its topology. A
general approach to such a construction of graphs can be found in the scope of
geometric group theory [16, 50].

Let us now focus on the case of our interest. That is, a graph which can be
embedded in the plane generating a square lattice. Suppose we start in a point
A of the lattice. Then we have four choices we can take. If, moreover, we assume
that each way is equivalent to the others, then we can toss an appropriate coin
which tells us in which direction to go. In this way we define a Random Walk [1, 2,
43, 51].

After N steps on this graph one reaches some point B. Then one may ask us
what is the probability to go from A to B, considering all the possible ways to
reach B.

As we can see from figure 4 on the following page, in order to compute the
probability p(B|A;N) to go from A to B in N steps we have to sum up all the
probabilities for each sequence of points connecting A with B:

p(B|A;N) =
∑

i1,...,iN−1

p
(
B|xiN−1

| . . . |xi1 |A
)
, (5)

This is basically the idea behind the concept of summing over histories. From equa-
tion (5) we see that what we have to know are the single probabilities associated
to each path defined by a sequence χ = (x0, . . . , xn). We can immediately notice
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sum over histories

A

B

Figure 4: Paths connecting A and B in a square lattice.

a first thing. The probability associated to a path χ is certainly 0 if the length
l(χ) = n is greater than the requested number of steps N. This means that the set
of points reached by paths of length N define the set of points causally related to
a given initial point, that is its (future) causal cone – or improperly the light cone.

Remark 3.1. Regarding the example we have exposed here, we can encode the
paths into strings of bits; specifically, each step can be encoded with two bits and
therefore a sequence χ of length N can be uniquely associated to a binary string
Ξ of length 2N. Since we have supposed that each direction is equivalent to the
others, then all the paths Ξ are equally probable with probability p(Ξ) = 1

22N
.

Then the probability we are looking for is given by:

p(B|A;N) =
N(A,B;N)

22N
,

where N(A,B;N) is the number of paths connecting A and B of length N. We
can give an explicit expression for this probability. In order to achieve this result,
given a binary string Ξ of length 2N we can think of it as made by a pair (α,β) of
strings. As a convention we denote here an element of α as ai and an element of
β as bi; then we have the relation ai = x2i−1 and bi = x2i with i = 1, . . . ,N and
xj an element of Ξ. Moreover, we can define the bit count of a binary string as:

α̂ :=

N∑
i=1

ai.

Now, if we label the points of the square lattice with some coordinates (x,y),
associating A ≡ (0, 0), we have the following relation between coordinates and bit
counts: {

α̂ ≡ K1 = N−x+y
2 ,

β̂ ≡ K2 = N−x−y
2 .
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3.2 path integral for quantum walks

We shall give the proof of this fact in chapter 5 on page 25. Now we are able to
compute the counting function N. In fact, the condition above tells us that we can
permute the two strings α and β independently and therefore we have simply:

N(K1,K2) =
(
N

K1

)(
N

K2

)
. (6)

The ideas we have expressed thus far are perfectly suited to deal with classical
random walks. One may wonder where the quantum effects appear in this world.
All the problems arise from equation (5) on page 15. The definition we have given
is inappropriate in the quantum case. The crucial point is that we have implicitly
assumed that a particle travelling from A to B actually is in a specific point x
between them. Instead, a quantum particle can exist in a superposition of states
corresponding to different positions. This means that we can not associate at each
step a definite position to the particle. As a consequence, a quantum particle can
show interference patterns. What we have to do is to change the description of the
particle not directly in terms of probabilities but instead in terms of probability
amplitudes. In practice, we can retain the definitions we have given so far, simply
substituting p ϕ, where ϕ is complex-valued. The relation between the two is:
p(E) = |ϕ(E)|2, where E is the event we are considering. Clearly, the results given
in remark 3.1 have to be modified to take into account the different interferences
of the various paths. We shall give the full solution of this problem in the next
chapters, in the case of Weyl and Dirac automata.

3.2.2 General formulation
In the previous paragraphs we have exposed some ideas concerning the path
integral. Here we want to show a more systematic way to obtain the path sum,
adopting a slightly different approach. Let us suppose we are given a Quantum
Cellular Automaton – in this case it is actually a Quantum Walk, as pointed out
in section 2.3.1 on page 8 – which can be represented as a unitary operator over
the space l2(Z)⊗Cs, where Z is the associated graph:

U =
∑
h∈Ω

Th ⊗Ah. (7)

Moreover suppose that, in a group-theoretical language, Ω is the set of gener-
ators of an abelian group G whose Cayley graph is Z. From the definition we
can notice that the transition matrices {Ah }h∈Ω are uniquely associated to the
colours defining the translations on the graph. This fact permits us to describe a
path as a sequence of transitions; more precisely there is a one to one correspon-
dence between the sequences of translations and sequences of transition matrices.
Since the paths are in correspondence to suitable binary strings Ξ, we will always
identify such sequences of transitions with these binary strings.

In order to simplify a bit the derivation of the solutions that we will give in
the next chapters, we can ask ourselves which is the transition matrix associated
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to a point B if we started from A. Then we can compute the components of the
resulting field ψ(x,N) in x at time t = N, given the values of the field ψ(y, 0) at
time t = 0, for all lattice sites y in the past causal cone. From the definition of the
automaton given in equation (7) we can write the N steps evolution as:

UN =
∑
Ξ∈ΩN

Th1 · · · ThN ⊗Ah1 · · ·AhN (8)

We will write the product of transition matrices as A(Ξ). Then, since a translation
operator Th acts on an element |g〉 of l2(Z) as

Th |g〉 = |g+ h〉 ,

the position state associated to a path Ξ will be:

Th1+···+hN |g〉 = |g+ h1 + · · ·+ hN〉 .

Associating the initial point A to the identity element of the group, we can label it
with coordinates (0, 0, . . . , 0) with the final point B of the path Ξ corresponding to
the state |h1 + · · ·+ hN〉. Now we want to find out which is the transition matrix
to arrive at a point x after N steps of evolution:

τ(x;N) = (〈x|⊗ I)UN (|0〉 ⊗ I)

=
∑
Ξ

〈x |h1 + · · ·+ hN〉A(Ξ)

=
∑
Ξ

δ(x,Ξ)A(Ξ),

(9)

where δ is a function that assures a given point x can be reached by a path Ξ:

δ(x,Ξ) :=

{
1, if Ξ leads to x,

0, otherwise.

18



4 D I R A C S O L U T I O N I N 1 - D I M E N S I O N

In this chapter we will expose the solution for the Dirac quantum cellular au-
tomaton in one spatial dimension that we have introduced in section 2.4.1 on

page 10. Let us recall here the evolution operator in this case:

U = TR ⊗AR + TL ⊗AL + TM ⊗AM, (10)

where TR,L are the lattice-translation operators defined over sequences f ∈ l2(Z):

(TRf)(x) := f(x− 1),

(TLf)(x) := f(x+ 1).

Here TM is the identity operator over l2(Z). In this context the transition matrices
are:

AR =

(
n 0

0 0

)
, AL =

(
0 0

0 n

)
, AM =

(
0 im

im 0

)
, (11)

where the labelling specifies the transition type and n,m ∈ R+, n2 +m2 = 1.
In this work we focus on the path-integral approach to give an explicit expres-

sion for the evolution of the automaton. As mentioned in chapter 3 a first scheme
attempting to formulate the path-integral in a discrete context was given by Feyn-
man in his Chessboard Model. In this chapter we want to exploit this approach
in order to solve the problem of giving an explicit expression for the evolution of
the Dirac automaton in one spatial dimension. Let us recall the expression for the
sum over histories we have previously found in a general context in equation (9)
on page 18:

τ(x;N) =
∑
Ξ∈ΩN

δ(x,Ξ)A(Ξ). (12)

In order to obtain an explicit formula for the sum above, we have first to analyse
the algebraic properties of the transition matrices of the one dimensional case. A
first thing one can notice is that anyhow we multiply these matrices between
them we can always extract a factor that gives the amplitude for that product.
This amplitude can be written in the form:

α(f) := (im)f nN−f (13)

where f counts the number of times a flip occurs (i. e. the number of mass terms).
So, we can drop the coefficients and use the following set of matrices:

AR =

(
1 0

0 0

)
, AL =

(
0 0

0 1

)
, AM =

(
0 1

1 0

)
. (14)

19



dirac solution in 1-dimension

Moreover it is easily seen that at each point one is allowed to choose from two
of the three possible steps. For example, if we begin in the left mode, then we can
either go to the left or switch to the right mode, analogously if we began in the
right mode. Furthermore we can notice that the matrix AM contributes only with
one of its non null elements. This means that adopting a suitable binary encoding
such that R = 00, L = 11, we can write each product using the set of matrices:

A00 =

(
1 0

0 0

)
, A11 =

(
0 0

0 1

)
,

A10 =

(
0 0

1 0

)
, A01 =

(
0 1

0 0

)
,

(15)

considering that the mass transition matrix can be written as:

AM = A10 +A01.

Then it can be easily seen that each product of two of these matrices vanishes if
the internal bits are different and the result depends only on the first and the last
bit of the sequence. More precisely, we have the following lemma.

Lemma 4.1. The product of two matrices of the set (15) on this page is given by:

AabAcd =
1+ (−1)b⊕c

2
Aad.

As a consequence of this algebraic property we have the following rules for the
products concerning the mass matrix.

Corollary 4.1. The matrix AM satisfies the following rules:

A2M = I,

AaaAM = Aab,

AMAaa = Aba,

AMAab = Abb,

AabAM = Aaa,

with a 6= b.

With these results in mind we can go back to the general expression for the
transition matrix after N steps in equation (12) on page 19. Now we want to
count how many paths there are which give each matrix. Our purpose here is to
find out an expression like:

τ(x;N) cRNR+ c
L
NL+ c

M
NM,

where the coefficients counts the number of strings Ξ which result in each matrix.
We might expect to obtain such an expression since the set (15) on this page is
closed under matrix multiplication, eventually adding the null matrix and the
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dirac solution in 1-dimension

identity. Moreover, given that the matrices 10 and 01 appear together in the mass
matrix, we can expect that they would contribute equally in the result – indeed,
they do as we will see soon.

Equation (13) on page 19 suggests us to parameterise the sum over histories
with the number of flips f which in general run over the set { 0, . . . ,N }. So we can
write:

τ(x;N) =

N∑
f=0

α(f)
∑
Ξf

δ(x,Ξf)A(Ξf), (16)

where { Ξf } are the strings with exactly f mass terms. Let us denote the total
number of steps as N = r + l + f, where r is the number of right steps and l

is the number of left steps. Now we would like to relate somehow these three
parameters to the final point x.

Lemma 4.2. Fixing the number of flips f we have:{
r = N+x−f

2 ,

l = N−x−f
2 .

Proof. The result follows immediately from the fact that r − l = x.

Corollary 4.2. f is even if and only if N + x is even.

Let us now consider strings Ξf . Then from the rules in lemma 4.1 and corol-
lary 4.1 on page 20 it is apparent that the strings which give a non null result
are those in which the matrices R and L alternate each other between the swap
matrices M. In fact if a matrix aa is followed by an M, then the next can only be
either another mass or a bb, with a 6= b. Therefore, the allowed strings (i. e. non
null) show patterns like:

Ξ = RRR M LL M M L M RR M LLL, (17)

and, considering that we can always collapse repetitions of an R or an L, the
sequence in equation (17) has the same transition matrix of

Ξ = R M L M M L M R M L. (18)

So we can see that a given number of flips f determines f + 1 slots where we have
to arrange the right- and left-steps.

Lemma 4.3. Let Ξ be a string with f swaps. Then, we can assert what follows.

f < N =⇒ A(Ξ) =

{
Aaa , if f is even,

Aab, if f is odd,

where aa refers to the matrices in the odd slots and b 6= a. Furthermore,

f = N =⇒ A(Ξ) =

{
I, if N is even,

AM, if N is odd.
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dirac solution in 1-dimension

Proof. In order to prove the statement we split the two case where f is even or
odd.

• f < N, f even. We can proceed by induction over N. For N = 1 the statement
is clearly true. Then, forN > 1, assuming A(Ξ) = Aaa, we can add one more
AM so that the result is Aab.

• f < N, f odd. Analogously we can add one more mass term and obtain
Aaa.

• f = N. Just consider that A2M = I.

We can say, in other words, that the result is determined only by the first step
and the parity of the number of swaps.

Now we have only to count the number of times each result appears.

Theorem 4.1. Let N ∈ N+, −N < x < N and 0 6 f 6 min {N − x ,N + x }.
Then, if f is even,

cRN(x , f) =
(N+x

2
f
2

)(N−x
2 − 1
f
2 − 1

)
,

cLN(x , f) =
(N−x

2
f
2

)(N+x
2 − 1
f
2 − 1

)
;

if f is odd,

cMN(x , f) =
(N+x−1

2
f−1
2

)(N−x−1
2
f−1
2

)
.

Proof. Let N > 0, −N < x < N , x 6= 0, 0 < f 6 min {N − x ,N + x } and
consider strings Ξf . Then we can think of placing first the mass terms and then
distributing the remaining objects in the f + 1 slots. From lemma 4.2 on page 21

we know we have to distribute r R-steps and l L-steps. From the conditions on
the parameters we have that r and l are never both 0 nor they can be equal to N.
From the algebraic properties of the matrices we have analysed above, we know
that the resulting matrix is determined once we have chosen to place a given type
of steps in the odd slots. Then we can permute the objects in the odd and even
slots independently. This fact implies that we will have a product of two terms.
For each factor we can follow the same reasoning. The situation can be formulated
as follows. We have, say, n distinguishable slots in which to arrange k identical
objects. These arrangements can be viewed as combinations with repetitions [see
for example 10], which are counted with the multi-choose coefficients:

w(n , k) =
((
n

k

))
=

(
n + k − 1

k

)
.

Then we have to count the number of odd and even slots separately:

nodd =

⌈
f + 1

2

⌉
, neven =

⌊
f + 1

2

⌋
.

Therefore, we have the following cases.
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dirac solution in 1-dimension

• f even. In this case nodd = f
2 + 1 and neven = f

2 ; therefore:

cRN =

( f
2 + r

r

)( f
2 + l − 1

l

)
=

( N+x
2

N+x−f
2

)(N−x
2 − 1
N−x−f
2

)
=

(N+x
2
f
2

)(N−x
2 − 1
f
2 − 1

)
;

cLN =

( f
2 + l

l

)( f
2 + r − 1

r

)
=

( N−x
2

N−x−f
2

)(N+x
2 − 1
N+x−f
2

)
=

(N−x
2
f
2

)(N+x
2 − 1
f
2 − 1

)
.

• f odd. Now nodd = neven = f+1
2 . Therefore we have that c10N = c01N = cMN

and the coefficient for this case is:

cMN =

( f+1
2 + r − 1

r

)( f+1
2 + l − 1

l

)
=

(N+x−1
2

N+x−f
2

)(N−x−1
2

N−x−f
2

)
=

(N+x−1
2
f−1
2

)(N−x−1
2
f−1
2

)
.

• f = N. In this case r = l = 0 ∧ x = 0 and therefore the resulting matrix
would be either the identity or M depending on the parity of N. As a matter
of fact, we can reuse the expressions above since they reduce to 1 in this
case, which is the correct result.

• f = 0. If |x | < N then both the coefficients cRN and cLN are 0. Otherwise, if
x = N, then cRN = 1 and cLN = 0; else if x = −N, then cRN = 0 and cLN = 1.
Therefore, again, we can use the general formulae since the binomial

(
n
k

)
=

0 if k > n.

To end the considerations about the solution of the Dirac automaton in one
spatial dimension, we can rewrite equation (16) on page 21, splitting the two
cases:

• if N + x is even we have to sum over even fs:

τ(x ;N) =

keven
max∑
k=0

α(2k)
[
cRN(x , 2k)AR + c

L
N(x , 2k)AL

]
, (19)

where keven
max = min

{
N−x
2 , N+x

2

}
;
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dirac solution in 1-dimension

• if N + x is odd we have the other case:

τ(x ;N) =

kodd
max∑
k=0

α(2k + 1)cMN(x , 2k + 1)AM , (20)

where kodd
max = min

{
N−x−1

2 , N+x−1
2

}
.
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5 W E Y L S O L U T I O N I N 2 - D I M E N S I O N S

Analogously to the one dimensional case, we can express the evolution of
the Weyl automaton in 2 spatial dimensions, introduced in section 2.4.2 on

page 10, as the sum:

τ(x,y;N) =
1

2N

∑
Ξ∈ΩN

δ(x,y,Ξ)A(Ξ). (21)

5.1 preliminary analyses
Here the transition matrices are:

AR =

(
1 0

−ν 0

)
, AU =

(
1 0

ν 0

)
,

AL =

(
0 ν∗

0 1

)
, AD =

(
0 −ν∗

0 1

)
,

(22)

with |ν| = 1.

5.1.1 Basic properties
Now letting h,k ∈ { 1, 2 }, we can obtain some algebraic properties of this set of
matrices.

Lemma 5.1. The set of matrices in (22) has the following product rules:

A2±h = A±h, (23a)

A±hA∓h = −A∓k, (23b)

A±hA±k = A±h, (23c)

A±hA∓k = A∓k, (23d)

with k 6= h. Moreover these matrices sum up to the identity:∑
h∈Ω

Ah = 2I. (24)

Corollary 5.1. Upon encoding the matrices in (22) onto a boolean algebra, with R =

00, L = 10, U = 01, D = 11, the product rules in lemma 5.1 become:

Aa,bAc,d = (−1)(a⊕c)(b⊕d⊕1)Ac,a⊕b⊕c. (25)
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weyl solution in 2-dimensions

Proof. From the products in equations (23a) to (23d) we can see that the sign part
of the encoding is always that of the second term in the product. The direction
part of the encoding is the same as that of the first term, unless the signs were
opposite. The sign of the product is −1 if and only if the directions are the same
and the signs are opposite.

Now, for a sequence Ξ ≡ (α,β), with α,β ∈ { 0, 1 }N, we can express the function
A as

A(α,β) = (−1)ϕ(α,β)Aµ(α,β),

where the function µ : { 0, 1 }2N → { 0, 1 }2 returns the corresponding matrix and
ϕ : { 0, 1 }2N → { 0, 1 } gives the phase associated to the path; the circle notation
emphasises the fact that the phase is cyclic, as will be apparent from the following
lemmata.

Lemma 5.2. Given αN,βN ∈ { 0, 1 }N and expressing the result as

µ
(
αN,βN

)
=
(
a
(
αN,βN

)
,b
(
αN,βN

))
, (26)

the transition matrix is given by

a
(
αN,βN

)
= aN,

b
(
αN,βN

)
= b

(
αN−1,βN−1

)
⊕a

(
αN−1,βN−1

)
⊕ aN

= a1 ⊕ b1 ⊕ aN,

(27)

where, in αN−1, we have dropped the last element of αN.

Proof. In the following we will assume this notation convention: fN ≡ f
(
αN,βN

)
.

Now using the associativity of the matrix product we can establish a recursive
relation for a:

aN = a
(
aN−1aN,bN−1bN

)
.

From corollary 5.1 we have immediately that

aN = aN.

Analogously, for the encoding part we have the recursion:

bN = b
(
aN−1aN,bN−1bN

)
= bN−1 ⊕aN−1 ⊕ aN.

Now, assuming bN = a1 ⊕ b1 ⊕ aN, the expression above becomes

bN+1 = bN ⊕aN ⊕ aN+1

= a1 ⊕ b1 ⊕ aN ⊕ aN ⊕ aN+1

= a1 ⊕ b1 ⊕ aN+1.

In order to obtain a similar result for the phase it is worth introducing a different
encoding for the matrices, simplifying in this way the results.
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5.1 preliminary analyses

Definition 5.1 (Matrix encoding). Let us define the following transformation of
the bit strings

f
(
αN,βN

)
:=
(
βN,αN ⊕βN

)
,

f−1
(
αN,βN

)
=
(
αN ⊕βN,αN

)
,

(28)

where the XOR operator in the definition acts component-wise on the strings. In
this encoding the association with the letters is: R = 00, L = 11, U = 10, D = 01.

Lemma 5.3. In the encoding defined by equations (28), the matrix resulting from
(
αN , βN

)
is

µ
(
αN , βN

)
= (a1 , bN) . (29)

Proof. Denoting the function µ in the new encoding as

µ ′
(
αN , βN

)
= f−1

(
µ
(
f
(
αN , βN

)))
,

we can write

µ ′
(
αN , βN

)
= f−1

(
a
(
βN , αN ⊕ βN

)
, b
(
βN , αN ⊕ βN

))
= f−1(bN , a1 ⊕ b1 ⊕ b1 ⊕ bN)

= f−1(bN , a1 ⊕ bN)

= (bN ⊕ a1 ⊕ bN , bN)

= (a1 , bN) .

From now on we will always use this encoding. Now we are able to give a
simple expression for the phase function.

Theorem 5.1. The phase associated to the pair
(
αN , βN

)
∈ { 0, 1 }2N is given by:

ϕ
(
αN , βN

)
= ϕ

(
αN−1 , βN−1

)
⊕ (a1 ⊕ aN)(bN−1 ⊕ bN)

=
⊕
j∈ZN

aj
(
bj−1 ⊕ bj

)
=
⊕
j∈ZN

(
aj ⊕ aj+1

)
bj ,

(30)

where ZN is the cyclic group with N elements and ϕ0 = ϕ1 = 0.

Proof. From corollary 5.1 we can write the recursion:

ϕN = ϕN−1 ⊕
(
aN−1 ⊕ aN

)(
bN−1 ⊕ bN ⊕ 1

)
.

Then, adopting the encoding in definition 5.1 the expression above becomes:

ϕ′N = ϕ′N−1 ⊕ (bN−1 ⊕ bN)(a1 ⊕ bN−1 ⊕ aN ⊕ bN ⊕ 1)
= ϕ′N−1 ⊕ (bN−1 ⊕ bN)(a1 ⊕ bN−1 ⊕ aN ⊕ bN ⊕ bN−1 ⊕ bN)

= ϕ′N−1 ⊕ (bN−1 ⊕ bN)(a1 ⊕ aN) ,
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weyl solution in 2-dimensions

proving the first part of the thesis. Now supposing that

ϕ′N =

N⊕
j=1

aj
(
bj−1 ⊕ bj

)
,

the next step is:

ϕ′N+1 =

N⊕
j=1

aj
(
bj−1 ⊕ bj

)
⊕ (a1 ⊕ aN+1)(bN ⊕ bN+1)

= a1(bN ⊕ b1) ⊕
N⊕
j=2

( . . . ) ⊕ (a1 ⊕ aN+1)(bN ⊕ bN+1)

= a1(bN+1 ⊕ b1) ⊕
N+1⊕
j=2

aj
(
bj−1 ⊕ bj

)
=

N+1⊕
j=1

aj
(
bj−1 ⊕ bj

)
.

The last expression in equation (30) can be deduced in a similar way.

5.1.2 Directed paths
We will focus here on paths with only two types of steps allowed. The first
preliminary result will be about the specific case where these two steps alternate
each other. Although this might seem a restriction, we will see that this condition
can cover more general situations. This fact follows from the idempotence of the
transition matrices as defined in equation (22) on page 25. Now we can state the
following result.

Theorem 5.2. Let Ξ =
(
αN , βN

)
∈ Ω2N . Suppose that the sequence Ξ satisfies the

condition {
aj = aj+2 ,

bj = bj+2 ,
(31)

∀ j ∈ ZN : j + 2 6 N. Then we have that

ϕ4K = 0 , (32a)

ϕ4K+1 = 0 , (32b)

ϕ4K+2 = (a1 ⊕ a2)(b1 ⊕ b2) , (32c)

ϕ4K+3 = (a1 ⊕ a2)(b1 ⊕ b2) . (32d)
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Proof. We begin proving the case N = 4K in equation (32a). From theorem 5.1 on
page 27 we can write:

ϕ4K =

4K∑
j=1

aj
(
bj−1 ⊕ bj

)
=

K−1∑
j=0

4∑
l=1

a4j+l
(
b4j+l−1 ⊕ b4j+l

)
.

Then the inner sum evaluates to:

ϕ4K =

K−1∑
j=0

[
a4j+1

(
b4j ⊕ b4j+1

)
⊕ a4j+2

(
b4j+1 ⊕ b4j+2

)
⊕

⊕ a4j+3
(
b4j+2 ⊕ b4j+3

)
⊕ a4j+4

(
b4j+3 ⊕ b4j+4

)]
.

Now, using the condition (31) the sum becomes:

ϕ4K =

K−1∑
j=0

[(
a4j ⊕ a4j+1

)(
b4j ⊕ b4j+1

)
⊕
(
a4j ⊕ a4j+1

)(
b4j ⊕ b4j+1

)]
= 0 .

The next step is to prove the case N = 4K + 1, for which we have:

ϕ4K+1 = ϕ4K ⊕ (a1 ⊕ a4K+1)(b4K ⊕ b4K+1)

= (a1 ⊕ a1)(b2 ⊕ b1)
= 0 .

Now, for N = 4K + 2, we can write:

ϕ4K+2 = ϕ4K+1 ⊕ (a1 ⊕ a4K+2)(b4K+1 ⊕ b4K+2)

= (a1 ⊕ a2)(b1 ⊕ b2) .

Finally for N = 4K + 3, we have that:

ϕ4K+3 = ϕ4K+2 ⊕ (a1 ⊕ a4K+3)(b4K+2 ⊕ b4K+3)

= (a1 ⊕ a2)(b1 ⊕ b2) ⊕ (a1 ⊕ a1)(b2 ⊕ b1)
= (a1 ⊕ a2)(b1 ⊕ b2) .

The study of paths with only two kind of steps allowed can be exploited to
analyse the case of directed paths. We have just seen that, in general, the phase
takes values according to the remainder classes of 4 of the number of steps. But,
whenever we consider paths in which a1 = a2 or b1 = b2 , i. e. directed paths,
the phase always vanishes and the paths interfere constructively. Such directed
paths lead always to the nappes of the (future) causal cone, to which we will refer
as causal front, defined by the condition |x | + |y | = N. In this case we can give
in a very straightforward way the explicit expression of the coefficients of the
transition matrices. Without loss of generality, we will focus on the points (x , y)
of the first quadrant, i. e. x , y > 0, considering that for the other quadrants we
can follow a similar reasoning.
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Proposition 5.1 (Causal front). Let N ∈ N+ and x , y > 0 with x + y = N. Then,
the non-vanishing coefficients are:

cRN =

(
N − 1

x − 1

)
=

(
N − 1

y

)
,

cUN =

(
N − 1

y − 1

)
=

(
N − 1

x

)
.

Proof. Let N ∈ N+ and x , y > 0. The total number of steps N can be written
as N = r + l + u + d with r − l = x and u − d = y. Therefore, l + d = 0 and
l = d = 0. So cLN = cDN = 0. Having only right- or up-steps, this is precisely
the case for which the phase always vanishes. So, the paths reaching the causal
front, as one may expect, interfere always constructively. Then we have only to
distinguish the resulting matrix. This is achieved by fixing the first and the last
step and permuting the intermediate steps. So we have to count the permutations
with repetitions of r + u objects:

c(r , u) =
(r + u) !
r !u !

=

(
r + u

r

)
.

Then, considering that N = r + u and r = x , u = y, fixing the first and the last
step, we have four sub-cases:

cRRN (x , y) =
(
N − 2

x − 2

)
, cURN (x , y) =

(
N − 2

y − 1

)
,

cRUN (x , y) =
(
N − 2

x − 1

)
, cUUN (x , y) =

(
N − 2

y − 2

)
,

where the superscript IJ corresponds to paths where the first step is of type I and
the last is of type J. Now, putting together the first two and likewise the last two,
we have:

cRN(x , y) =
(
N − 2

x − 2

)
+

(
N − 2

x − 1

)
=

(
N − 1

x − 1

)
=

(
N − 1

y

)
,

cUN(x , y) =
(
N − 2

y − 1

)
+

(
N − 2

y − 2

)
=

(
N − 1

y − 1

)
=

(
N − 1

x

)
.

5.1.3 Recurrence relations
From the expression in equation (21) on page 25, we can obtain a recurrence
expression for the coefficients of each matrix in the resulting transition matrix.
Let us now redefine the matrix sum as:

Definition 5.2 (Transition matrix function).

FN(x , y) :=
∑
Ξ∈ΩN

δ(x , y , Ξ)A(Ξ) .

From the expression above we have a first result, giving a recurrence for FN .
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Lemma 5.4.

FN(x , y) = ARFN−1(x − 1 , y) + ALFN−1(x + 1 , y) +

+ AUFN−1(x , y − 1) + ADFN−1(x , y + 1) .

Proof. From definition 5.2 on page 30 we have:

FN(x , y) =
∑
h

∑
Ξ ′

δ(x , y , h , Ξ ′)A(h , Ξ ′)

=
∑
h

Ah
∑
Ξ ′

δ(x , y , h , Ξ ′)A(Ξ ′) ,

with h ∈ Ω and Ξ ′ ∈ ΩN−1 . So, we see we have a recursive relation for FN :

FN(x , y) = ARFN−1(x − 1 , y) + ALFN−1(x + 1 , y) +

+ AUFN−1(x , y − 1) + ADFN−1(x , y + 1) .

Now we are able to give a recursive expression for the coefficients. Let us
suppose we know the expression for FN at step N:

FN(x , y) = cRNAR + c
L
NAL + c

U
NAU + c

D
NAD . (33)

Then we can deduce the recursive expression for the cNs.

Theorem 5.3 (Recursive coefficients). The coefficients in equation (33) satisfy the rela-
tion:

cRN(x , y) = cR+U
N−1(x − 1 , y) + cR−U

N−1(x , y + 1) ,

cLN(x , y) = cL+D
N−1(x + 1 , y) + cL−D

N−1(x , y − 1) ,

cUN(x , y) = cU+R
N−1(x , y − 1) + cU−R

N−1(x + 1 , y) ,

cDN(x , y) = cD+L
N−1(x , y + 1) + cD−L

N−1(x − 1 , y) ,

where
c
αX+βY
N = αcXN + βcYN .

Proof. From equation (33) we have:

ARFN(x , y) = cRNAR − c
L
NAD + c

U
NAR + c

D
NAD

= cR+U
N AR + c

D−L
N AD ,

ALFN(x , y) = −cRNAU + c
L
NAL + c

U
NAU + c

D
NAL

= cL+D
N AL + c

U−R
N AU ,

AUFN(x , y) = cRNAU + c
L
NAL + c

U
NAU − c

D
NAL

= cL−D
N AL + c

U+R
N AU ,

ADFN(x , y) = cRNAR + c
L
NAD − c

U
NAR + c

D
NAD

= cR−U
N AR + c

D+L
N AD .
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Now using lemma 5.4 on page 31 we can write:

FN+1(x , y) = cR+U
N (x − 1 , y)AR + c

D−L
N (x − 1 , y)AD +

+ cL+D
N (x + 1 , y)AL + c

U−R
N (x + 1 , y)AU +

+ cL−D
N (x , y − 1)AL + c

U+R
N (x , y − 1)AU +

+ cR−U
N (x , y + 1)AR + c

D+L
N (x , y + 1)AD .

(34)

Then, collecting the terms with the same matrices, we obtain:

FN+1(x , y) =
[
cR+U
N (x − 1 , y) + cR−U

N (x , y + 1)
]
AR +

+
[
cL+D
N (x + 1 , y) + cL−D

N (x , y − 1)
]
AL +

+
[
cU+R
N (x , y − 1) + cU−R

N (x + 1 , y)
]
AU +

+
[
cD+L
N (x , y + 1) + cD−L

N (x − 1 , y)
]
AD .

As a first consequence of theorem 5.3 on page 31 we can show how the result
given in proposition 5.1 on page 30 for the causal front can also be proved by
induction, solving the corresponding recurrence relation.

Corollary 5.2 (Causal front). Let x , y > 0 and x + y = N. Then the coefficients for
the transition matrices are:

cRN(x , y) =
(
N − 1

y

)
, (35a)

cUN(x , y) =
(
N − 1

x

)
. (35b)

Proof. Let us identify the points of the causal front as (N − i , i) , i ∈ { 0 , . . . ,N }.
Then the coefficients are:

cRN(N − i , i) = cRN−1(N − i − 1 , i) + cUN−1(N − i − 1 , i) ,

cUN(N − i , i) = cUN−1(N − i , i − 1) + cRN−1(N − i , i − 1) ,

where we have dropped the null ones, corresponding to a distance greater than
the number of steps. Now supposing that

cRN−1(N − i − 1 , i) =
(
N − 2

i

)
,

cUN−1(N − i − 1 , i) =
(

N − 2

N − i − 1

)
=

(
N − 2

i − 1

)
,

we obtain for the next step the expressions:

cRN(N − i , i) =
(
N − 2

i

)
+

(
N − 2

i − 1

)
=

(
N − 1

i

)
.

The other case can be proved analogously.

Now we are able to find the coefficients in other two cases. In the first case we
compute the coefficients for the points (N − 2 , 0) and in the second those for the
points (N − 3 , 1). These points lie on the second front, immediately preceding
the causal front, at distance N − 2.
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Corollary 5.3 (Points (N − 2 , 0)). We have that ∀N > 2 the coefficients are

cRN(N − 2 , 0) = (N − 3)2 − 2 ,

cLN(N − 2 , 0) = −1 ,

cUN(N − 2 , 0) = N − 3 ,

cDN(N − 2 , 0) = N − 3 .

Proof. From theorem 5.3 on page 31 we can write, dropping the null coefficients:

cRN(N − 2 , 0) = cR+U
N−1(N − 3 , 0) +

(
N − 2

N − 3

)
−

(
N − 2

0

)
,

cLN(N − 2 , 0) = −

(
N − 1

0

)
,

cUN(N − 2 , 0) =
(
N − 2

N − 3

)
−

(
N − 2

N − 2

)
,

cDN(N − 2 , 0) = cDN−1(N − 3 , 0) − cLN−1(N − 3 , 0) .

Now we have immediately that cLN = −1 and cUN = N − 2 − 1 = N − 3. Then
for D we have the recursion cDN(N − 2 , 0) = cDN−1(N − 3 , 0) + 1. This can be
easily solved, but we can also consider that on the x-axes, for the symmetries of
the automaton (see section 2.4.3 on page 11), the coefficients of U and D must be
the same. So cDN(N − 2 , 0) = cUN(N − 2 , 0) = N − 3. Now, for R we have:

cRN(N − 2 , 0) = cRN−1(N − 3 , 0) + N − 4 + N − 3

= cRN−1(N − 3 , 0) + 2N − 7 .

So, we have to solve the recurrence:{
a2 = −1 ,

an+1 = an + 2(n + 1) − 7 , ∀ n > 2 .

We can solve this recursion considering the fact that the sum of odd numbers is
the square of the number of elements summed. Or, we can simply verify it by
induction. In fact, supposing that an = (n − 3)2 − 2, we have

an+1 = (n − 3)2 + 2n − 7

= n2 − 6n + 9 + 2n − 7

= n2 − 4n + 4 − 2

= (n + 1 − 3)2 − 2 .

Corollary 5.4 (Points (N − 3 , 1)). We have that ∀N > 2 the coefficients are

cRN(N − 3 , 1) =
(N − 2)(N − 3)(N − 7)

2
,

cLN(N − 3 , 1) = −(N − 3) ,

cUN(N − 3 , 1) = (N − 4)2 − 3 ,

cDN(N − 3 , 1) =
(N − 2)(N − 5)

2
.

33



weyl solution in 2-dimensions

Proof. We begin with L:

cLN(N − 3 , 1) = cL−D
N−1(N − 3 , 0)

= −1 − (N − 4)

= −(N − 3) .

Then for U we have:

cUN(N − 3 , 1) = cU+R
N−1(N − 3 , 0) + cU−R

N−1(N − 2 , 1)

= (N − 4) + (N − 4)2 − 2 +

(
N − 2

0

)
−

(
N − 2

N − 3

)
= (N − 4)(N − 4 + 1) − 2 + 1 − (N − 2)

= (N − 3)(N − 4) − (N − 1) .

Now, for D we can write:

cDN(N − 3 , 1) = cD−L
N−1(N − 4 , 1)

= cDN−1(N − 4 , 1) + (N − 4)

=
(N − 3)(N − 6)

2
+ (N − 3) − 1

= (N − 3)

[
N − 6

2
+ 1

]
− 1

=
(N − 3)(N − 4)

2
− 1

=
N2 − 7N + 10

2

=
(N − 2)(N − 5)

2
.

Finally we can solve the recurrence for R:

cRN(N − 3 , 1) = cR+U
N−1(N − 4 , 1) + cR−U

N−1(N − 3 , 2)

= cR+U
N−1(N − 4 , 1) +

(
N − 2

N − 4

)
−

(
N − 2

1

)
= cR+U

N−1(N − 4 , 1) +
(N − 2)(N − 3)

2
− (N − 2)

= cR+U
N−1(N − 4 , 1) +

(N − 2)(N − 5)

2

= cRN−1(N − 4 , 1) + (N − 4)(N − 5) − (N − 3) − 1 +

+
(N − 2)(N − 5)

2

= cRN−1(N − 4 , 1) +
3

2
(N − 3)(N − 6) .
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Finally we can substitute the induction hypothesis to obtain:

cRN(N − 3 , 1) =
(N − 3)(N − 4)(N − 8)

2
+
3

2
(N − 3)(N − 6)

=
N − 3

2
[(N − 4)(N − 8) + 3(N − 6)]

=
N − 3

2

(
N2 − 9N + 14

)
=

(N − 2)(N − 3)(N − 7)

2
.

5.2 general case solution
Thus far we have given some insights of the properties on the phase function,
considering how it affects the paths of the underlying graph. Now we want to
find a general method in order to better exploit the path-integral approach we have
studied in this work.

5.2.1 Fundamental result
In the one dimensional case, an effective way to solve the path count problem
is to make, in practice, a kind of change of lattice coordinates. Instead of using
the pair (x , t) we can adopt the pair (r , l) which directly characterises the path
count. The effect of the mass term is only to add a new parameter f. In the
present context, a problem which arises studying the path count is that we have
to properly characterise those paths which keep fixed the ending point. As in
the one dimensional case, here we will show that there exists a necessary and
sufficient condition which can be regarded as a kind of change of coordinates. As
a consequence, this condition allows us to formulate a method to obtain a general
expression for the path count.

Theorem 5.4 (Necessary and sufficient condition for fixed endpoints paths). A
path (α , β) reaches the point (x , y) in N steps if and only if N − |x | − |y | is even and
nonnegative and it holds that {

K1 ≡ α̂ = N−x+y
2 ,

K2 ≡ β̂ = N−x−y
2 ,

(36)

where α̂ :=
∑N
i=1 ai and β̂ :=

∑N
i=1 bi are the bit count of α and β respectively.

Proof. Let us first prove the necessity of the condition above. If a path (α , β)
leads to the point (x , y) in N steps, then it is formed by a certain number of steps
in each direction: N = r + l + u + d. The distance constraints read: r − l =

x , u − d = y. Let us now recall the encoding for each step type: R = 00, L = 11,
U = 10, D = 01. For the string α, we can see that the only steps contributing to
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the bit count are L and U and so K1 = l + u. What remains is the number of 0s:
N − K1 = r + d. For β we can follow a similar reasoning and get K2 = l + d

and N − K2 = r + u. So we have immediately that K1 − K2 = y. Then we have
(N − K1 + N − K2) − (K1 + K2) = 2x. Therefore we obtain the system:{

x = N − K1 − K2 ,

y = K1 − K2 ,
(37)

which can be easily inverted to obtain the expression for K1 and K2 . Now we
want to prove the sufficiency. Let us choose a N steps path (α , β) with α̂ = K1
and β̂ = K2 . Then it reaches the point (x ′ , y ′) given by the system (37). Therefore
if we choose K1 and K2 as in (36) we have x ′ = x and y ′ = y.

Remark 5.1. Theorem 5.4 shows us that there exists a necessary and sufficient
condition so that a path reaches a given point (x , y). Moreover we can notice that
this condition applies independently to the strings α and β. This means that we
can permute these strings ad libitum. This is precisely what we need to be able to
count the paths according to their phase, as we will see in the following.

5.2.2 Counting techniques
Since the technique we are going to explain here derives directly from the defini-
tion of the phase, let us recall its expression:

ϕ =
⊕
j∈ZN

(
aj ⊕ aj+1

)
bj . (38)

It is now apparent which operations do not change the phase, considering that
we can deal with α and β independently. In fact, we can at first look up which
strings α have some fixed number of pairs with different bits, cyclically. That is,
considering for example 0̇0̄1̄0̄1̇1̄, it has four pairs with different bits, denoted by
bars (over the first bit of the pair), and the last pair is cyclic. The pairs in which
the bits are equal are denoted by dots. Then, fixed the number of pairs, the role of
β is that of choosing a certain number of these pairs; more precisely the bit count
of β is the number of pairs chosen. Therefore it is clear that the phase is 1 if and
only if β̂ is odd. This means that we have found a way to select the paths with
the same phase. Moreover, counting the number of strings with a fixed number
of pairs is independent from the number of ways we can select a certain number
of them; this fact is the consequence of theorem 5.4. So, firstly, we solve the pairs
problem and then the pairs-selection one.

Now we want to find a way to keep fixed the number of pairs (with different
bits) in a string. From the example above, we can see that the pairs appear exactly
twice the number of slots of 1-bits, considering the last cyclically. Then we have
to count in how many ways we can distribute the 1-bits in these slots. But, for
every arrangement of 1s we can arrange in all possible ways the 0s. So, we will
have a product of two terms.
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Let us first consider the arrangements of 1-bits. Suppose we have K > 0 of
them to distribute in p > 1 slots. This is equivalent to consider the integer
compositions of K with p parts. In fact a given arrangement can be seen as
a p-tuple (k1 , . . . , kp) with the property

∑p
l=1 kl = K. We have to consider

compositions instead of partitions because a different ordering generates a distinct
path. The compositions and partitions of integers are broadly analysed in the
literature: see for example Benjamin and Quinn [10] and Brualdi [15] for a general
treatise on combinatorics and related topics.

Theorem 5.5. The number of p-compositions of K are given by

wp(K) =

(
K − 1

p − 1

)
. (39)

Proof. A composition of K can be seen as an arrangement of K indistinguishable
objects into p distinguishable slots, where at least 1 object has to be left in each
slot. That is, we have to specify that there are p slots. So, we are left with K − p

objects to distribute in p slots, now freely. We can think of distributing objects
as choosing each slot a certain number of times, even 0. These are precisely the
multi-combinations of a set with p elements. Therefore we have:

wp(K) =

((
p

K − p

))
=

(
p + K − p − 1

K − p

)
=

(
K − 1

p − 1

)
.

Using this result we know that we have wp(K) ways to arrange the K 1-bits.
Now we are left with N − K 0-bits to distribute in the remaining slots. In order
to do this, we have to consider distinct sub cases: i. e. we have to fix the first and
last bit.

Lemma 5.5. The number of strings α of length N such that α̂ = K > 0 and with p > 1
parts is given by:

np(0, 0) =
(
K − 1

p − 1

)(
N − K − 1

p

)
,

np(1, 1) =
(
K − 1

p − 1

)(
N − K − 1

p − 2

)
,

np(1, 0) =
(
K − 1

p − 1

)(
N − K − 1

p − 1

)
,

np(0, 1) =
(
K − 1

p − 1

)(
N − K − 1

p − 1

)
,

(40)

where np(i , j) denotes the number of strings with a1 = i and aN = j.
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Proof. As said before we have to distinguish four sub-cases, each corresponding
the different ways a string can start and end. For all these cases the count of 1-bits
arrangements is wp(K). All we have to do is to count the number of arrangements
in which we can distribute the N − K 0s between the 1s. With a similar reasoning
as in theorem 5.5, the count is given by wp ′ (N − K), where p ′ has to be specified:

• case (0, 0): in this case the number of slots is p ′ = p+ 1, therefore np(0, 0) =
wp(K)wp+1(N − K);

• cases (0, 1) and (1, 0): here the slots are p ′ = p and then np(0, 1) =

wp(K)wp(N − K);

• case (1, 1): the slots are p ′ = p − 1 and therefore

np(1, 1) = wp(K)wp−1(N − K) .

Now we have to count the number of ways we can choose a given number of
pairs. Firstly it has to be noticed that this can be done for each string with that
number of pairs: here is were theorem 5.4 on page 35 comes into play. Then, since
we have to count the paths for each matrix, we have to fix the first bit in α and
the last in β. In principle, for each 1-bit in β we can have a selection, permuting
them accordingly. So we will have a sum over each possible number of selections.

Lemma 5.6. Let us consider binary strings α and β of length N such that β̂ = K > 0
and such that α has p > 1 parts. Then the number of ways of choosing k pairs is given
by:

cp ,k(000) =

(
2p

k

)(
N − 2p − 1

K − k

)
, cp ,k(001) =

(
2p

k

)(
N − 2p − 1

K − k − 1

)
,

cp ,k(110) =

(
2p − 2

k

)(
N − 2p + 1

K − k

)
, cp ,k(111) =

(
2p − 2

k

)(
N − 2p + 1

K − k − 1

)
,

cp ,k(011) =

(
2p − 1

k

)(
N − 2p

K − k − 1

)
, cp ,k(010) =

(
2p − 1

k

)(
N − 2p

K − k

)
,

cp ,k(101) =

(
2p − 1

k

)(
N − 2p

K − k − 1

)
, cp ,k(100) =

(
2p − 1

k

)(
N − 2p

K − k

)
,

where ck(i , j , l) is the number of strings with a1 = i, aN = j, bN = l and with p
parts.

Proof. In all of the cases we have to consider we can make the same reasoning.
Disregarding in which way the strings can end, we can say that α has a fixed
number of pairs, say p ′. Then, we want to choose k of them, permuting β. This
can be done in

(
p ′

k

)
ways. Finally, we have still to place K − k objects in N − p ′

boxes and this can be done in
(
N−p ′

K−k

)
ways. When we fix the endpoints of the

strings, what we have to do is modify a little the considerations just done.

• Case 000: we have 2p internal pairs, so the count is exactly
(
2p
k

)
; the (K −

k) remaining 1-bits are to be placed in N − 2p − 1 boxes, since we have a 0

as the last bit in β, so the count is
(
N−2p−1
K−k

)
.

38



5.2 general case solution

• Case 110: here there are 2p − 2 pairs: so the count is
(
2p−2
k

)
; then we have

to place K − k ones in N − (2p − 2) − 1 boxes, since a slot is always fixed,
then:

(
N−2p+1
K−k

)
.

• Cases 011 and 101: here there are 2p pairs, but only 2p − 1 free, since the
last is always chosen (the last bit of β is 0); therefore the count is

(
2p−1
k

)
;

then we are left with K − k − 1 objects to place in N − 2p slots and this time
we have

(
N−2p
K−k−1

)
.

• Case 001: the pair selection gives
(
2p
k

)
; then we have K − k − 1 objects

(since one is fixed) to place in N − 2p − 1 boxes since one is already chosen
and so the count is

(
N−2p−1
K−k−1

)
.

• Case 111: here there are 2p − 2 pairs:
(
2p−2
k

)
; then we have K − k − 1

objects to distribute in N − (2p − 2) − 1 slots:
(
N−2p+1
K−k−1

)
.

• Cases 010 and 100: now there are 2p pairs, but one never chosen:
(
2p−1
k

)
;

then we have to place K − k objects in N − 2p slots:
(
N−2p
K−k

)
.

Corollary 5.5. Let us consider paths of length N (α , β) such that α has p > 1 parts and
β̂ = K > 0. Then, permuting β and keeping α fixed, we have the following interference
functions:

cp(000) =

2p∑
k=0

(−1)kcp ,k(000) , cp(001) =

2p∑
k=0

(−1)kcp ,k(001) ,

cp(110) =

2p−2∑
k=0

(−1)kcp ,k(110) , cp(111) =

2p−2∑
k=0

(−1)kcp ,k(111) ,

cp(011) =

2p−1∑
k=0

(−1)k+1cp ,k(011) , cp(010) =

2p−1∑
k=0

(−1)kcp ,k(010) ,

cp(101) =

2p−1∑
k=0

(−1)k+1cp ,k(101) , cp(100) =

2p−1∑
k=0

(−1)kcp ,k(100) .

Proof. The signs for the cases 011 and 101 are reversed because we always choose
at least one pair.

Now we are able to give the general result.

Theorem 5.6 (General case). The coefficients of the resulting matrices for paths of length
N characterised by the pair (K1 , K2) can be expressed as:

ca ,b
N (K1 , K2) =

K1∑
p=min{ 1 ,K1 }

1∑
a ′=0

np(a , a ′)cp(a , a ′ , b) . (41)

Proof. The result follows directly from lemma 5.5 and corollary 5.5.
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weyl solution in 2-dimensions

Previously we have given two proof of the formula for the coefficients on the
causal front. Now we want to show how the same result can be derived from the
general expressions of theorem 5.6. As before we will assume that the points lie
in the first quadrant x , y > 0 and N = x + y.

Corollary 5.6 (Causal front). The non vanishing coefficients of the transition matrices
on the causal front are given by:

cRN =

(
N − 1

y

)
,

cUN =

(
N − 1

x

)
.

(42)

Proof. The causal front is characterised by the condition x + y = N. So the pa-
rameters of theorem 5.4 on page 35 become:{

K1 = N−x+y
2 = y ,

K2 = N−x−y
2 = 0 .

The coefficients now are:

cRN =

y∑
p=1

(np(00)cp(000) + np(01)cp(010)) ,

cUN =

y∑
p=1

(np(10)cp(100) + np(11)cp(110)) ,

cLN =

y∑
p=1

(np(10)cp(101) + np(11)cp(111)) ,

cDN =

y∑
p=1

(np(00)cp(001) + np(01)cp(011)) .

Then the pair-counts are:

np(0, 0) =
(
y − 1

p − 1

)(
N − y − 1

p

)
, np(1, 1) =

(
y − 1

p − 1

)(
N − y − 1

p − 2

)
,

np(0, 1) =
(
y − 1

p − 1

)(
N − y − 1

p − 1

)
, np(1, 0) =

(
y − 1

p − 1

)(
N − y − 1

p − 1

)
.

The counts for the pairs selection become:

cp ,k(000) =

(
2p

k

)(
N − 2p − 1

−k

)
, cp ,k(101) =

(
2p − 1

k

)(
N − 2p

−k − 1

)
,

cp ,k(010) =

(
2p − 1

k

)(
N − 2p

−k

)
, cp ,k(111) =

(
2p − 2

k

)(
N − 2p + 1

−k − 1

)
,

cp ,k(100) =

(
2p − 1

k

)(
N − 2p

−k

)
, cp ,k(001) =

(
2p

k

)(
N − 2p − 1

−k − 1

)
,

cp ,k(110) =

(
2p − 2

k

)(
N − 2p + 1

−k

)
, cp ,k(011) =

(
2p − 1

k

)(
N − 2p

−k − 1

)
.
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5.2 general case solution

From the expressions above we can see immediately that the second column gives
no contributions at all and therefore the corresponding coefficients vanish: cLN =

cDN = 0. The counts in the first column give a non vanishing contribution only for
k = 0. So we have that:

cRN =

y∑
p=1

[(
y − 1

p − 1

)(
N − y − 1

p

)
+

(
y − 1

p − 1

)(
N − y − 1

p − 1

)]
,

cUN =

y∑
p=1

[(
y − 1

p − 1

)(
N − y − 1

p − 1

)
+

(
y − 1

p − 1

)(
N − y − 1

p − 2

)]
.

Now we can easily perform the sum in the two cases.

• Case R. Using the following identity for the binomials:

(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
,

we can rewrite the sum as:

cRN =

y∑
p=1

(
y − 1

p − 1

)(
N − y

p

)

=

y∑
p=1

(
y

p

)(
N − y

p

)
−

y∑
p=1

(
y − 1

p

)(
N − y

p

)
.

Now, upon adding the contribution from p = 0 on both sums and con-
sidering that the contribution from p = y in the second sum is 0, we can
write:

cRN =

y∑
p=0

(
y

p

)(
N − y

p

)
−

y−1∑
p=0

(
y − 1

p

)(
(N − 1) − (y − 1)

p

)
.

Then we can apply the identity [eq. 11 59, p. 616]:

n∑
k=0

(
n

k

)(
m − n

k

)
=

(
m

n

)
. (43)

So we have:

cRN =

(
N

y

)
−

(
N − 1

y − 1

)
=

(
N − 1

y

)
.
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weyl solution in 2-dimensions

• Case U. We can follow similar steps. We begin now rewriting the sum using
the identity (43):

cUN =

y∑
p=1

(
y − 1

p − 1

)(
N − y

p − 1

)

=

y−1∑
p=0

(
y − 1

p

)(
(N − 1) − (y − 1)

p

)

=

(
N − 1

y − 1

)
=

(
N − 1

x

)
.

5.2.3 Cycles
Now we want to analyse the cycles of the automaton, that is, paths returning back
to the starting point. We can assume that these paths always start at the origin
(0 , 0) and return at this point. First of all, we seek a way to enumerate all of
them. We have already given this result in equation (6) on page 17 in general
terms. Here we will show another way to obtain the same expression in the case
of cycles. Firstly, considering that x = 0 =⇒ r = l and y = 0 =⇒ u = d, then
the number of steps is even: N = 2r + 2u, as one can notice also from the fact
that K1 = K2 by theorem 5.4 on page 35.

Theorem 5.7 (Number of cycles). The number of (2K)-steps cycles is

N =

(
2K

K

)2
. (44)

Proof. Suppose a cycle consists of r , l , u , d steps such that r + l + u + d = 2K.
Then, because the distance is 0, we have that r = l and u = d and therefore
r + u = K. So we can iterate over k = 0 , . . . , K, right steps (equivalently, up
steps). The total number of paths is given by the number of possible permutations:
(2K) !. But we have k steps to the right and equally k steps to the left. The same
goes for up and down steps. This means that we have to count the number of
permutations with repetitions.

N =

K∑
k=0

(2K) !
k !2(K − k) !2

=

K∑
k=0

(2K) !
K !2

(
K !

k !(K − k) !

)2

=

(
2K

K

) K∑
k=0

(
K

k

)2
,
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5.2 general case solution

where the last sum is well known [see eq. 1 in 59, p. 616, or 35, p. 5]:

K∑
k=0

(
K

k

)2
=

(
2K

K

)
.

And so, finally, we obtain the expression we looked for:

N =

(
2K

K

)2
.

In order to obtain the coefficients of the transition matrices in this case, it is
effective to introduce a slightly different convention on the way of counting the
number of parts. That is, instead of counting the parts on a segment we can imag-
ine to arrange the bits around a ring and count the part on it. This trick allows
us to simplify the formulae of the general case. In fact using this convention the
number of pairs with different bits is always 2p, where p is the number of “cyclic”
parts. Instead, the number of strings with a given number of parts has still to be
counted as if we cut the ring somewhere. This is because the paths are actually
not cyclic. Now we are able to give the following result.

Theorem 5.8 (Cycles coefficients). For cycles of N = 4K + Q steps with Q ∈ { 0 , 2 },
the coefficients of the transition matrices are all equal and read:

c4K+Q = (−1)
Q
2 2Q−2

(
2K

K

)2
. (45)

Proof. The number of strings with p “cyclic” parts are given by the same equations
of lemma 5.5 on page 37 with the only variation of np(1, 1). Let N = 2n:

np(1, 1) =
(
n − 1

p

)(
2n − n − 1

p − 1

)
=
p(n − p)

n2

(
n

p

)2
,

since, in this case, if there are p parts then we have p + 1 slots, with this conven-
tion. Now we have to compute cp. In this convention there are always 2p pairs.
Then, since the four coefficients are equal for the cycles (by the symmetries of
the Weyl’s automaton in 2D, presented in section 2.4.3 on page 11), it is no more
necessary to fix the endpoints and the cps are all equal:

cp =

2p∑
k=0

(−1)k
(
2p

k

)(
2n − 2p

n − k

)
.

This sum results to be [see eq. 20 in 59, p. 617]:

cp = (−1)p

(
n
p

)(
2n
n

)(
2n
2p

)
= (−1)p

(2p) ! (2n − 2p) !
p ! n ! (n − p) !

.
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weyl solution in 2-dimensions

Now summing all the contributions from np(a , a ′) we have:

np :=

[
2p(n − p)

n2
+
2p2

n2

](
n

p

)2
=
2p

n

(
n

p

)2
.

Finally, keeping in mind that the coefficients are 1
4 of the total, the sum over p

becomes:

c2n(n , n) =
1

4

n∑
p=1

(−1)p
2p

n

(n !)2

(p !)2 ((n − p) !)2
(2p) ! (2n − 2p) !
p ! n ! (n − p) !

=
1

2

n∑
p=1

(−1)p
p

n

(
n

p

)(
2p

p

)(
2n − 2p

n − p

)

=
1

2

n∑
p=1

(−1)p
(
n − 1

p − 1

)(
2p

p

)(
2n − 2p

n − p

)
.

In order to obtain an explicit expression for this sum, we have to distinguish the
two cases: n = 2K and n = 2K + 1.

• Case n = 2K. In this case using Mathematica we obtain:

c4K(2K , 2K) = 42K−1 Γ
2
(
1
2 + K

)
π(K !)2

.

This expression can be simplified using the properties of the Gamma func-
tion:

Γ

(
1

2
+ n

)
=

(2n) !
4nn !

√
π ,

then we have the result:

c4K(2K , 2K) =
42K−1

π(K !)2
((2K) !)2

42K(K !)2
π

=
1

4

(
(2K) !
K ! K !

)2
=
1

4

(
2K

K

)2
.

• Case n = 2K + 1. Now Mathematica gives:

c4K+2(2K + 1 , 2K + 1) = −42K
Γ 2
(
1
2 + K

)
π(K !)2

.
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5.2 general case solution

Simplifying we have:

c4K+2(2K + 1 , 2K + 1) = −
42K

π(K !)2
((2K) !)2

42K(K !)2
π

= −

(
(2K) !
K ! K !

)2
= −

(
2K

K

)2
.
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6 C O N C L U S I O N S

The aim of this thesis was to study and analyse the properties and features of
a model of discrete dynamics, which is called Quantum Cellular Automaton

(qca), consisting in a homogeneous lattice of finite-dimensional quantum systems
in local interaction. The notion of qca we have adopted here was presented by
Schumacher and Werner [60], extending the classical notion of Cellular Automata
first introduced by Von Neumann [65]. This dynamical model has been a subject
of research in the scope of Computer Science and Quantum Information where it
found a rigorous formalisation and further analysis [3, 7, 9, 37, 45, 60].

The present work have had origin within the recent research program of D’Ariano
in the informational foundations of Quantum Theory [19]. The recent results
opened the way to the program of giving informational premises also to Quan-
tum Field Theory adopting as the microscopic mechanism a qca; this approach was
first proposed in the pioneering work of Bialynicki-Birula [11] and subsequently
in the works of Strauch [62] and Yepez [73]. In the recent paper of D’Ariano and
Perinotti [22] the authors show how a qca can be derived from four basic postu-
lates of physical nature: unitarity, locality, homogeneity, isotropy. Then they prove
that this automaton gives the correct large-scale limit, recovering the Weyl and
Dirac equations, giving also the analytic solution in the momentum space.

We have studied here the Dirac and Weyl automata in one and two spatial
dimensions respectively in their single-particle sectors, which can be regarded
as Quantum Walks, introduced by Aharonov, Davidovich, and Zagury [2] as an
extension of the classical Random Walks [51]. We have analysed these automata
employing the discrete path-integral approach, expressing the N-steps evolution
of the automaton as a sum over all possible paths leading to a specified point of
the lattice starting from some initial point.

We have been able to obtain an analytic solution for the problem of the repre-
sentation of the automata in the position space in these two cases, giving the exact
expression for the coefficients of the resulting transition matrices in the path-sum.
For the one dimensional case, we can mention some other solved models as those
considered by Kauffman and Pierre Noyes [42], Ambainis et al. [7], and Konno
[49, 48]. However, the result we have found for the two-dimensional Weyl qca is
somewhat surprising since it is a rare example of an analytically-solved quantum
model in two dimensions.

The results we have found during the analysis of these automata are certainly of
theoretic interest since we have been able to present an explicit analytic expression
of the N-steps evolution. Moreover, these results permit the analysis of some
large-scale behaviour of the automata, regarding the way the isotropy of the causal
cone is recovered thanks to the interference of the quantum paths. Furthermore,
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conclusions

we can also highlight the possible applications of these results in a computational
context. In fact, there could be a significative speedup of the algorithms used to
simulate these automata.

6.0.4 Future perspectives
Beside these successful results in one and two dimensions there is still work to
do. In the future, this work is directed toward the possibility of finding a solution
also for the three-dimensional case, specifically for the Weyl automaton.

Furthermore, we have not considered here the Dirac automaton in dimensions
greater than one for which there is still room for investigation. Finally, as we
have seen in this presentation, we have studied the single-particle sectors of the
considered automata, reducing them to quantum walks; so in the future there will
certainly be a in-depth analysis also of the aspects concerning the full interacting
automaton scenario.
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