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Introduction

The invention of the laser allowed the observations of nonlinear optical phenomena such

as harmonic generation, parametric amplification and oscillation, stimulated Raman

scattering, transient coherent phenomena, optical bistability, phase conjugation, optical

solitons, self-focusing, etc. Further efforts in experimental nonlinear optics followed the

advent of telecommunications using optical fibers. In the last decades, the nonclassical

behavior of light such as antibunching, subpoissonian statistics, squeezing, spontaneous

parametric downconversion, entanglement could be observed. Such kind of phenomena

have no classical analogue and require the quantum treatment of the radiation field.

The central topic of this thesis concerns the generation of nonclassical states of

light by parametric interaction with nonlinear media. On one hand, some practical

applications of these kind of states in quantum interferometry and in quantum-optical

information channels are suggested. On the other, some original experimental proposals

in testing quantum measurement theory and measuring the nonclassicality of radiation

states are presented. On this last subject, particular attention will be devoted to

experimental set-ups based on the recent technique of quantum homodyne tomography.

With regard to the theoretical approximations used in this thesis, the main point

is the single-mode treatment. This approximation is justified by the use of nearly-

monochromatic coherent sources and narrow-band photodetectors in all the proposed

experimental set-ups. The second point is the thorough assumption of the parametric

approximation, namely one of the modes involved in the nonlinear interaction Hamilto-

nians is treated as a classical undepleted pump. Such kind of approximation is widely

discussed in Chapter 1. In all the sections of the thesis a constant attention is addressed

to the detrimental effect of losses and to the consequences of nonunit quantum efficiency

of photodetectors, in order to give a realistic description of the proposed experimental

set-ups.

Structure of the Thesis

In Chapter 1 the effective interaction Hamiltonians that describe the parametric pro-

cesses of light in nonlinear media are introduced. Such Hamiltonians write in terms

1



2 Introduction

of different modes of the quantized electromagnetic field, and the role of the phase-

matching conditions is discussed. A detailed section of the chapter discuss the validity

of the parametric approximation, by comparing some exact numerical results with the

approximate ones. The numerical diagonalization of the Hamiltonians that describe

both degenerate and non degenerate parametric amplifiers is performed, by exploit-

ing the conservation laws pertaining each device. The conditions under which the

parametric approximation holds are shown to be the coherence of the pump after the

interaction, rather than its undepletion. The section also introduces some fundamental

unitary operators in quantum optics that are experimentally realized by parametric

processes.

Chapter 2 presents two novel methods to generate quantum states of radiation with

enhanced phase properties through nonlinear parametric interactions. Such states are

of interest both in high-sensitivity interferometry and in phase-based communication

channels. The first proposed experimental set-up generates the phase-coherent states

by a couple of nonlinear χ(2) crystals. The phase-coherent states are well-known to

approximate the (unnormalizable) Susskind-Glogower states—the optimal states for

single-mode phase detection—thus being the privileged states for single-mode phase-

based communication channels. The involved nonlinear interactions have been analyzed

by means of the numerical diagonalization presented in Chapter 1. The second pro-

posal is an experimental scheme for the generation of two-mode states that approach

the (infinite-energy) eigenstates of the heterodyne detector. These states are essen-

tially generated by parametric downconversion of coherent sources, and are shown to

achieve the ideal phase sensitivity (inversely proportional to the mean photon number).

Finally, an interaction Hamiltonian for a repeatable two-mode phase measurement is

also presented. In the last section of the chapter the problem of the phase measure-

ment is addressed with great generality in the realm of estimation theory, along with

the derivation of the optimal positive operator-valued measure and the optimal input

state. Two relevant examples are analyzed: i) a multi-mode phase shift operator for

multipath interferometry; ii) the two mode heterodyne phase detection.

The quantum-optical communication channels are the subject of chapter 3. The

customary channels based on heterodyne detection of coherent states, on homodyne

detection of squeezed states, and on direct detection of number states are optimized to

achieve the maximum information capacity in the presence of loss. The most surprising

result is found for the number-state channel, for which the a priori probability distribu-

tion of the input characters is strongly modified for increasing losses, with improvement

of the capacity up to 70 % at low power and for attenuation η = .15. The problem

of generating the number eigenstates is crucial not only in quantum information but

also in quantum interferometry. In this chapter a scheme for the generation of number

states (and superposition of number states) is presented. The scheme is base on the
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cross-phase modulation achievable in a χ(3) media between a traveling mode and a cav-

ity field. The squeezed-state channel also offers best performances with respect to the

classical channel based on coherent states. However, this channel is affected by strong

experimental difficulties. The equivalence between the squeezed-state channel and a

twin-beam channel (based on the two-mode states presented in Chapter 2) is proved.

The experimental advantages in using the latter scheme are emphasized.

Chapter 4 is entirely devoted to some proposed experimental tests of Quantum

Mechanics. The following tests are presented. i) An optical scheme that realizes the

standard von Neumann measurement model, providing an indirect measurement of a

quadrature of the field with controllable Gaussian state-reduction. The scheme rep-

resents an optical version of the measurement scheme for the position of a particle

formulated in the last chapter of von Neumann’s book. ii) A novel method to gen-

erate mesoscopic quantum superpositions by stimulated down conversion in nonlinear

χ(2) media. The scheme relies on feeding a nondegenerate parametric amplifier by a

single-photon state, in a way that makes signal and idler paths indistinguishable. The

amplification process is analyzed realistically by taking into account the effects of cav-

ity losses, and the appearance of mesoscopic quantum superpositions at the output

is shown. The last two proposals are based on quantum homodyne tomography. iii)

A homodyne detection scheme to verify Bell’s inequality on correlated optical beams

at the output of a nondegenerate parametric amplifier. The approach is based on to-

mographic measurement of the joint detection probabilities, which allows using high

quantum-efficient detectors and does not need supplementary hypotheses. iv) A more

general test to check the nonclassicality of radiation states, even for rather low quantum

efficiency. For single-mode states violations of inequalities involving photon-number

probability are checked. For two-mode states the nonclassicality test reconstructs some

suitable number-operator functions. The proposed test discriminates classical states

from states that invalidate the Mandel’s semiclassical formula of photon counting.





Chapter 1

Parametric processes of light in

nonlinear media

1.1 Introduction

Optical processes taking place in nonlinear media yield to a considerably rich variety of

nonlinear phenomena, both in the semi-classical [1] and in the quantum domain [2]. The

quantum statistical properties of the radiation coming out from such interactions have

attracted much attention (see, for example, Refs. [3, 4]). Squeezing, anti-bunching and

entanglement have been predicted and subsequently observed in a series of fascinating

experiments [5, 6]. Most of the theoretical approaches to a quantum theory of nonlinear

optical devices have been carried out using the so-called parametric approximation [7].

In this framework one of the field modes is in a strong semi-classical coherent state, so

that its depletion as well as its quantum fluctuations can be neglected.

In this chapter the effective interaction Hamiltonians that describe the parametric

processes of light in nonlinear media are introduced. Such Hamiltonians write in terms

of different modes of the quantized electromagnetic field, and the parametric processes

turn out to be effective when the phase-matching conditions are satisfied. The chapter

presents a detailed discussion about the validity of the parametric approximation, by

comparing some exact numerical results with the approximate ones. The conditions

under which the parametric approximation holds are shown to be the coherence of the

pump after the interaction, rather than its undepletion.

1.2 Effective Hamiltonians

A small part of the energy of a beam of light passing through a transparent homogeneous

material is scattered in all directions by the atomic structure of the material. The

thermal motion of the atoms modulates the scattered light, changing not only the

5



6 Chapter 1 Parametric processes of light in nonlinear media

direction but also the frequency of light (inelastic scattering). Such kind of phenomena

is attributable to the decay of one photon with wave-vector k3 and frequency ω3 into

a pair of photons with wave-vectors k1 and k2 and frequency ω1 and ω2, such that the

conservation of energy and momentum is satisfied, namely

k1 + k2 = k3 , (1.1)

ω1 + ω2 = ω3 . (1.2)

Let us consider more closely this process in a simple model of a molecular crystal of

N noninteracting molecules regularly arranged in a lattice. We also assume that the

system is sufficiently dilute that each of the molecules experiences the same electric

field. In the dipole approximation (quite good for light wavelength much longer than

the size of the molecules in the crystals) one can estimate the transition rate of the

parametric process by using the Fermi’s golden rule. Let the field initially contain

n1, n2, n3 photons in modes ak1 , ak2 and ak3 and all the molecules be in the ground

state |g〉 . The parametric interaction subtracts one photon in mode ak3 and creates

two photons, one in mode ak1 and the other in mode ak2 . At the end of the parametric

process the matter returns to its initial state, only the field undergoing a change. The

third order of perturbation theory is the lowest in which the transition amplitudes for

the three-photon process is nonzero. Hence, the transition rate can be written as follows

Wfi =
2π

~
|Tfi|2δ(Ef −Ei) , (1.3)

with

Tfi =
∑

v1,v2

〈f |V̂ |v2〉〈v2|V̂ |v1〉〈v1|V̂ |i〉
(Ei −Ev2)(Ei −Ev1)

. (1.4)

We do not take into account intermediate resonances, so that the denominator in Eq.

(1.4) are real. The sum over v1, v2 include all possible intermediate states, whereas the

state in the Dirac notation |i〉 , |f〉 denotes the field+matter states

|i〉 = |g , n1 , n2 , n3〉 ≡ |g〉|i′〉 , (1.5)

|f〉 = |g , n1 + 1 , n2 + 1 , n3 − 1〉 ≡ |g〉|f ′〉 , (1.6)

and V̂ represents the dipole interaction Hamiltonian

V̂ = −d · (Ê(+) + Ê(−)) , (1.7)

Ê(+) (Ê(−)) being the positive- (negative-) frequency part of the free electromagnetic

quantized field, in SI units

Ê(+)(r, t) = i
∑

k,λ

(

~ωk,λ

2ε0V

)1/2

ak,λεk,λ e
i(k·r−ωk,λt) , Ê(−)(r, t) = [Ê(+)(r, t)]† . (1.8)



1.2 Effective Hamiltonians 7

In Eq. (1.8) V represents the quantization volume, εk,λ the versor for wave-vector k

and polarization λ, ωk,λ = c|k|/nk,λ the angular frequency in the medium (nk,λ being

the index of refraction), and ak,λ the corresponding boson annihilation operator. For

the sake of notation, in the following we absorb the polarization index λ in k and define

Ek =
√

~ωk/(2ε0V ) . (1.9)

By summing the 3! = 6 possible sequences of photon emission and absorption for the

jth molecule one has the scattering amplitude

T (j) = −〈f ′|(βj |Ê(+)
j Ê

(−)
j Ê

(−)
j )|i′〉 , (1.10)

where Êj is the electric field at the jth-molecule position rj and βj is the tensor of the

quadratic hyperpolarizability of the molecule

β = βµαβ(−ω3;ω1, ω2) ≡ ST

∑

b,c

dµ
ac dα

cb d
β
ba

~2(ωac − ω3)(ωab − ω1)
, (1.11)

ST denoting the total symmetrized sum over the 3! permutations of the pairs (−ω3, µ),

(ω1, α), (ω2, β), and dba = 〈b|dj |a〉 representing the dipole matrix elements. The ef-

fect of a coherent optical field on the medium is to induce an assembly of electric

dipoles which oscillates coherently. Then, in the case of coherent scattering, one has

W12 ∼ |∑j T
(j)|2. By introducing the macroscopic second-order nonlinear susceptibil-

ity χ(2) = βN/(2ε0V ), for slowly-varying fields one has

∑

j

βjf(rj) ∼ 2ε0χ
(2)

∫

V
d3r f(r) . (1.12)

The transition rate then rewrites

W12 =
2π

~2
|〈f ′|V̂eff |i′〉|2 δ(ω1 + ω2 − ω3) , (1.13)

with the effective interaction Hamiltonian

V̂eff = 2iε0
∑

k1

∑

k2

∑

k3

Ek1Ek2Ek3 (1.14)

×
[

χ(2)(−ω3;ω1, ω2)|ε?k1
ε?k2

εk3 a
†
k1
a†
k2
ak3

∫

V
d3r ei(k3−k1−k2)·r − h. c.

]

,

where the added term Ê(+)Ê(+)Ê(−) describes the inverse parametric process |f〉 → |i〉
and guarantees the hermiticity of the interaction. Notice that in Eqs. (1.13,1.14) we

have excluded the molecular variables. This simple model shows that the three-photon

process can be described not only in the third, but also in the first order of perturbation

theory by taking the effective energy density to be of the form

V̂eff ∝ χ(2)|Ê3 (1.15)
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and by retaining only the terms that provide a time-independent Hamiltonian. More-

over, the integral on the volume in Eq. (1.14) depends strongly on the phase mis-match

∆k = k1 + k2 − k3, and rapidly falls for ∆k 6= 0. Thus, the rate of three-photon

processes is effective only when the conservation of momentum (the so-called phase-

matching condition) is satisfied. Thus, the conservation of momentum is a consequence

of the quantum interference of the transition amplitudes T (j).

The assumptions in our model for the description of the nonlinear interactions are

very sweep, and the transition between monomolecular and many-molecular formu-

lae are thus oversimplified. Moreover, the local field instead of the macroscopic field

should appear in Eq. (1.10). For a detailed treatment of the relation between the

microscopic polarizability and the macroscopic susceptibility the reader is referred to

Ref. [8]. Notwithstanding its simplicity, the model suggests the main result for the de-

scription of parametric processes in nonlinear media, namely the form of the interaction

Hamiltonian

ĤI ∝ χ(n)Ên+1 , (1.16)

for nonlinearity of order n.

The result in Eq. (1.16) can be derived by considering the electric contribution to

the electromagnetic energy within the nonlinear medium

H =

∫

V
d3r

∫

D(r,t)

0
E(r, t)·dD(r, t) , (1.17)

where E(r, t) and D(r, t) denote the electric field and the electric displacement vector,

and the SI units have been used. In terms of the polarization P(r, t), one has the

constitutive relation

D(r, t) = ε0E(r, t) + P(r, t) . (1.18)

Let us introduce the Fourier components of the field and of the nth-order polarization,

namely

E(ω) =
1

2π

∫

dtE(r, t) eiωt (1.19)

P(n)(ω) =
1

2π

∫

dtP(n)(r, t) eiωt (1.20)

= ε0

∫

dω1 · · · dωn χ
(n)(−ωσ;ω1, . . . , ωn)|E(ω1) · · ·E(ωn) δ(ω − ωσ) ,

where χ(n) denotes the nth-order susceptibility tensor, ωσ =
∑

i=1,n ωi, and P(r, t) =
∑

n P(n)(r, t). Through Eqs. (1.19,1.20), Eq. (1.17) rewrites

H =

∫

V
d3r

[

1

2
ε0E

2(r, t) +
∑

n=1

Xn(r)

]

, (1.21)
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where

Xn(r) =
ε0n

n+ 1

∫

dω dω1 · · · dωn e
−i(ω+ωσ)t

× χ(n)(−ωσ;ω1, . . . , ωn)|E(ω)E(ω1) · · ·E(ωn) . (1.22)

For small nonlinearities, the canonical quantization of the macroscopic field in the

medium can be achieved by replacing the classical field E(r, t) with the corresponding

free-field Hilbert space operator Ê(+)(r, t) + Ê(−)(r, t). From Eqs. (1.8) and (1.9) the

Fourier components of the quantum field write as follows

Ê(ω) = i
∑

k

Ek

[

akεk e
ik·rδ(ω − ωk) − a†

k
εk

? e−ik·rδ(ω + ωk)
]

. (1.23)

Thus, the contribution of the nth-order nonlinearity to the quantum Hamiltonian can

be obtained by replacing the Fourier components of the quantum field (1.23) in Eq.

(1.22). Owing to the phase factors eiωt, many of the terms coming from the product

in the last line of Eq. (1.22) are rapidly oscillating and hence average to zero. The

surviving terms correspond to sets of frequencies that satisfy the relation

r
∑

i=1

ωki
=

n+1
∑

i=r+1

ωki
(1.24)

and involve product of boson operators of the kind

ak1ak2 · · · akra
†
kr+1

· · · a†
kn+1

(1.25)

and their hermitian conjugates. Let us consider now, for example, the X̂2 contribution

in Eq. (1.21), and fix the frequencies ωk, ωk1 , ωk2 such that ωk = ωk1 +ωk2 . By ignoring

the oscillating terms (the so-called rotating wave approximation), one obtains

∫

V
d3rX̂2(r) ' 2iε0

∑

k1

∑

k2

∑

k3

Ek1Ek2Ek3 (1.26)

×
[

χ(2)(−ω3;ω1, ω2)|εk1εk2ε
?
k3
ak1ak2a

†
k3

∫

V
d3r ei(k1+k2−k3)·r − h. c.

]

,

which is equivalent to Eq. (1.14).

With regard to the approximations in deriving Eq. (1.22), we notice the following.

i) The electric dipole approximation is implicitly assumed by considering χ(n)(ω) inde-

pendent on the wave-vector k. ii) In the electromagnetic energy of the medium, terms

of order ω∂χ(n)/∂ω have been ignored. Such approximation holds for small dispersive

media, for which ω∂χ(n)/∂ω � χ(n), and far away from resonances. iii) The canonical

quantization of the field should be performed in the nonlinear medium. Thus, small

nonlinearities have been assumed.
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Again we find that the phase-matching condition ∆k = k1 + k2 − k3 = 0 turns

out to be the crucial requirement for the effectiveness of the parametric process. In

classical terms the phase-matching condition guarantees the synchronism of the phase

velocity of the electric field and the polarization waves. For normal dispersion usually

one has ∆k 6= 0. Hence anomalous dispersion, optical activity and more conveniently

birefringence must be employed for achieving phase-matching conditions. For a detailed

discussion on phase-matching techniques in crystals, see [9].

The relevant modes of the radiation involved in a nonlinear parametric process can

be easily determined by the condition (1.24) and the corresponding phase-matching

condition

r
∑

i=1

ki =

n+1
∑

i=r+1

ki . (1.27)

The effective Hamiltonians so derived can describe a number of nonlinear parametric

processes, according to which excited modes impinge onto the crystal. For example, let

us take into account the three-wave interaction

Ĥ ∝ χ(2)abc† + h. c. , (1.28)

where a, b, c are three different modes at frequency ωa, ωb, ωc, respectively. Hamiltonian

(1.28) can describe

a) sum-frequency mixing for input a and b and ωc = ωa + ωb,

b) difference-frequency mixing for input a and c and ωb = ωa − ωc,

c) nondegenerate parametric amplification for input c, and ωc = ωa + ωb.

It is possible that some of the modes in Hamiltonian (1.28) degenerate in the same

mode (i.e. at the same frequency, wave vector and polarization), thus leading to a

so-called degenerate parametric process as

d) second harmonic generation for input a ≡ b and ωc = 2ωa,

e) degenerate parametric amplification for input c, and ωc = 2ωa, with a ≡ b,

f) other effects as optical rectification and Pockels effect involving d.c. fields.

The interaction Hamiltonians ĤI derived in the rotating wave approximation are

time-independent. Thus, the unitary operators Û(t) that describe the evolution of the

radiation field through parametric processes are given by

Û(t) = exp
(

−iĤIt/~
)

, (1.29)
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the effective gain being proportional to the susceptibility tensor and to the optical path

of the field inside the crystal.

The interactions of different radiation modes through nonlinear crystals allow the

generation of interesting states of light, which exhibit a rich variety of phenomena.

Most of the theoretical analyses and the experimental configurations usually refer to

situations where at least one mode—the so-called “pump” mode—is placed in a high-

amplitude coherent state (the state at the output of a well-stabilized laser). In this case

the parametric approximation is widely used to compute the dynamical evolution [7]. In

such approximation the pump mode is classically treated as a c-number, thus neglecting

both the depletion mechanism and the quantum fluctuations. As a result, bilinear and

trilinear Hamiltonians as those derived in Eq. (1.28) are reduced to linear and quadratic

forms in the field operators, respectively, and hence some useful mathematical tools—

typically decomposition formulas for Lie algebras—can be exploited for calculations

[10, 11, 12]. The validity regime of the parametric approximation is discussed in the

next section, with particular attention to the parametric processes that allow to realize

experimentally some fundamental unitary operators in quantum optics.

1.3 On the validity of the parametric approximation

In the validity regime of the parametric approximation different optical devices exper-

imentally realize different unitary operators in quantum optics. For example, a beam

splitter, by suitably mixing the signal state with a strong local oscillator at the same

frequency, realizes the displacement operator

D̂(α) = exp
(

αa† − ᾱa
)

, (1.30)

which generates the coherent state |α〉 from the vacuum. Similarly, a degenerate para-

metric amplifier realizes the squeezing operator

Ŝ(ξ) = exp

[

1

2

(

ξa†2 − ξ̄a2
)

]

, (1.31)

which is the generator of the squeezed vacuum. Finally, a nondegenerate parametric

amplifier realizes the two-mode squeezing operator

Ŝ2(χ) = exp
(

χa†b† − χ̄ab
)

, (1.32)

i.e. the generator of twin beam.

The conditions under which the parametric approximation holds have been consid-

ered by a number of authors [13, 14, 15, 16], however without giving a general validity

criterion, which is the main concern of this section. Quantum effects in two-mode op-

tical amplifiers have been extensively analyzed [14, 15, 17, 18, 19, 20, 21, 22, 23, 24].
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Frequency couplers with intensity dependent coupling have been studied [19, 20, 25],

whereas the case of degenerate parametric amplifier has been considered by many au-

thors [14, 15, 18, 21, 22, 23, 24]. Phase correlations [22] and the signal-pump degree

of entanglement [23] have been examined. The effect of pump squeezing has been also

considered [24]. On the other hand, though trilinear processes have been thoroughly

analyzed in Refs. [26, 18, 28], only little attention has been devoted to the parametric

approximation in nondegenerate amplifiers [16].

The most explicit conditions for the validity of the parametric approximation have

been derived in Refs. [13] and [14], for the beam splitter and the degenerate parametric

amplifier, respectively. In both references sufficient conditions have been derived, which

however can be widely breached in relevant cases of interest, as we will show in the

following.

In this section we perform the exact numerical diagonalization of the full Hamilto-

nians pertaining the three above-mentioned devices [27]. As it was already noted by

other authors [17, 18, 28] such a numerical treatment is made amenable by the pres-

ence of constants of motion that characterizes each Hamiltonian. In fact, the Hilbert

space can be decomposed into the direct sum of subspaces that are invariant under the

action of the unitary evolution. Therefore, one needs to diagonalize the Hamiltonian

just inside each invariant subspace, thus considerably reducing the dimension of the

diagonalization space [17, 18, 28].

We analyze in different subsections the cases of the beam splitter, the degenerate

parametric amplifier and the nondegenerate parametric amplifier. The case of the

beam splitter can be treated analytically, but we also present some numerical results in

order to introduce the general approach that will be used for the parametric amplifiers.

For each device, we look for the conditions under which the parametric approximation

holds, for both vacuum and non-vacuum input signal states. The comparison between

the exact evolution and the theoretical predictions from the parametric approximation

is made in terms of the overlap O =
√

Tr(%̂out %̂th) between the state %̂out that exits

the device and the theoretical state %̂th obtained within the approximation. An explicit

comparison in terms of photon number distributions and Wigner functions is also given

for some interesting and representative cases.

The main result of the section is to show that the usual requirements for the validity

of the parametric approximation, namely short interaction time and strong classical

undepleted pump, are too strict. Indeed, we show that the only relevant requirement

is the coherence of the pump after the interaction, rather than its undepletion. In

fact, we will show typical examples in which the pump at the input is weak (one

photon in average), after the interaction it is highly depleted, and notwithstanding

the parametric approximation still holds. On the other hand, there are cases in which

the pump after the interaction is only slightly depleted, however is no longer coherent,
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and the approximation fails. Finally, we show some interesting features such as pump

squeezing and Schrödinger-cat-like state generation that arise when the parametric

approximation breaks down.

1.3.1 Displacer

The beam splitter is a passive device that couples two different modes of radiation at

the same frequency through a first-order susceptibility-tensor χ(1) medium. Such device

is widely used in quantum optics [2, 29], from homodyne/heterodyne detection [30], to

directional couplers [31] and cavity QED [32]. In the rotating wave approximation and

under phase-matching conditions, the beam splitter Hamiltonian writes in terms of the

two mode operators a and b as follows

ĤBS = κ
(

ab† + a†b
)

, (1.33)

where κ is the coupling constant proportional to the χ(1) of the medium. The unitary

evolution operator of the device in the interaction picture writes

ÛBS = exp
[

−iτ
(

ab† + a†b
)]

= e−i tan τab† | cos τ |a†a−b†b e−i tan τa†b , (1.34)

where τ is the interaction time rescaled by the coupling κ. The factorization of the

operator ÛBS in Eq. (1.34) has been derived by applying the Baker-Campbell-Hausdorff

formula for the SU(2) algebra [10, 11, 12]. The Heisenberg evolution of the field modes

reads

Û †
BS

(

a

b

)

ÛBS =

(

a cos τ − ib sin τ

−ia sin τ + b cos τ

)

. (1.35)

From Eq. (1.35) it turns out that the transmissivity θ at the beam splitter is given by

the relation θ = cos2 τ .

The parametric approximation refers to situations in which one mode—say mode

b—is excited in a strong coherent state. In this case in the first line of Eq. (1.34) the

operator b might be replaced by a c-number, namely the complex amplitude β of the

coherent state. Under this assumption, the evolution operator (1.34) would rewrite

as the displacement operator D̂(−iβτ) of Eq. (1.30). A more refined approximation

can take into account the 2π-periodicity in the exact Heisenberg equations (1.35), thus

leading to the operator D̂(−iβ sin τ). Indeed, this more precise result can be obtained

by recasting the factorized expression in Eq. (1.34) in normal order with respect to

mode a, after taking the expectation over mode b [33, 34]. The simple form of the

bilinear Hamiltonian in Eq. (1.33) allows to clarify the conditions under which the

parametric approximation (1.30) holds [13]. A set of sufficient requirements are given

by

|β| → ∞ , sin τ → 0

|β| sin τ = constant , (1.36)
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without any assumption on the “signal” state for mode a. Hence, by combining a

signal input state %̂in with a strong coherent local oscillator |β〉 in a beam splitter with

very high transmissivity, one can achieve the displacement operator in Eq. (1.30). The

theoretically expected state %̂th then writes

%̂th = D̂(−iβ sin τ) %̂in D̂
†(−iβ sin τ) . (1.37)

Here we present some numerical results concerning the exact unitary evolution of Eq.

(1.34). The dynamics generated by the Hamiltonian (1.33) preserves the total number of

photons involved in the process, in agreement with the following commutation relation

[

ĤBS , a
†a+ b†b

]

= 0 . (1.38)

Therefore, it is convenient to decompose the Hilbert space Ha ⊗ Hb as a direct sum

of subspaces with a fixed number N of photons, since these are invariant under the

action of the unitary evolution operator (1.34). Such a decomposition can be written

as follows

Ha ⊗Hb = ⊕+∞
N=0HN (1.39)

where

HN = Span {|m〉 ⊗ |N −m〉 ,m ∈ [0, N ]} , (1.40)

Span{·} denoting the Hilbert subspace linearly spanned by the orthogonal vectors

within the brackets, and |n〉 ⊗ |m〉 ≡ |n,m〉 representing the common eigenvector of

the number operator of the two modes. The decomposition in Eq. (1.39) makes the

Hamiltonian (1.33) block-diagonal, namely

ĤBS =

+∞
∑

N=0

ĥN , (1.41)

where ĥN acts just inside the subspace HN . Correspondingly, a generic two-mode state

|ψ0〉 can be written in the orthogonal basis (1.40) as follows

|ψ0〉 =

+∞
∑

N=0

N
∑

m=0

cm,N−m |m,N −m〉 . (1.42)

The diagonalization is performed inside each invariant subspace, and the truncation of

the series in Eqs. (1.41) and (1.42) corresponds to fix the maximum eigenvalue of the

constant of motion a†a+ b†b.

The state %̂out evaluated by the exact evolution operator (1.34) is given by

%̂out = Trb[ÛBS(%̂in ⊗ |β〉〈β|)Û †
BS ] , (1.43)
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where Trb denotes the partial trace on Hb. The comparison between the theoretical

state %̂th of Eq. (1.37) within the parametric approximation and the actual state %̂out

is made in terms of the relative overlap

O ≡
√

Tr[%̂th%̂out] . (1.44)

In the case of coherent input signal the overlap is evaluated analytically. One has

ÛBS |α〉 ⊗ |β〉 = |α cos τ − iβ sin τ〉 ⊗ |β cos τ − iα sin τ〉 , (1.45)

and thus

O = |〈α− iβ sin τ |α cos τ − iβ sin τ〉| = exp
(

−4|α|2 sin4 τ

2

)

. (1.46)

From Eq. (1.46) it is apparent that the parametric approximation gives always exact

results for vacuum input state (α ≡ 0), whereas it is justified for coherent state as long

as 4|α|2 sin4(τ/2) � 1, independently on the pump intensity.

We introduce the quantity τ ? which represents, for a fixed value of the pump am-

plitude |β|, the maximum interaction time leading to an overlap larger than 99%. The

value of τ ? clearly depends on the input signal: in agreement with Eq. (1.46) it is not

defined for the vacuum (parametric approximation is exact), whereas for a coherent

input signal |α〉 it is given by

τ? = 2 arcsin

√

C

|α| C =
1

2
(− ln 0.99)1/2 ' 0.05 . (1.47)

Figure 1.1: Performances of a beam splitter in achieving the displacement operator. We report the

maximum displacing amplitude |zM | achievable by a beam splitter as a function of the pump amplitude

|β|. In the picture triangles refers to vacuum input, squares to coherent state input |α ≡ 1〉, and circles

to number state input |n ≡ 1〉.

The quantity τ ? also determines the maximum displacing amplitude |αM | ≡ |β| sin τ ?

that can be achieved by a beam splitter with a coherent pump |β〉. In Fig. 1.1 we have
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reported |αM | for the vacuum, a coherent state and a number state as a function of the

pump amplitude |β|. The linear behavior of the plots indicates that τ ? is independent

on the pump intensity. In the case of vacuum input we have complete energy transfer

from the pump to the signal (slope of |αM | vs |β| equal to unit). Although they have the

same energy, the coherent and number input states show different slopes, the coherent

being more similar to the vacuum. Actually the set of coherent states is closed under

the action of the displacement operator, so that the parametric approximation can fail

only in predicting the exact amplitude of the output coherent state.

We conclude that the first of requirements (1.36) is too tight. At least for coherent

and number states, as long as the signal average photon number is less than the pump

one, the beam splitter can “displace” the signal also for very weak pump.

In the next sections we will deal with the problem of parametric approximation in

nonlinear amplifiers.

1.3.2 Squeezer

The degenerate parametric amplifier couples a signal mode a at frequency ωa with a

pump mode c at double frequency ωc = 2ωa. The interaction is mediated by the second-

order susceptibility tensor χ(2) of the medium. Each photon in the pump mode produces

a photon pair in the signal mode, giving rise to light with a number of interesting

properties, such as phase-sensitive amplification, squeezing and antibunching [3, 4, 5,

6, 26]. In the rotating wave approximation and under phase-matching conditions the

Hamiltonian writes

ĤDP = κ
(

a2c† + a†2c
)

, (1.48)

with κ ∝ χ(2). The corresponding unitary evolution operator in the interaction picture

reads

ÛDP = exp
[

−iτ
(

a2c† + a†2c
)]

, (1.49)

where τ represents a rescaled interaction time. The parametric approximation replaces

the pump mode c by the complex amplitude β of the corresponding coherent state,

such that the operator (1.49) rewrites

Ŝ(−2iτβ) ≡ exp
[

−iτ
(

βa†2 + β̄a2
)]

, (1.50)

Ŝ(ζ) being the squeezing operator [3]. In the case of coherent input signal |α〉, the

predicted state at the output is the squeezed state

Ŝ(−2iτβ)|α〉 = Ŝ(−2iτβ)D̂(α)|0〉 = D̂(α̃)Ŝ(−2iτβ)|0〉 ≡ |α̃ ,−2iτβ〉 , (1.51)

with α̃ = α cosh(−2iτβ)+ᾱ sinh(−2iτβ). Notice that, differently from the beam splitter

operator of Eq. (1.34), we have no method available to order Eq. (1.49) normally with
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respect to mode c [as in Eq. (1.34) for b] and then replace such mode by the c-number

|β|. Hence, we have no analogous nonperturbative method to estimate the validity of

the parametric approximation. Hillery and Zubairy have been approached the question

[14] in terms of a perturbation series for the propagator of the Hamiltonian (1.48). For

initial vacuum state at mode a, they write the following conditions

1/|β| � 1 , τ � 1 ,

τe4|β|τ � 1 , e4|β|τ � |β| . (1.52)

Here we evaluate the exact evolution generated by the operator (1.49) through

numerical diagonalization of the Hamiltonian (1.48), using the method based on the

constant of motion. In this case one has

[

ĤDP , a
†a + 2c†c

]

= 0 , (1.53)

and the Hilbert space Ha ⊗ Hc is decomposed in terms of invariant subspaces corre-

sponding to the eigenvalues of the constant of motion a†a + 2c†c, namely

Ha ⊗Hc = ⊕+∞
N=0HN , (1.54)

with

HN = Span {|N − 2m〉 ⊗ |m〉 ,m ∈ [0, bN/2e ]} , (1.55)

b e denoting the integer part of x. Hence the Hamiltonian in Eq. (1.48) rewrites in the

same fashion as in Eq. (1.41) and the block-diagonalization is performed for each ĥN ,

with N from 0 to the maximum allowed value of the constant of motion. Similarly to

Eq. (1.42), a generic two-mode state |ψ0〉 is written as follows

|ψ0〉 =

+∞
∑

N=0

bN/2e
∑

m=0

cN−2m,m |N − 2m,m〉 . (1.56)

The performances of a degenerate parametric amplifier in realizing the squeezing oper-

ator Ŝ(ζ) = exp[(ζa†2 − ζ̄a2)/2] of Eq. (1.50) are depicted in Fig. 1.2. In Fig. 1.2a we

have reported the maximum interaction time τ ? that leads to an output signal whose

overlap with the theoretical squeezed state is larger than 99%, as a function of the

pump intensity |β|2. In 1.2b we have shown the maximum squeezing parameter |ζM |
achievable by the amplifier, as a function of the pump amplitude |β|. According to

Eq. (1.50) one has |ζM | = 2|β|τ ?. In both pictures we have considered the vacuum, a

coherent state and two different number states at the input of the amplifier. For the

same set of input states, we have also shown in Fig. 1.3 the average signal photon

number as a function of the interaction time τ , for five different values of the pump

amplitude.
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Figure 1.2: Performances of a degenerate parametric amplifier in providing the squeezing operator

Ŝ(ζ). In both pictures triangles refers to vacuum input, squares to coherent state input |α ≡ 1〉,

circles to number state input |n ≡ 1〉, and stars to number state input |n ≡ 2〉. In (a) we report the

quantity τ?, namely the maximum interaction time that leads to an output signal whose overlap with

the theoretical squeezed state is larger than 99%, as a function of the pump intensity |β|2. In (b) we

show the maximum squeezing parameter |ζM | achievable by the degenerate parametric amplifier, as a

function of the pump amplitude |β|.

From Fig. 1.2 it turns out that the requirements for vacuum input signal in Eq.

(1.52) are too strict. In particular, the two conditions in the second line are not satisfied

for 1 < |β| < 9 [see the line with triangles in Fig 1.2(a)]. Moreover, Fig. 1.2 shows that

one can realize a squeezing operator even through a weak pump with just one photon.

By definition the validity of the parametric approximation is guaranteed for τ < τ ?,

τ? depending on |β| and on the input state. However, we want to provide a general

criterion that can be easily checked experimentally. As we will show in the following, the

undepletion of the pump is not a valid criterion. We argue that the relevant parameter,

in order to confirm whether the parametric approximation is justified or not, is the

degree of coherence of the pump after the nonlinear interaction. These statements are

supported by the following numerical results.

Let us consider the case of a number input state |n = 1〉 with pump amplitude

|β| = 9. From Fig. 1.2 one can extract the maximum interaction time τ ? ' 0.073

for the validity of the parametric approximation, and the corresponding maximum

squeezing parameter |ζM | ' 1.314. The average photon number of the output state

can be drawn from Fig. 1.3c as 〈n〉out ' 9.68, corresponding to a pump depletion of

about 5.4%. One might consider such a small depletion as the sign of the goodness

of the parametric approximation. On the other hand, from Fig. 1.3c one recognizes

the region 0.33 . τ . 0.44, in which the output signal is even less excited than that

in the above example, and consequently the pump is less depleted. Nevertheless the

parametric approximation does not hold in such range of interaction time, since τ is

larger than τ ?. Let us now consider the Fano factor F = 〈∆n̂2〉/〈n̂〉 of the pump at the
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Figure 1.3: Average photon number 〈n̂〉out of the signal at the output of a degenerate parametric

amplifier, as a function of the interaction time τ . In (a) the case of vacuum input, in (b) coherent

input |α ≡ 1〉, in (c) number input |n ≡ 1〉, and in (d) number input |n ≡ 2〉. Different line-styles refer

to different pump amplitudes: β = 9 (dot-dot-dashed), β = 7 (dotted), β = 5 (dot-dashed), β = 3

(dashed), β = 1 (solid).

output. One finds that in the region 0.33 . τ . 0.44 the Fano factor is always larger

than F = 1.13, whereas for τ < τ ? it never exceeds F = 1.10.

More generally, in all situations in which the parametric approximation is satisfied

we found that the Fano factor of the pump at the output never exceeds F = 1.10. This

holds also when the pump is weak (|β|2 = 1 ÷ 10). Indeed, in this case the depletion

of the pump can be strong, nevertheless the parametric approximation does not break

down. In Fig. 1.4 we show the Fano factor of the output pump as a function of the

interaction time τ , for different values of the pump amplitude. Plots refer to vacuum

input and to coherent state input |α ≡ 1〉: similar plots can be obtained for other input

states.

As the condition of pump undepletion does not guarantee the validity of the para-

metric approximation, so pump depletion by itself does not sign its failure: rather we

have to consider the Fano factor of the pump. In order to stress this point, let us

consider the extreme case of a pump with only one photon, and the input signal in the
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Figure 1.4: Fano factor F of the pump at the output of a degenerate parametric amplifier, as a

function of the interaction time τ . In (a) the case of vacuum input; in (b) of coherent input |α ≡ 1〉.

Different line-styles refer to different pump amplitude: β = 9 (dot-dot-dashed), β = 7 (dotted), β = 5

(dot-dashed), β = 3 (dashed), β = 1 (solid).

vacuum. The exact numerical solution indicates that the parametric approximation

holds for interaction time up to τ ? ' 0.42, the squeezing parameter and the output

signal photon number increasing up to |ζM | ' 0.84 and 〈n〉out ' 0.74, respectively [see

Figs. 1.2 and 1.3a]. Correspondingly, the pump depletion grows up to 37% at τ = τ ?.

In spite of the strong depletion, the pump preserves a good degree of coherence: the

Fano factor achieves at most the value F = 1.10 at τ = τ ?.

In summary, the validity regime τ < τ ? for the parametric approximation does not

identify with the condition of pump undepletion, rather it corresponds to a Fano factor

not exceeding the initial coherent level more than 10%.

Figure 1.5: Contour plot Wigner functions of both the signal and the pump modes at the output of

a degenerate parametric amplifier. The input signal is the vacuum, whereas the pump is initially in a

coherent state β = −i. The time interaction is equal to τ = τ ? = 0.42 in (a) and to τ = 2τ ? = 0.84 in

(b). Dotted lines in (b) denote negative values in the Wigner function of the signal.
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What happens beyond the parametric regime? For interaction time larger than τ ?

new quantum effects arise at the output. In Fig. 1.5 we show the Wigner functions

of both the signal and the pump modes at the output of the amplifier for τ = τ ? and

τ = 2τ?, with vacuum input and weak pump |β| = 1. In Fig. 1.6 the case of a stronger

pump is given. As τ increases, the pump first empties, then it starts refilling, preferably

for even photon numbers, leading to oscillations in the photon number distribution.

Remarkably, the corresponding Wigner functions of the pump and the signal exhibit

interference in the phase space [35], the signal resembling a Schrödinger-cat.

Figure 1.6: Photon number probability and contour plot Wigner function for both the signal and

the pump mode at the output of a degenerate parametric amplifier. The plots refer to a situation in

which the signal mode is initially in the vacuum and the pump mode is excited to a coherent state with

amplitude β = −3i. In (a) and (b) the interaction time is equal to τ ≡ τ ? = 0.19, whereas (c) and (d)

refer to an interaction time τ = 0.43 > 2τ ?. In the first case the parametric approximation well describes

the real interaction, which produces a squeezed vacuum state with squeezing parameter r = 1.146

corresponding to about 2 squeezing photons. On the other hand, parametric approximation does not

hold in the second case. Notice that the break-down of parametric approximation is connected with

the appearance of negative values in the Wigner function, which is a signature of quantum interference

in the phase space.
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1.3.3 Two-mode squeezer

The nondegenerate parametric amplifier involves three different modes of the radiation

field—say the signal a, the idler b and the pump c—which are coupled by a χ(2) non-

linear medium. The relation between the frequencies of the field modes is given by

ωc = ωa + ωb. The Hamiltonian of the amplifier under phase-matched conditions can

be written in the rotating wave approximation as follows

ĤNP = κ
(

abc† + a†b†c
)

, (1.57)

with κ ∝ χ(2). The Hamiltonian in Eq. (1.57) describes also the case in which the

frequencies pertaining modes a and b are the same, provided that the respective wave

vectors and/or polarizations are different. The dynamics induced by the Hamiltonian

(1.57) leads to a considerably rich variety of phenomena, such as generation of strongly

correlated photon pairs by parametric downconversion [36, 37, 38], phase insensitive

amplification [10, 7], generation of heterodyne eigenstates that are suitable for optimal

phase detection [39, 40], polarization entanglement [41] and realization of Bell states

[38, 41, 42, 43]. The unitary evolution operator in the interaction picture reads

ÛNP = exp
[

−iτ
(

abc† + a†b†c
)]

, (1.58)

where τ represents a rescaled interaction time. In the parametric approximation the

pump mode c is replaced with the complex amplitude β of the corresponding coherent

state, thus achieving the two-mode squeezing operator

Ŝ2(−iτβ) ≡ exp
[

−iτ
(

βa†b† + β̄ab
)]

. (1.59)

The two-mode squeezing operator yields a suppression of the quantum fluctuations in

one quadrature of the sum and difference of modes a± b [44]. When applied to vacuum

input, the unitary operator in Eq. (1.59) generates the so-called twin beam

Ŝ2(χ)|0, 0〉 = (1 − |λ|2)1/2
∞
∑

n=0

λn|n, n〉 , (1.60)

where λ = arg(χ) tanh |χ|. The expression in Eq. (1.60) can be easily derived by

factorizing the Ŝ2 operator through the decomposition formulas for the SU(1,1) Lie

algebra [10, 11, 12].

The dynamics of the nondegenerate parametric amplifier admits two independent

constants of motion. We choose them as follows

N̂ =
1

2

[

a†a+ b†b + 2c†c
]

, K̂ = a†a+ c†c . (1.61)

Correspondingly, we decompose the Hilbert space Ha ⊗Hb ⊗Hc in the direct sum

Ha ⊗Hb ⊗Hc = ⊕∞
N=0 ⊕N

K=0 HNK , (1.62)
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where the invariant subspaces HNK are given by

HNK = Span {|K −m〉 ⊗ |N −K −m〉 ⊗ |m〉 , m ∈ [0,min(K,N −K)]} . (1.63)

The Hamiltonian ĤNP and a generic three-mode state |ψ0〉 will be consistently written

as follows

ĤNP =
+∞
∑

N=0

N
∑

K=0

ĥNK , (1.64)

|ψ0〉 =
+∞
∑

N=0

N
∑

K=0

min(K,N−K)
∑

m=0

cK−m,N−K−m,m |K −m,N −K −m,m〉 . (1.65)

To compute the exact dynamical evolution, one then diagonalizes each block ĥNK in

Eq. (1.64) up to a fixed maximum value of N and makes the input state evolve in the

representation of Eq. (1.65).

Figure 1.7: Performances of a nondegenerate parametric amplifier in achieving the two-mode squeez-

ing operator (1.60). In both pictures triangles refers to vacuum input and circles to photon number

state |1, 1〉 input. In (a) we report the quantity τ ?, namely the maximum interaction time that leads

to an output signal whose overlap with the theoretical state is larger than 99%, as a function of the

pump intensity |β|2. In (b) we show the corresponding maximum two-mode squeezing parameter |χM |

achievable by the nondegenerate parametric amplifier, as a function of the pump amplitude |β|.

As in Sec. 1.3.2, we have evaluated the maximum interaction time τ ? that provides

an output state—in the signal and idler modes—whose overlap with the state predicted

by the parametric approximation is larger than 99%. The time τ ? for vacuum input

and number input |n ≡ 1, n ≡ 1〉 is plotted as a function of the pump intensity in Fig.

1.7a. The corresponding achievable two-mode squeezing parameter—the maximum

argument |χM | in the operator (1.60)—is represented in Fig. 1.7b. In Fig. 1.8 we

show the average photon number 〈n〉out of the output signal mode as a function of

the interaction time, and for different values of the pump amplitude. Notice that the
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quantity a†a− b†b is conserved, so that, for the considered input states, the idler mode

has the same average photon number as the signal one.

Figure 1.8: Average photon number 〈n̂〉out of the signal at the output of a nondegenerate parametric

amplifier, as a function of the interaction time τ . In (a) the case of vacuum input, and in (b) the

case of photon number input |1, 1〉. Different line-styles refer to different pump amplitudes: β = 9

(dot-dot-dashed), β = 7 (dotted), β = 5 (dot-dashed), β = 3 (dashed), β = 1 (solid).

As shown for the degenerate case, here also the requirement of a strong pump is

not peremptory, whereas the undepletion of the pump does not guarantee the validity

of the parametric approximation. Again, it is the Fano factor F of the pump after the

interaction that well discriminates the working regimes of the amplifier. As long as F ≤
1.10, the overlap between the states at the output and those predicted by the parametric

approximation is larger than 99%. For interaction time longer than τ ?, the pump mode

reveals its quantum character, by showing oscillations in the number probability. This

is illustrated in Fig. 1.9, where we report the photon number probabilities for both the

signal and the pump modes in the case of vacuum input and pump amplitude equal to

|β| = 5, for different values of the interaction time.

1.4 Conclusion

The quantum description of many optical devices is based on interaction Hamiltonians

that couple different modes of radiation through the susceptibility tensor of the medium

that supports the interaction. When the frequency of the radiation modes are far away

from the resonances of the medium, a parametric process due to the coherence of

the dipoles excited inside the crystal is effective, provided that the phase-matching

conditions are satisfied. The theoretical predictions about such interactions are usually

drawn in the so-called parametric approximation, i.e. by treating the pump mode

classically as a fixed c-number. Owing to such approximation, an analytical treatment

is possible with the help of the factorization formulas for Lie algebras.
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We have investigated the conditions under which the parametric approximation

holds in the treatment of χ(2) nonlinear amplifiers, by resorting to the exact diagonal-

ization of the their full Hamiltonians. We have explicitly compared the states evaluated

by the exact evolution with those predicted by the parametric approximation, in terms

of the overlap between such states. On one hand, we have shown that the regime of

validity of the parametric approximation is very large, including also the case of weak

pump with 1÷ 10 mean photon number. On the other, we have found that neither the

condition of pump undepletion guarantees the goodness of the approximation, nor the

condition of pump depletion signs its failure. We found that the degree of coherence of

the pump after the interaction is a univocal parameter that discriminates the working

regimes of the amplifiers. In terms of the pump Fano factor we found that a deviation

from the coherent level smaller than 10% guarantees an overlap larger than 99% be-

tween the states predicted within the parametric approximation and those evaluated

by the exact Hamiltonian.

Figure 1.9: Photon number probabilities for both the signal and the pump modes at the output of a

nondegenerate parametric amplifier. The plots refer to a situation in which the signal mode is initially

in the (two-mode) vacuum and the pump mode is excited to a coherent state with amplitude β = −5i.

The interaction time is equal to τ ≡ τ ? = 0.214 in (a), and to τ = 3τ ? in (b). In the first case the

parametric approximation well describes the real interaction, which produces a twin-beam state with

two-mode squeezing parameter χ = 0.789 corresponding to about 3.3 output photons. On the other

hand, parametric approximation does not hold in the second case, as it can be easily recognized from

the pump squeezing. The pump Fano factor in (b) is about F = 7.4.

For long interaction times the approximation breaks down, and the quantum char-

acter of the pump mode is revealed. Oscillations in the pump number probability

appear and, correspondingly, the Wigner function of the signal mode assumes negative

values and resembles a Schrödinger-cat state.





Chapter 2

Generation of radiation states

with enhanced phase properties

2.1 Introduction

The quantum-mechanical measurement of the phase of the radiation field is the essential

problem of high sensitive interferometry, and has received much attention in quantum

optics [45, 46]. Most of the work has been devoted to measurements on a single-

mode electromagnetic field, where the measurement cannot be achieved exactly, even

in principle, due to the lack of a unique self-adjoint operator. Quantum estimation

theory provides a more general description of quantum statistics in terms of positive

operator-valued measures (POM) and gives the theoretical definition of an optimized

phase measurement [47]. However, no feasible scheme has been devised yet, which can

even approach such optimal measurement.

Among the single-mode radiation states, the phase-coherent states introduced in

Ref. [48] are particularly interesting because they are optimal phase states for both

the Süssmann and the reciprocal peak likelihood measure of phase uncertainty [48,

49, 50]. Moreover, the phase-coherent states maintain phase coherence under phase

amplification 1, such that they are privileged states for phase-based communication

channels. The first proposed experimental set-up in the present chapter is an interaction

scheme involving nonlinear χ(2) media for the generation of phase-coherent states. The

scheme is based on spontaneous parametric downconversion followed by upconversion

of the resulting twin beam.

The absence of a proper self-adjoint operator in the single-mode phase measure-

ment is mainly due to the semiboundedness of the spectrum of the number operator

[48, 53], which is canonically conjugated to the phase in the sense of a Fourier-transform

1The concept of quantum phase amplification can be given a precise meaning in the context of the

quantum estimation theory. For more details see Refs. [47, 51, 52]

27
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pair [54]. This observation discloses the route toward an exact phase measurement in

terms of two-mode fields, where a phase-difference operator becomes conjugated to an

unbounded number-difference operator [55]. The second proposal of the chapter is an

experimental scheme that achieves ideal phase detection on a two-mode field. The field

is obtained by means of a twin-beam state followed by a high-transmissivity beam-

splitters with strong local oscillators, or alternatively by nondegenerate parametric

amplification of coherent states. The ideal detection is achieved through an unconven-

tional use of the heterodyne detector. Finally, the scheme for a repeatable two-mode

phase measurement is also presented. The property of repeatability allows to check the

evolution of the signal under successive measurements, and possibly also to drive the

evolution itself through the state reduction.

The general problem of phase estimation is solved in the last section of the chapter,

by means of a generalization of the Holevo method [52].

2.2 Generation of phase-coherent states

In the following we propose an experimental set-up for the generation of phase-coherent

states (PCS) based on parametric amplification of vacuum followed by up-conversion

of the resulting twin beam. The three-wave dynamics is evaluated without approxima-

tion resorting to the numerical block-diagonalization of the Hamiltonian in invariant

subspaces of the constants of motion, along similar lines as in Chapter 1. We will show

that there is an experimentally achievable working regime to approximate PCS with

high conversion rate [56].

In the rotating wave approximation, according to Sec. 1.2, the nondegenerate three-

wave interactions are described by the Hamiltonian

Ĥ ∝ χ(2)
[

abc† + a†b†c
]

, (2.1)

where a, b and c are the annihilation operators of the three relevant modes, whose

frequencies satisfy the relation ωc = ωa + ωb. Depending on the input state of the

field, the Hamiltonian (2.1) describes phase-insensitive amplification or frequency up-

or down-conversion. The first kind of process occurs in situations with small a and b

and large coherent c, so that the parametric approximation can be applied. On the

other hand, when all the three modes participates to the quantum dynamics we are in

the presence of frequency up- and down-conversion processes.

In the present section we are interested in the situation depicted in Fig. 2.1, where

the interaction Hamiltonian (2.1) is applied twice: in the first step as a parametric

(spontaneous) down-conversion of the vacuum state, generating a twin beam on modes

a and b, and in the second step as the up-conversion of twin beam into mode c.
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Figure 2.1: Scheme of generation of phase-coherent states.

The outgoing quantum state of radiation will be shown to resemble closely the phase-

coherent state (PCS)

|λ〉 =
√

1 − |λ|2
∞
∑

n=0

λn |n〉 , (2.2)

which has been introduced by Shapiro et al. in Ref. [48]. The phase-coherent states

are interesting because they are optimal phase states for both the Süssmann and the

reciprocal peak likelihood [48] measure of phase uncertainty [49, 50]. On the other

hand, they also could serve as seed states [57, 58, 59] in sampling canonical phase dis-

tribution by unconventional heterodyne detection [39]. Moreover, one should mention

that the PCS maintain phase coherence under phase amplification [51], such that they

are privileged states for phase-based communication channels.

In suggesting the present scheme we have been inspired by Ref. [10], where an

ideal scheme using a photon number duplicator was suggested for PCS synthesis from

twin beam. As a matter of fact, in such recombination process the photon number

duplicator is well approximated by the up-conversion from Hamiltonian (2.1) with mode

c initially in the vacuum [60, 61]. What we are showing now is that the interaction

scheme sketched in Fig. 2.1 is indeed effective for the generation of PCS. We analyze

the performances of the twin-beam up-conversion in producing phase-coherent states

in the second stage of the scheme of Fig. 2.1.

According to Sec. 1.3.3, within the parametric approximation the dynamics of the

nondegenerate parametric amplifier is governed by the evolution operator

Û = exp
(

ζa†b† − ζ̄ab
)

, (2.3)

where ζ = −iκtα, t, κ, α being the interaction time, the coupling constant containing

the nonlinear susceptibility, and the pump amplitude, respectively. For vacuum input,

the corresponding output state is given by the twin-beam state

|χ〉 =
√

1 − |χ|2
∞
∑

n=0

χn |n, n〉 , (2.4)
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Figure 2.2: In (a): overlap O =
�
〈χ|%̂′|χ〉 between the state %̂′ coming from the exact evolution

and the twin beam |χ〉 expected within the parametric approximation, as a function of the scaled time

τ = κt for different values of the pump input photon number. In (b): energy conversion rate η as

a function of the scaled time for different values of the pump input photon number. In both plots

different line styles denotes different values of pump intensity: 〈n̂c〉 = 81 (dot-dot-dashed), 〈n̂c〉 = 64

(dotted), 〈n̂c〉 = 49 (dot-dashed), 〈n̂c〉 = 36 (dashed), 〈n̂c〉 = 16 (solid). The interaction time leading

to maximum conversion rate follows the relation τopt ∝ 〈n̂c〉
−1/3.

where

χ = −i tanh(κt|α|)ei arg α . (2.5)

We have used the numerical diagonalization of Sec. 1.3.3 to evaluate the overlap

O =
√

〈χ|%̂′|χ〉 (2.6)

between the state %̂′ coming from the exact evolution and the expected twin beam

|χ〉. In Fig. 2.2(a) we show the behavior of the overlap as a function of the scaled

interaction time τ = κt for different values of the pump input power. In order to

evaluate the efficiency of the process we have also considered the energy conversion

rate η, which is defined as

η =
1

2

Tr [%̂′ (n̂a + n̂b)]

Tr [|ψ0〉〈ψ0|n̂c]
, (2.7)

where |ψ0〉 = |0, 0, α〉. In Eq. (2.7) η runs between zero and one, the factor 1/2 coming

from frequency conversion. In Fig. 2.2(b) we show the behavior of η as a function of

the scaled interaction time τ for different values of the input power, as in Fig. 2.2(a).

It is apparent that parametric approximation is valid also for moderate input power,

and that one has a considerably wide range of values of the interaction time leading to

an overlap very close to unit, the weaker is the pump, the larger is this range. On the
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other hand, these values of the interaction time correspond to a low conversion rate.

By the way, we note that the interaction time leading to maximum conversion rate

follows the relation τopt ∝ 〈n̂c〉−1/3.

2.2.1 Twin-beam up conversion

In this section we analyze the second step of the PCS generation set-up reported in

Fig. 2.1, namely the three-wave interaction starting from the twin-beam input state

|χ〉 =
√

1 − |χ|2
∞
∑

n=0

χn |n, n, 0〉 . (2.8)

The complex amplitude χ is confined in the unit circle, and the mean photon number

pertaining the state (2.8) is given by

〈χ|n̂a + n̂b + n̂c|χ〉 = 2|χ|2/(1 − |χ|2) . (2.9)

The synthesis of the PCS (2.2) starting from |χ〉 would be easily achieved by having at

disposal a device that performs the photon number recombination

|n, n, 0〉 −→ |0, 0, n〉 . (2.10)

Such kind of transformation has been analyzed in Ref. [10], and has been shown to

correspond to the interaction Hamiltonian

Ĥr = a†b†(b†b + 1)−
1
2 c+ c†(b†b+ 1)−

1
2ab . (2.11)

Unfortunately, the Hamiltonian (2.11) cannot be realized by known optical devices.

However, one may notice that the perfect number recombination |1, 1, 0〉 → |0, 0, 1〉
is performed by the Hamiltonian (2.1), and this suggests to substitute the intensity

dependent factor in Eq. (2.11) by its expectation value. In spite of this rather crude

approximation, the trilinear interaction (2.1) has been shown [60, 61] to provide a good

approximation of the photon recombination in the case of a single photon number state

at the input. Further details on the technique of quantum frequency conversion can

be found in Refs. [62, 63]. Here, we analyze the case of the input twin-beam state

(2.8). Our aim is to demonstrate that the scheme of Fig. 2.1 is indeed effective in

synthesizing a PCS. As a parameter to evaluate the effectiveness of PCS synthesis we

use the overlap O =
√

〈λ|%̂out|λ〉 between the state

%̂out = Trab

[

exp
(

−itĤ
)

|χ〉〈χ| exp
(

itĤ
)]

, (2.12)

exiting the χ(2) crystal in the mode c and a theoretical PCS |λ〉 corresponding to the

same mean photon number. In order to evaluate the efficiency of the process we also

consider the conversion rate η, defined as follows

η = 2
Tr(%̂out n̂c)

〈χ|(n̂a + n̂b)|χ〉
. (2.13)
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Figure 2.3: Behavior of the overlap O (circles) and the conversion rate η (squares) as a function of

the scaled interaction time for different intensity Nin of the incoming twin beam.

In Fig. 2.3 we show the behavior of the overlap O and the conversion rate η as a

function of the scaled interaction time for different intensity of the incoming twin beam.

A remarkable fact is apparent: interaction times corresponding to high conversion rate

also optimize the overlap between the outgoing state and the theoretical PCS. This

means that the up-conversion, although only approximated, produces a recombination

process which is at the same time efficient and quite precise. One should also mention

that for the same interaction times one has a small degree of mixing, indicating that the

outgoing states are quite pure, and minimum reciprocal peak likelihood, thus confirming

good phase-coherence properties.

In Fig. 2.4 we report the maximum overlap, along with the corresponding inter-

action time and conversion rate, as a function of the twin-beam input energy Nin =

〈n̂a + n̂b〉. The overlap O slowly decreases versus the input energy Nin, whereas the

conversion rate η is almost independent on this quantity, saturating to a value close to

80%. This results in a reliable generation of PCS with overlap between 80% and 100%,

for outgoing states with energy Nout = 〈n̂c〉 up to Nout = 20 mean photon number.

The corresponding reciprocal peak likelihood δφ shows the scaling δφ ∝ N
−3/4
out which,

though it is worse than the ideal PCS performances δφ ∝ N−1
out, it is far superior to the
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Figure 2.4: The optimized overlap along with the corresponding interaction time and conversion rate

as a function of the twin-beam input photons.

coherent state level δφ ∝ N
−1/2
out .

The interaction time τopt, which corresponds to the maximum overlap, decreases

with the input energy Nin. By a best fit on data in Fig. 2.4 we obtained the scaling

power-law τopt ' 1.4N−0.45
in . Remarkably, the same scaling is observed as a function

of the output energy Nout, with only a slight change in the proportionality constant

τopt ' 0.9N−0.45
out .

2.3 Two-mode heterodyne phase detection

A two-mode field corresponds to a complex photocurrent Ẑ such that [Ẑ, Ẑ†] = 0, with

a self-adjoint phase operator φ̂ = arg(Ẑ) that can concretely be measured. Despite

its promising possibilities, not much work has been devoted to the two-mode phase

detection, and attention has been focused mostly on the algebraic structure of the pho-

tocurrents (see Refs. [53, 54, 55] and references therein). Only in Ref. [64] a concrete

experimental set-up has been devised, based on unconventional field heterodyning with

the signal and image-band modes both nonvacuum. Following the route opened by

Ref. [64], we study the eigenstates of the heterodyne photocurrent Ẑ and provide an

experimental scheme that approaches them. We then analyze the measurement of the

two-mode phase φ̂ = arg(Ẑ) showing that the ideal sensitivity limit δφ = 1/n can be

achieved for large mean number of photons n [65].

2.3.1 The heterodyne eigenvectors |z〉〉

It has been proved by Yuen and Shapiro [66] that the output photocurrent Ẑ of a het-

erodyne detector (for unit quantum efficiency, and in the limit of strong local oscillator
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and vanishing beam splitter reflectivity) is just the operator Ẑ = a + b†, where a and

b denote (the annihilator of) the signal and the image-band mode, respectively. In

ordinary heterodyning the image-band mode b is vacuum, and is responsible for the

3dB additional noise. Here, similarly to Ref. [64], we use the heterodyne detector in an

unconventional way, namely with a nonvacuum b mode, and look for field states which

are eigenvectors of the current Ẑ. Indeed, the heterodyne detector jointly measures the

real and the imaginary part of Ẑ, which are expressed as a function of the quadratures

ĉφ = 1
2(c†eiφ + h.c.) of the single modes c = a, b as follows

Ẑ1 = ReẐ = â0 + b̂0 Ẑ2 = ImẐ = âπ/2 − b̂π/2 . (2.14)

Ẑ1 and Ẑ2 are self-adjoint commuting operators, so that they can be jointly measured

without the additional 3dB noise suffered by joint measurement of conjugated quadra-

tures.

It is easy to check that the following vector [64]

|z〉〉 =

∫ +∞

−∞

dx√
π
e2ixImz|x〉0 ⊗ |Rez − x〉0

=

∫ +∞

−∞

dy√
π
e−2iyRez|y + Imz〉π/2 ⊗ |y〉π/2 (2.15)

is eigenvector of Ẑ with complex eigenvalue z. In Eq. (2.15) |ψ〉⊗ |ϕ〉 denotes a vector

in the two-mode Hilbert space H = Ha ⊗Hb, and |x〉φ represents an eigenvector of the

quadrature ĉφ of the pertaining mode c = a, b. The notation | 〉〉 remembers that the

state is a two-mode one. It is also convenient to write the eigenstate of Ẑ corresponding

to complex eigenvalue z as follows

|z〉〉 =
e

|z|2
2√
π

exp(−a†b†)|z〉 ⊗ |z̄〉 , (2.16)

where |z〉 denotes a customary coherent state.

The set {|z〉〉} is complete orthonormal for H, with scalar product:

〈〈z|z′〉〉 = δ(2)(z − z′) ≡ δ(Rez − Rez′) δ(Imz − Imz′) . (2.17)

In the number representation the vector (2.15) reads as follows

|z〉〉 = eiRezImz
∞
∑

n,m=0

cn,m(z, z)|n〉 ⊗ |m〉 , (2.18)

with

cn,n+λ(z, z) = cn+λ,n(z, z) =
(−)n

√
π

√

n!

(n+ λ)!
zλ Lλ

n(|z|2) exp

(

−1

2
|z|2
)

. (2.19)
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Eq. (2.19) is obtained from Eq. (2.15) using the number representation of the quadra-

ture

φ〈x|n〉 =

(

2

π

)1/4 einφ

√
2nn!

e−x2
Hn(

√
2x) , (2.20)

along with the following identity between Hermite and Laguerre polynomials
∫ +∞

−∞

dx√
π
e−x2

Hn(x+ y)Hn+λ(x + t) = 2n+λ n! Lλ
n(−2yt) tλ . (2.21)

2.3.2 The detection of the two-mode phase

The Dirac-normalized states |z〉〉 have infinite total number of photons, and we seek

physically realizable states approaching |z〉〉 for infinite photon numbers. The eigenstate

corresponding to zero eigenvalue is given by:

|0〉〉 =
1√
π

∞
∑

n=0

(−)n|n〉 ⊗ |n〉 . (2.22)

This is just the twin beam of Eq. (1.60) at the output of a nondegenerate parametric

amplifier, in the limit of infinite gain [10], namely

|0〉〉 = lim
λ→1−

|0〉〉λ , (2.23)

with

|0〉〉λ = (1 − λ2)1/2
∞
∑

n=0

(−λ)n|n〉 ⊗ |n〉 = exp[tanh−1 λ (ab− a†b†)] |0〉 ⊗ |0〉 . (2.24)

In the parametric approximation modes a and b are identified with a couple of signal

and idler modes of the amplifier with gain (1 − λ2)−1. All the other states with z 6= 0

can be approached by suitably displacing either mode a or b, or both of them, as follows

|z〉〉λ = Da(u)Db(v̄)etanh−1 λ (ab−a†b†) |0〉 ⊗ |0〉 (z = u+ v) , (2.25)

where Dc(u) = euc†−ūc denotes the displacement operator of the mode c = a, b. Ac-

cording to Sec. 1.3.1, the physical realization of the states |z〉〉λ can be achieved by

combining the twin beam |0〉〉λ with strong coherent local oscillators with amplitude β

and γ in beam splitters with transmissivity θ, θ ′ → 1, such that |β|
√

1 − θ = |u| and

|γ|
√

1 − θ′ = |v|.
Using the identity

e−ξ(ab−a†b†)Da(u)Db(v̄) eξ(ab−a†b†) = Da(u chξ + v shξ)Db(ū shξ + v̄ chξ) (2.26)

Eq. (2.25) rewrites as follows

|z〉〉λ = etanh−1 λ (ab−a†b†)
∣

∣

∣

∣

u+ λv√
1 − λ2

〉

⊗
∣

∣

∣

∣

λū + v̄√
1 − λ2

〉

(z = u+ v) . (2.27)
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Hence, the state |z〉〉λ can also be obtained through phase-insensitive amplification of

input signal and idler which have the precise amplitude relation in Eq. (2.27). In the

next chapter we will show that such kind of state is effective for the realization of a

quantum communication channel with the same performances of the squeezed-state

channel.

a

b
-

-|0〉
|0〉

NPA
gain (1 − λ2)−1

�

�
pump

twin beam

|0〉〉λ

6

?
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H
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LO

|z〉〉λ

|z/
√

2∆λ〉
|0〉 -

-a

b

FC

�

�
pump

b

a

-

-|z/2∆λ〉
|z̄/2∆λ〉

NPA
gain (1 − λ2)−1

�

�
pump

|z〉〉λ

Figure 2.5: Outline of the two alternative experimental set-ups to generate the two-mode states |z〉〉λ

of Eq. (2.34). The labels H and LO denote high-transmissivity beam splitters and local oscillators

respectively, which realize the displacement operators in Eq. (2.25). The input states at the nonde-

generate parametric amplifier (NPA) are the vacuum state in the upper scheme, and two independent

coherent states in the lower one. In the last case the couple of coherent states is generated by a single

coherent state through frequency conversion (FC).

The average number of photons of (2.25) is given by

n = λ〈〈z|a†a+ b†b|z〉〉λ = |u|2 + |v|2 +
2λ2

1 − λ2
. (2.28)

The state (2.25) is now impinged into a heterodyne detector with signal mode a and

image-band mode b. The probability density of getting the value z for the output

photocurrent Ẑ with the field in the state |w〉〉λ is given by

|〈〈z|w〉〉λ|2 = (1 − λ2)

∣

∣

∣

∣

∣

∞
∑

n=0

(−λ)n cn,n(z − w, z − w)

∣

∣

∣

∣

∣

2
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=
1 − λ2

π
exp (−|z − w|2)

∣

∣

∣

∣

∣

∞
∑

n=0

λnLn(|z − w|2)

∣

∣

∣

∣

∣

2

=
1

π∆2
λ

exp

(

−|z − w|2
∆2

λ

)

(2.29)

where

∆2
λ =

1 − λ

1 + λ
. (2.30)

In the limit λ → 1− one has that |〈〈z|w〉〉λ|2 → δ(2)(z − w), confirming that the state

|w〉〉λ approaches the eigenstate |w〉〉 of the current Ẑ.

The detection of the phase φ̂ = arg(Ẑ) is described by the marginal probability

density of (2.29), namely

p(φ) =
1

π∆2
λ

∫ +∞

0
dr r exp

(

−|reiφ − |w|eiθ|2
∆2

λ

)

(2.31)

=
1

2π
e
− |w|2

∆2
λ +

|w|
π∆λ

cos(φ− θ)

√
π

2

[

1 + erf

( |w| cos(φ− θ)

∆λ

)]

e
− |w|2

∆2
λ

sin2(φ−θ)
,

where θ = arg(w), and erf(x) denotes the error function erf(x) = 2√
π

∫ x
0 dt e

−t2 . Notice

that the probability density (2.31) is just the Born rule for the self-adjoint operator

φ̂ = arg(Ẑ) = − i
2 log(Ẑ/Ẑ†): this is well defined on the Hilbert space H⊥

0 , orthogonal

complement in H of the space H0 spanned by vector |0〉〉 in Eq. (2.22). The integral over

r in Eq. (2.31) just sums up degeneracies of eigenvectors (2.18): the zero-eigenvalue

vector is not degenerate, and gives a zero-measure contribution to the integral. The

first Gaussian term in the last side of Eq. (2.31) gives a uniform phase probability

distribution for the twin-beam input state |0〉〉λ.

For ∆λ � |w| Eq. (2.31) approaches the Gaussian form

p(φ) ' |w|√
π∆λ

exp

[

−|w|2
∆2

λ

(φ− θ)2
]

. (2.32)

For Gaussian distributions the average maximizes the likelihood and is an asymptot-

ically efficient estimate of the phase shift θ with efficiency equal to the variance (see

Ref. [67]). Hence the r.m.s. phase sensitivity corresponding to Eq. (2.32) is given by

δφ = 〈∆φ2〉1/2 =
1√
2

∆λ

|w| . (2.33)

In the limit of infinite gain at the amplifier (λ → 1−) one has ∆2
λ ' 1

2 (1 − λ) and

n̄ ' |w|2 + (1 − λ)−1. Notice that the probability density (2.29) does not depend

explicitly on u and v (the share of displacement of the two modes), while the mean

number of photons does. The constraint u+v = w over states (2.25) and (2.27) implies
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that for each z there is a family of states approaching the eigenstate |z〉〉 according to

Eq. (2.29). For u = v = z/2, the most symmetrical state

|z〉〉λ = etanh−1 λ (ab−a†b†) |z/2∆λ〉 ⊗ |z̄/2∆λ〉 (2.34)

achieves the best phase sensitivity. In fact, by optimizing δφ versus |w| = |u + v| at

fixed n̄ one obtains

δφ ' 1√
2n̄

(2.35)

for |u|2 = |v|2 = 1/[2(1−λ)], namely for signal photons equal to the twin-beam photons.

The sensitivity (2.35) obeys the same power-law as the ideal sensitivity for one-mode

phase detection (actually it is improved by a constant factor equal to 1.92: see Ref.

[45]).

The couple of coherent states on the right of Eq. (2.34) can be generated by means

of a single coherent state and a frequency conversion device with suitable pump strength

and phase. In fact, for any complex α, one has

exp
[π

4

(

ei arg αa†b− e−i arg αab†
)]

|
√

2α〉 ⊗ |0〉 = |α〉 ⊗ |ᾱ〉 , (2.36)

where the unitary operator on the left side of Eq. (2.36) describes a frequency conver-

sion device. In the parametric approximation this can be realized through a three-wave

(or degenerate four-wave) mixing in a nonlinear χ(2) (χ(3)) medium. For the technique

of quantum frequency conversion, see Refs. [62, 63]. The two alternative experimental

set-ups to generate the state (2.25) are sketched in Fig. 2.5.

The ideal phase sensitivity (2.35) has been derived with the hypothesis of unit

efficiency at the heterodyne photodetector. It is easy to show that for non-unit quan-

tum efficiency (independent on frequency in the range between signal and image-band

modes) Eq. (2.30) becomes

∆2
λ → ∆2

λ(η) = ∆2
λ +

1 − η

η
. (2.37)

Then, it is clear that the result (2.35) holds only in the limit 1− η � |w|−2, whereas in

the opposite situation 1−η � |w|−2 one obtains the usual shot noise δφ =
√

(1 − η)/2n̄.

Hence, the two-mode phase detection can be experimentally achieved, but the technical

requirements are strict: linear amplification for high gains, with the pump still unde-

pleted and very good quantum efficiency. This shows how technical difficulties can rise

when going from one-mode to two-mode phase detection.

2.4 A repeatable two-mode phase measurement

A measurement scheme to perform a repeatable phase detection on a two-mode field is

presented in this section. We will give also some hints for its experimental realization
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[68]. Since we want to perform a phase measurement on a generic two-mode field

without destroying it, we need a general theoretical framework for describing repeatable

measurements.

2.4.1 General framework for repeatable measurements

In order to have a measurement that does not completely destroy the state that the

system had before the measurement, the scheme must involve a probe that interacts

with the system and later is “measured” to yield information on the original state of

the system [69]. This indirect measurement scheme is completely specified once the

following ingredients are given: i) the unitary operator Û that describes the system-

probe interaction; ii) the state |ϕ〉 of the probe before the interaction; iii) the observable

X̂ which is measured on the probe. At the end of the system-probe interaction, one

can consider another measurement on the system, say the ideal measurement of an

observable Ŷ (both X̂ and Ŷ have continuous spectrum, with eigenvectors |x〉 and |y〉,
respectively). Then the conditional probability density p(y|x) of getting a result y from

the second measurement given the result of the first one being x can be written in terms

of the Born’s rule p(y|x)dy = 〈y|%̂x|y〉 upon defining a “reduced state” %̂x as follows

%̂x =
Ω̂(x) %̂ Ω̂†(x)

Tr[%̂ Ω̂†(x)Ω̂(x)]
, (2.38)

where the system operator Ω̂(x) is given by

Ω̂(x) = 〈x|Û |ϕ〉 . (2.39)

The “probability operator-valued measure” (POM) of the apparatus [69]

dµ̂(x) = Ω̂†(x)Ω̂(x) dx (2.40)

provides the Born’s rule for the measurement as follows

p(x)dx = Tr[%̂ dµ̂(x)] . (2.41)

Equations (2.38-2.41) are the most general form of the state reduction and of the Born’s

rule for a “pure” or “quasi-complete” measurement, namely a measurement that leaves

pure states as pure (due to the pure state preparation of the probe). Apart from an

irrelevant phase factor, the non-unitary reduction operator Ω̂(x) uniquely characterizes

the quantum measurement, and two measurements that have the same operator Ω̂(x)

will be considered as identical, both having the same probability density (2.41) and the

same state-reduction (2.38). On the other hand, the fact that many measurements can

share the same POM dµ̂(x)—while having different state reduction—is immediately

apparent from the fact that a unitary transformation of the reduction operator

Ω̂(x) → Ω̂′(x) = V̂ (x)Ω̂(x) (2.42)
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changes only the state-reduction, but leaves the POM (2.40) invariant. A unitary

transformation V̂ (x) that depends on the result x of a measurement is the quantum

mechanical description of a feedback mechanism, which in turn represents the easiest

way of engineering a prescribed (admissible) state reduction.

2.4.2 The interaction Hamiltonian

The repeatable phase measurement we propose is obtained through unconventional

heterodyne detection performed on a probe field after a suitable interaction with the

system. The property of repeatability allows to check the evolution of the signal under

successive measurements, and possibly also to drive the evolution itself by state re-

duction (i.e. by selecting the state after the measurement). Finally—more interesting

for foundations—a repeatable phase measurement is a good candidate for detecting

Schrödinger-cat states (see, for example, Ref. [70]). In the following we compute the

probability distribution and the reduced state depending on the outcome of the mea-

surement.

The interaction Hamiltonian between the system and the probe is bilinear in the

four field modes a, b (for the system) and c, d (for the probe) and is given by

Ĥ = −K i

2

[

(a†c+ bc + ad+ b†d) − h.c.
]

, (2.43)

where K is a coupling constant. From definitions (2.14), and introducing the complex

current for the probe field

Â ≡ c + d† = Â1 + iÂ2 , (2.44)

the Hamiltonian (2.43) rewrites

Ĥ = K
[

Ẑ1(ĉπ/2 + d̂π/2) − Ẑ2(ĉ0 − d̂0)
]

. (2.45)

The Heisenberg evolution of a probe operator of the form f(Â) for an interaction time

τ = ~/K is

Û † f(Â) Û = f(Â+ Ẑ) , (2.46)

where

Û = exp(−iĤτ) = exp
{

−i
[

Ẑ1(cπ/2 + dπ/2) − Ẑ2(c0 − d0)
]}

(2.47)

is the unitary evolution operator. After the interaction, the probe modes c and d are

heterodyne measured, with c as the signal mode and d as the image-band mode. As

explained in the previous section, this corresponds to measure the photocurrent Â.

This indirect measurement provides information about the probability density of the
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complex eigenvalue z pertaining the system operator Ẑ. The probability density is

computed through the relation

TrS [F̂ (z)%̂S ] = TrS,P [|z〉〉〈〈z| Û (%̂S ⊗ %̂P ) Û †] , (2.48)

where F̂ (z) is a probability operator-valued measure (POM) and |z〉〉〈〈z| represents an

orthogonal projector on the eigenspace of the two-mode probe Hilbert space Hc ⊗Hd

relative to the eigenvalue z of Â. The tensor product %̂S⊗%̂P denotes the (disentangled)

state of system and probe before the interaction. We now specify the probe preparation

as the twin-beam state (2.24). The corresponding POM F̂ (z) writes

F̂ (z) = λ〈〈0|Û †|z〉〉〈〈z|Û |0〉〉λ .
= Ω̂†(z) Ω̂(z) . (2.49)

From the Eqs. (2.15), (2.47) and (2.29) with w=0, taking into account the additional

phase λ〈〈0|z〉〉 = eiz1z2 |λ〈〈0|z〉〉| 2 the reduction operator Ω̂†(z) is evaluated as follows

Ω̂†(z) = exp

{

iẐ1

(

i
∂

∂z1
+ z2

)

+ iẐ2

(

i
∂

∂z2
+ z1

)}

λ〈〈0|z〉〉

=
eiz1z2

√
π∆λ

exp






−

∣

∣

∣
Ẑ − z

∣

∣

∣

2

2∆2
λ






, (2.50)

where ∆λ is given by Eq. (2.30). As a consequence, one gets the expression for the

POM

F̂ (z) =
1

π∆2
λ

exp






−

∣

∣

∣Ẑ − z
∣

∣

∣

2

∆2
λ






, (2.51)

which provides the probability density

P (z‖%̂S) = Tr[F̂ (z)%̂S ] =
1

π∆2
λ

∫

C
d2z′ S〈〈z′|%̂S |z′〉〉S exp

(

−|z′ − z|2
∆2

λ

)

. (2.52)

Here {|z′〉〉S} are the eigenstates of the system operator Ẑ and the integral is over the

complex plane. Eq. (2.52) is a convolution of the ideal probability with a Gaussian that

narrows for increasing gain of the parametric amplifier. Notice that the result (2.51)

can be derived more easily through Eqs. (2.49) and (2.46), upon defining formally the

projector for Â as a Dirac delta on the complex plane, namely

|z〉〉〈〈z| = δ(2)(Â− z) , (2.53)

then obtaining from Eq. (2.49)

F̂ (z) = λ〈〈0|δ(2)(Â+ Ẑ − z)|0〉〉λ ; (2.54)

2This phase relation can be derived from the number representation of vectors {|z〉〉} given in Eq.

(2.18).
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hence, using Eq. (2.29), one gets the result. Notice that with respect to the scheme

of Fig. 2.5, here we no longer need a beam splitter for displacing the state, because

the interaction Hamiltonian itself transfers signal to the twin beam before heterodyne

detection.

The operator Ω̂(z) has been explicitly computed because its adjoint action on the

system state %̂S provides the reduced state %̂z after the measurement with outcome z.

According to Eq. (2.38) one has

%̂z =
Ω̂(z) %̂S Ω̂†(z)

Tr[F̂ (z)%̂S ]
=

1

π∆2
λ

exp

(

−|Ẑ−z|2
2∆2

λ

)

%̂S exp

(

−|Ẑ−z|2
2∆2

λ

)

Tr[F̂ (z)%̂S ]
. (2.55)

The POM that provides the probability density for the phase is the marginal one of

F̂ (z) in Eq. (2.51), namely

dµ̂(φ) =

∫ +∞

0
d|z| |z|F̂ (z)

=
1

2π
exp

(

−|Ẑ|2
∆2

λ

)

+
1

π∆λ
Re
(

Ẑe−iφ
)

exp

{

− 1

∆2
λ

[

Im
(

Ẑe−iφ
)]2
}

×
√
π

2







1 + erf





Re
(

Ẑe−iφ
)

∆λ











, (2.56)

with φ = arg(z). In the limit of infinite average number of photons at the twin beam

(∆λ → 0), Eq. (2.56) approaches the ideal POM

dµ̂(φ) = δ
(

Φ̂ − φ
)

(2.57)

where Φ̂ = arg(Ẑ). With regard to the case of a heterodyne detection with quantum

efficiency η < 1, the projector in the right side of Eq. (2.48) needs to be replaced by

the POM [34]

Âη(z) =
η

π(1 − η)
exp

(

− η

1 − η
|Â− z|2

)

. (2.58)

This increases the variance (2.30) of the POM (2.51), according to Eq. (2.37). The

corresponding reduced state %̂
(η)
z becomes

%̂(η)
z = Tr[F̂η(z)%̂S ]−1

∫

C
d2z′

η

π(1 − η)
e−

η
1−η

|z′−z|2Ω̂(z′) %̂S Ω̂†(z′) , (2.59)

where Ω̂(z′) is the same as in Eq. (2.50) and F̂η(z) is the new POM after the substitu-

tion (2.37).

Eq. (2.59) displays a conceptually noteworthy difference from Eq. (2.55): the ideal

measurement reduces a pure initial state into a pure state (it is a quasi-complete mea-

surement, according to Ozawa’s definition [71]), whereas a non-unit quantum efficiency

leads to mixing.
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Regarding the experimental feasibility of the repeatable measurement scheme here

presented, we notice that Hamiltonian (2.43) can be achieved in the parametric ap-

proximation by means of two classical undepleted pumps. The interaction Hamiltonian

in the Dirac picture is obtained in the rotating wave approximation from a nonlinear

susceptibility χ(2) (three-wave mixing). Indeed, the following frequency arrangement of

the probe mode d and the pump modes γ, ξ in comparison with the probe mode c and

the system modes a, b (ωa < ωb)











ωd = ωc + ωb − ωa

ωξ = ωc − ωa

ωγ = ωc + ωb

(2.60)

with the restrictions

ωb 6= 2ωa ; ωc > ωb

ωc 6=
3

2
ωa , 2ωa , ωa +

ωb

2
, ωa + ωb , 2ωa + ωb (2.61)

insures that the only surviving terms in the rotating wave approximation are repre-

sented by the Hamiltonian

Ĥ ∝
[(

a†cξ† + b†dξ† + adγ† + bcγ†
)

+ h.c.
]

. (2.62)

The Hamiltonian (2.62) coincides with the Hamiltonian in Eq. (2.43) in the para-

metric approximation of undepleted pumps. It is clear that for a suitable frequency

arrangement, one could also use a four-wave mixing χ(3) medium.

2.5 On the general problem of quantum phase estimation

The problem of estimating the phase shift experienced by a radiation beam has been

the object of hundreds of studies in the last forty years [46]. We already noticed that

the problem arises because for a single mode of the electromagnetic field there is no

selfadjoint operator for the phase, owing to the semiboundedness of the spectrum of the

number operator. The most general and, at the same time, concrete approach to the

problem of the phase measurement is quantum estimation theory [47], a framework that

has become popular only in the last ten years in the field of quantum information. The

most powerful method for deriving the optimal phase measurement was given by Holevo

[52] in the covariant case. In this way the optimal positive operator-valued measure

(POM) for phase estimation has been derived for a single-mode field. Regarding the

multi-mode case, only little theoretical effort has been spent [53], mostly devoting

attention to the Lie algebraic structure for two modes [53, 72, 55]. For two modes one

can adopt the difference between their photon numbers as the phase shift operator,

which thus is no longer bounded from below. This opens the route toward an exact
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phase measurement based on a selfadjoint operator with a concrete experimental setup

using unconventional heterodyne detection, as shown in Sec. 2.3. The problem is

however complicated by the (infinite) degeneracy of the shift operator, and for this

reason the optimal states for this case have never been derived.

In this section, the general problem of estimating the phase shift φ is addressed for

any degenerate shift operator with discrete spectrum, either S = Z (unbounded), or S =

N (bounded from below), or S = Zq (bounded), generalizing the Holevo method for the

covariant estimation problem. We find the optimal POM for estimating the phase shift

of a state |ψ0〉, and then we optimize the state itself [73]. The degeneracy of the shifting

operator is removed through a simple projection technique. The case of mixed input

state, which is generally very difficult, is considered in some special situations. Sections

2.5.2 and 2.5.3 are devoted to the analysis of two relevant examples: one concerning

a multi-mode phase estimation problem that arises in multi-path interferometry; the

other involving a shift operator that is the difference between the number of photons

of two modes, corresponding to unconventional heterodyne detection of the phase.

2.5.1 Optimal POM for the phase-shift estimation

We address the problem of estimating the phase-shift φ pertaining to the unitary trans-

formation

%̂φ = e−iφĤ %̂0 e
iφĤ (2.63)

where Ĥ is a self-adjoint operator degenerate on the Hilbert space H with discrete

(un)bounded spectrum S = Z, or S = N, or S = Zq, q > 0, and %̂0 is a generic

initial state (actually in the following we will mostly restrict to the pure state case).

The estimation problem is posed in the most general framework of quantum estimation

theory [47] on the basis of a cost function C(φ∗, φ) which weights the errors for the

estimate φ∗ given the true value φ. For a given a priori probability density p0(φ) for

the true value φ the estimation problem consists in minimizing the average cost

C̄ =

∫ 2π

0
dφ p0(φ)

∫ 2π

0
dφ∗C(φ∗, φ) p(φ∗|φ) , (2.64)

where p(φ∗|φ) is the conditional probability of estimating φ∗ given the true value φ. The

average cost is minimized by optimizing the POM dµ̂(φ∗) which gives the conditional

probability by the Born rule

p(φ∗|φ)dφ∗ = Tr[dµ̂(φ∗)e−iφĤ %̂0e
iφĤ ] . (2.65)

We consider the general situation in which φ is a priori uniformly distributed, i.e. with

probability density p0(φ) = 1/2π. Moreover, we want to weight errors independently

on the value φ of the phase, but only versus the size of the error φ∗ − φ, so that the



2.5 On the general problem of quantum phase estimation 45

cost function becomes an even function of only one variable, i.e. C(φ∗, φ) ≡ C(φ∗−φ).

It follows that also the optimal conditional probability will depend only on φ∗−φ, and

the optimal POM can be obtained restricting attention only to phase-covariant POM’s,

i.e. of the form

dµ̂(φ∗) = e−iĤφ∗ ξ̂eiĤφ∗ dφ∗
2π

, (2.66)

where ξ̂ is a positive operator satisfying the completeness constraints needed for the

normalization of the POM
∫ 2π
0 dµ̂(φ) = 1. In fact, using Eq. (2.65) and the invariance

of the trace under cyclic permutations one can easily recognize that p(φ∗|φ) ≡ p(φ∗−φ)

if and only if dµ̂(φ∗) is covariant. Hence the optimization problem resorts to finding

the best positive operator ξ̂ for a given cost function C(φ) and a generic given state

%̂0. As we will see, the POM obtained in this way is optimal for a whole class of cost

functions and initial states %̂0. Once the best POM is obtained, one further optimizes

the state %̂0. This resorts to solving a linear eigenvalue problem. In fact, the average

cost can be written as the expectation value of the cost operator Ĉ, i.e.

C̄ = Tr[Ĉ%̂0] (2.67)

where

Ĉ =

∫

dµ̂(φ)C(φ) . (2.68)

Using the Lagrange multipliers method to account for normalization one has to mini-

mize the function

L[%̂0] = Tr[Ĉ%̂0] − λTr[%̂0] (2.69)

which for a pure state |ψ0〉〈ψ0| is a quadratic form whose minimum is given by the

eigenvalue equation

Ĉ|ψ0〉 = λ|ψ0〉 (2.70)

with the Lagrange parameter λ playing the role of an eigenvalue. The linear problem

can be easily extended to account also for finite mean-energy constraint.

In summary, our problem is to minimize the cost C̄ for a given cost function C(φ)

in Eq. (2.64). This is done in two steps: i) by optimizing the positive operator ξ̂ for

given generic fixed state %̂0, thus obtaining a POM which is optimal for an equivalence

class of states E(%̂0); ii) by further optimizing the state in the equivalence class E(%̂0).

Since the original state was arbitrarily chosen, this will give the absolute minimum cost

and the corresponding set of optimal states and POM’s.

The solution of the optimization problem is conveniently posed in the representation

where Ĥ is diagonal. The operator Ĥ is generally degenerate, and we will denote by
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|n〉ν a choice of (normalized) eigenvectors corresponding to eigenvalue n, ν being a de-

generacy index, and by Πn the projector onto the corresponding degenerate eigenspace.

The problem for an input generally mixed state %̂0 is too difficult to address: therefore,

we focus our attention on the case of pure state %̂0 = |ψ0〉〈ψ0|, and we will leave some

general assertions on the mixed state case for the following. The problem is restricted

to the Hilbert space H‖ spanned by the (normalized) vectors

|n〉 ∝ Πn|ψ0〉 6= 0 (2.71)

with the choice of the arbitrary phases such that 〈n|ψ0〉 > 0. Hence the POM can be

chosen of the block diagonal form on H = H‖ ⊗H⊥, namely

dµ̂(φ) = dµ̂‖(φ) ⊕ dµ̂⊥(φ) , (2.72)

with dµ̂⊥(φ) any arbitrary POM on H⊥. For the optimization of the POM we consider

Πn|ψ0〉 6= 0 ∀n ∈ S, as it is clear that the resulting POM will be optimal also for states

having zero projection for some n ∈ S. In this fashion the problem is reduced to the

“canonical” phase estimation problem restricted to H‖ with the replacement

|ψ0〉 → exp(iĤ‖φ)|ψ0〉 (2.73)

where

Ĥ‖ =
∑

n∈S

n|n〉〈n| (2.74)

and

|ψ0〉 =
∑

n∈S

wn|n〉 . (2.75)

Now the problem is to find the positive operator ξ̂‖ that minimizes the cost C̄ in Eq.

(2.64). On the |n〉 basis the operator ξ̂‖ is written as

ξ̂‖ =
∑

n,m∈S

ξnm |n〉〈m| . (2.76)

For a generic even 2π-periodic function C(φ) = −∑∞
l=0 cl cos lφ the average cost is

given by

C̄ = −c0 −
1

2

∞
∑

l=1

cl
∑

|n−m|=l

〈ψ0|n〉〈m|ψ0〉ξnm . (2.77)

Positivity of ξ̂ implies the generalized Schwartz inequalities

|ξnm| ≤
√

ξnnξmm = 1 , (2.78)



2.5 On the general problem of quantum phase estimation 47

where the last equality comes from the POM completeness
∫

dµ̂‖(φ) = 1‖. One can

write

sign(cl)
∑

|n−m|=l

〈ψ0|n〉〈m|ψ0〉ξnm ≤
∑

|n−m|=l

|〈ψ0|n〉||〈m|ψ0〉| , (2.79)

and the equality is obtained only for ξnm = sign(c|n−m|) (notice that we chose 〈ψ0|n〉 > 0

∀n ∈ S). The minimum cost is

C̄ = −c0 −
1

2

∞
∑

l=1

|cl|
∑

|n−m|=l

|〈ψ0|n〉||〈m|ψ0〉| (2.80)

where we put sign(c0) = 1, since the cost C̄ is independent of ξnm for c|n−m| = 0.

Notice that positivity of ξ̂‖ is not generally guaranteed for any set of sign(cl). However,

one can easily check that ξ̂‖ > 0 if sign(c|n−m|) = exp[iπ(εn − εm)], εn being any integer

valued function of n. In fact, this choice corresponds to a unitary transformation of

the operator ξ̂‖ optimized with all cl ≥ 0 ∀l ≥ 1 (the parameter c0 is irrelevant). The

particular choice cl ≥ 0 ∀l ≥ 1 has been considered by Holevo [52], and includes a large

class of cost functions corresponding to the most popular optimization criteria, as

i) the likelihood criterion for C(φ) = −δ2π(φ);

ii) the 2π-periodic “variance” for C(φ) = 4 sin2(φ/2);

iii) the fidelity optimization for C(φ) = 1−|〈ψ0|eiĤφ|ψ0〉|2 (here cl = 2
∑

|n−m|=l |wn|2
|wm|2).

For the Holevo class of cost functions the optimal POM becomes

dµ̂‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)| , (2.81)

where the (Dirac) normalizable vectors |e(φ)〉 are given by

|e(φ)〉 =
∑

n∈S

einφ|n〉 . (2.82)

The vectors |e(φ)〉 generalize the Susskind-Glogower states |eiφ〉 =
∑∞

n=0 e
inφ|n〉 for

generic integer spectrum. Therefore, the optimal POM dµ̂(φ) is the projector on the

state |e(φ)〉 in the Hilbert space H‖, and it is orthogonal for either S = Z, or S = Zq,

whereas it is not for S = N. Notice that the POM (2.81) is also optimal for a density

matrix %̂0 which is a mixture of states in H‖, with the additional constraint of having

constant phase along the diagonals. This can be easily proved by re-phasing the basis |n〉
in such a way that all matrix elements of %̂0 become positive. Then the assertion easily

follows in a way similar to the derivation from Eq. (2.77) to Eq. (2.80). Moreover,

it is easy to see that the pure state case minimizes the cost, which for the optimal
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POM is given by C̄ = −∑∞
l=1 cl

∑

n∈S〈n|%̂0|n + l〉 (remember that %̂0 > 0 implies

that |〈n|%̂0|m〉|2 ≤ 〈n|%̂0|n〉〈m|%̂0|m〉, and the bound is achieved by the pure state case

〈n|%̂0|m〉 = w∗
nwm). Finally we want to emphasize that for the bounded spectrum

S = Zq there is no need for considering a continuous phase dµ̂(φ). In fact, it is easy to

show [74] that the same average cost is achieved by restricting φ to the set of discrete

values {φs = 2πs
q , s ∈ Zq}, (q ≡ dim(H‖)), and using as the optimal POM the

orthogonal projector-valued operator |e(φs)〉〈e(φs)|.
Once the form of the optimal POM is fixed, one can optimize the state |ψ0〉 solving

the linear problem in Eq. (2.70). In the following we show two examples of estimation

of the phase shift pertaining to highly degenerate integer operators (finite dimensional

cases are considered in Ref. [74]). In the first example we consider the operator Ĥ =
∑M

l=1 l a
†
l al that describes a multipath interferometer, involving M different modes of

radiation. In the second, we focus our attention on the two-mode phase estimation using

unconventional heterodyne detection, where the phase shift operator Ĥ = a†a− b†b is

given by the difference of photon numbers of the two modes.

2.5.2 Optimal POM for multipath interferometer

We consider the operator

Ĥ =
M
∑

l=1

l a†lal (2.83)

as the generator of the phase shift in Eq. (2.63). Such phase shift affects a M−mode

state of radiation in a multipath interferometer, where contiguous paths suffer a fixed

relative phase shift φ [75] (this is also a schematic representation of the phase shift

accumulated by successive reflections in a Fabry-Perot cavity). The operator Ĥ in

Eq. (2.83) has integer degenerate spectrum S = N. We can take into account the

degeneracy by renaming the number of photons of different modes as follows

Ĥ|n〉ν = n|n〉ν , (2.84)

with ν = (ν2, ν3, . . . , νM ), and

|n〉ν .
=

∣

∣

∣

∣

∣

n−
M
∑

l=2

lνl

〉

⊗ |ν2〉 ⊗ |ν3〉 ⊗ . . .⊗ |νM 〉 . (2.85)

The allowed values of ν are restricted to the set Ek given by

Ek
.
=

{

ν2 = 0, 1, . . . ,

[

k

2

]

, ν3 = 0, 1, . . . ,

[

k − 2ν2

3

]

, . . . , νM =

[

k −∑M−1
l=2 lνl

M

]}

(2.86)

where [x] denotes the integer part of x.
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For the unshifted initial state |ψ0〉 we choose a linear symmetrized superposition of

eigenvectors in Eq. (2.84), namely

|ψ0〉 =

∞
∑

n=0

wn|n〉sym , (2.87)

where

|n〉sym =
1√
Nn

∑

{νl}
δ

(

M
∑

l=1

lνl − n

)

|ν1〉 ⊗ |ν2〉 ⊗ . . .⊗ |νM 〉 , (2.88)

Nn being the number of elements ν ∈ En. Without loss of generality, the basis |n〉sym

has been chosen such that the coefficients wn in Eq. (2.87) are real and positive.

According to Eqs. (2.81) and (2.82) the optimal POM readily writes as follows

dµ̂(φ) =
dφ

2π

∞
∑

n,m=0

ei(n−m)φ |n〉sym sym〈m| . (2.89)

One can now choose a cost function and then minimize the average cost for the POM

(2.89) upon varying the coefficients wn of the state (2.87). By choosing the cost function

C(φ) = 4 sin2(φ/2) and by imposing the normalization constraint through the Lagrange

multiplier λ, the eigenvalue equation (2.70) gives the recursion for the coefficients wn

of the form

wn + wn+2 − 2λwn+1 = 0 . (2.90)

The solutions of Eq. (2.90) can be found in terms of the Chebyshev’s polynomials, and

the corresponding optimal state writes as follows

|ψ〉 =

(

2

π

)1/2 ∞
∑

n=0

sin[(n+ 1)θ]|n〉sym , θ = arccos λ . (2.91)

The state in Eq. (2.91) is Dirac-normalizable. It is formally equivalent to the eigenstate

of the cosine operator Ĉ of the phase of a single mode [76]. The Dirac normalizabil-

ity comes from the nonexistence of normalizable states that minimize the uncertainty

relation for cosine and sine operators

∆Ĉ ∆Ŝ ≥ 1

2

∣

∣

∣
〈[Ĉ, Ŝ]〉

∣

∣

∣
=

1

4
〈|0〉〈0|〉 , (2.92)

as proved in Ref. [77].

2.5.3 Phase-difference of two-mode fields

In the previous example Ĥ was bounded from below and S ≡ N, such that the degen-

erate case is reduced to the standard Holevo’s problem. For the difference operator
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Ĥ = a†a− b†b one has S ≡ Z, and the set of eigenvectors |d〉ν can be written in terms

of the joint eigenvector |n〉|m〉 for the number operators a†a and b†b with eigenvalues

n and m as follows

|d〉ν = |d + ν〉|ν〉 , d ∈ Z ; ν ∈ [max(0,−d),+∞) . (2.93)

We consider an initial state |ψ0〉 of the form

|ψ0〉 = h0|0〉|0〉 +

+∞
∑

n=1

(hn|n〉|0〉 + h−n|0〉|n〉) , (2.94)

where the basis has been chosen to have hn ≥ 0, ∀n. The optimal POM writes in the

form of Eq. (2.81) in terms of the vectors |λn〉, n ∈ Z, where

|λn〉 =

{ |n〉0 ≡ |n〉|0〉 , n ≥ 0 ,

|n〉|n| ≡ |0〉||n|〉 , n ≤ 0 .
(2.95)

Here, the generalized Susskind-Glogower vector |e(φ)〉 is given by

|e(φ)〉 =
∑

n∈ � e
inφ|λn〉 ≡ |0〉|0〉 +

+∞
∑

d=1

(

eidφ |d〉|0〉 + e−idφ|0〉|d〉
)

. (2.96)

Notice that, differently from the usual case of spectrum S = N, now the POM is

orthogonal (in the Dirac sense):

〈e(φ)|e(φ′)〉 =

+∞
∑

n=−∞
ein(φ−φ′) = δ2π(φ− φ′) , (2.97)

where δ2π(φ) is the Dirac comb. This means that in this case it is possible to define a

selfadjoint phase operator

φ̂ =

∫ +π

−π
dφ|e(φ)〉〈e(φ)|φ , (2.98)

as already noticed by Shapiro [64].

We now address the problem of finding the normalized state of the form (2.94) with

finite mean photon number that minimizes the average cost evaluated through the ideal

POM (2.81). As a cost function we choose again C(φ) = 4 sin2(φ/2) (periodicized-

variance criterion), corresponding to the cost operator

Ĉ = 2 − e+ − e− , (2.99)

where

e+ =
∑

n∈ � |λn+1〉〈λn| , e− = (e+)† . (2.100)
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Introducing the energy operator Ê = a†a+ b†b and an additional Lagrange parameter

accounting for finite mean energy 〈Ê〉, the eigenvalue problem in Eq. (2.70) rewrites

as follows

[Ĉ − λ′ − µ′(a†a + b†b)]|ψ0〉 = 0 , (2.101)

where λ′ and µ′ are the Lagrange multipliers for normalization and mean energy, re-

spectively. The following recursion relations for the coefficients hn is obtained

hn+1 + hn−1 − µ(λ + |n|)hn = 0 , (2.102)

with λ = (λ′ − 2)/µ′ and µ = −µ′. The solution of Eq. (2.102) is given in terms of

Bessel functions of the first kind in the following form

hn = k(λ, µ) Jλ+|n|(2/µ) , (2.103)

k(λ, µ) being the constant of normalization

k(λ, µ) =

[

+∞
∑

n=−∞
J2

λ+|n|(2/µ)

]−1/2

. (2.104)

The matching of the recursion for positive and negative indices leads to the condition

λJλ(2/µ) − (2/µ)Jλ+1(2/µ) = (2/µ)
d

d (2/µ)
Jλ(2/µ) = 0 . (2.105)

Eq. (2.105) has infinitely many solutions µ = µ(λ), and one needs to further minimize

the average cost in Eq. (2.64) versus the average photon number N parameterized by

λ and µ = µ(λ)

N = 2k(λ, µ)2

[

+∞
∑

n=0

nJ2
λ+n(2/µ)

]

. (2.106)

In this way one can find the normalized and finite-energy states that achieve the mini-

mum cost for the optimal POM.

The solution (2.103) of the recursive relation (2.102) has some similarity with the

solution for the minimum phase-uncertainty states of a single-mode field [76, 77]. The

proof of convergence of the series in Eq. (2.104) can be found in Ref. [77]. However,

the matching condition (2.105) (instead of the vanishing condition for hn with n < 0

for one mode) makes the two-mode phase estimation problem more difficult, since one

cannot exploit the properties of the zeros of the Bessel functions in an asymptotic

approximation, as done in Ref. [78] for the single-mode case.
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2.6 Conclusion

In this chapter we have suggested a scheme to generate the phase-coherent states in-

troduced in Ref. [48]. The set-up involves two χ(2) nonlinear crystals and it is based

on parametric amplification of the vacuum followed by up-conversion of the result-

ing twin beam, the up-conversion playing the role of an approximate photon number

recombination.

We found that the up-conversion process is both power-efficient and quite precise in

the generation of PCS. It is a remarkable fact that the range of interaction times leading

to high conversion rate also optimize the overlap between the outgoing state and the

theoretical PCS. We have explored the case of twin-beam input photon number ranging

from 0 to 54, and we have observed a conversion rate about 80%, with an overlap with

ideal PCS between 80% and 100%. This corresponds to a reliable generation of PCS

up to Nout = 20 photons at the output.

The second proposed experimental set-up concerns the generation of two-mode ra-

diation states that approach the heterodyne eigenvectors, thus leading to a detection

scheme with optimal sensitivity δφ ∝ 1/n̄, n̄ being the total number of photons. The

ideal r.m.s. sensitivity is achieved for large photon numbers n̄� 1 and for signal pho-

tons |w|2/2 = n̄/2. The gain of the amplifier is tuned to the value g = n̄/4, and the

quantum efficiency at the photodetector must be very good, namely 1 − η � 2/n̄.

Finally, we have settled the general theoretical framework for describing repeatable

measurements and have shown a repeatable scheme for the two-mode phase measure-

ment.

The problem of estimating a generic phase-shift experienced by a quantum state

has been addressed for a generally degenerate phase shift operator in the last part of

the chapter. The optimal positive operator-valued measure has been derived along with

the optimal input state through quantum estimation theory. Two relevant examples

have been analyzed: i) a multi-mode phase shift operator for multipath interferometry;

ii) the two-mode heterodyne phase detection.



Chapter 3

Quantum-optical communication

channels

3.1 Introduction

The detrimental effect of loss is a serious problem for optical communications based on

transmission of nonclassical states of radiation. The results for the lossless case rapidly

do not hold anymore for increasing losses [79, 80, 81]. The “nonclassical” channels based

on direct detection of number states and homodyning of squeezed states—channels that

have been originally proposed in order to improve the capacity of the “classical” channel

based on heterodyning of coherent states—both are much more sensitive to loss than

the classical channel. Hence, for long haul communications the great advantage of using

nonclassical states is completely lost, since a minimum loss of 0.3dB/km is unavoidable

with the current optical-fiber technology. In the above scenario the optimization of

the quantum channels in the presence of loss is the most relevant issue for achieving

reliable communication schemes in practical situations.

Through a systematic approach, in this chapter we evaluate the optimal a priori

probability in the presence of loss, for both the squeezed-state and the number-state

channels, and compare the relative effectiveness in terms of mutual information. As we

will show in the following, the improvement due to the optimization is quite dramatic

at low power regime and for very strong attenuation, giving rise to unexpected results.

With regard to the generation of the squeezed states and the number states involved

in the nonclassical channels, this chapter also suggests a solution. On one hand, we

show the equivalence between a couple of customary squeezed-state channels and a more

easily achievable communication channel based on the two-mode heterodyne states

we introduced in Sect. 2.3. On the other hand, we present an experimental scheme

to synthesize optical number states (and also superpositions of number states) from

coherent sources. The scheme involves a ring cavity coupled to a traveling wave by a

53
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cross-Kerr medium and a triggering photodetection. It is noteworthy that low quantum

efficiency at the photodetector does not reduce the effectiveness of the process. The

number states, of course, are of particular interest not only for quantum communication

channels, but also for fundamental tests of Quantum Mechanics [6] as well as for relevant

applications like interferometry [82].

3.2 Optimized channels in the presence of loss

The communication channels based on nonclassical states of radiation are much more

sensitive to the effect of losses than the classical channel based on the customary coher-

ent states. They also have been shown [81] to be easily degraded by additive Gaussian

noise, which models any kind of environmental effect due to linear interactions with ran-

dom fields. In this section we evaluate the optimal a priori probability in the presence

of loss, for both the squeezed-state and the number-state channels, and compare the

relative effectiveness in terms of mutual information. We will show that for sufficiently

high average transmitted power the optimized nonclassical channels are anyway beaten

by the classical one. At low power levels, however, the enhancement of the mutual

information from optimization makes both nonclassical channels more effective than

the heterodyne one [83, 84]. This section is accompanied by many optimality capacity

diagrams (Figs. 3.2, 3.3, 3.6, 3.8 and 3.9), which compare the different communication

channels, giving the regions in the loss-power plane where each channel is optimal with

respect to the others.

3.2.1 Heterodyne channel

The communication channel based on heterodyne detection encodes a complex variable

on a coherent state with Gaussian a priori distribution. The heterodyne 3dB detection

noise is itself Gaussian additive, and the Gaussian form of the a priori probability

density that achieves the channel capacity is dictated by the Shannon’s theorem[79, 85]

for Gaussian channels subjected to the quadratic constraint of fixed average power.

Under such constraint the variance of the optimal Gaussian distribution equals the

value of the mean photon number N . In the following we briefly redraw the analytical

derivation of this result, in order to show how the optimal a priori probability remains

unchanged in the presence of loss.

The effect of loss on a single-mode communication channel is determined by the

master equation

∂t%̂ = LΓ%̂
.
= Γ(na + 1)L[a]%̂ + ΓnaL[a†]%̂ ' ΓL[a]%̂ , (3.1)

where the superoperator LΓ gives the time derivative of the density matrix %̂ of the

radiation state (in the interaction picture) through the action of the Lindblad super-
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operators [86]

L[c]%̂ = c%̂c† − 1

2
(c†c%̂ + %̂c†c) (3.2)

The coefficient Γ represents the damping rate, whereas na denotes the mean number of

thermal photons at the frequency of mode a, and can be neglected at optical frequencies.

We introduce the energy attenuation factor, or “loss”, defined as follows

η
.
= exp(−Γt) , (3.3)

according to the evolution of the average power

〈a†a(t)〉 ≡ Tr[a†a %̂(t)] = Tr[a†a eLΓt%̂(0)] = η〈a†a(0)〉 . (3.4)

More generally, η gives the scaling factor of any normal-ordered operator function,

namely

eL
∨
Γt:f(a†, a): = :f(η1/2a†, η1/2a): , (3.5)

where L∨
Γ denotes the dual Liouvillian, which is defined through the identity

Tr
[

(eL
∨
Γ tÔ)%̂

]

= Tr
[

Ô(eLΓt%̂)
]

(3.6)

valid for any operator Ô. The mutual information transmitted throughout the channel

for a priori distribution p(α) of the encoded complex variable α, and for input-output

conditional probability density Q(β|α), is given by [90, 91, 79, 85]

I =

∫

d2αp(α)

∫

d2β Q(β|α) ln
Q(β|α)

∫

d2α′ p(α′)Q(β|α′)
, (3.7)

where the integrations are performed on the complex plane with measure d2α =

dReαd Imα. For heterodyning of a coherent state |α〉, the conditional probability

density is given by

Q(β|α) = |〈β|α〉|2 =
1

π
exp

(

−|β − α|2
)

. (3.8)

According to Eqs. (3.1) and (3.3), in the presence of loss eLΓt(|α〉〈α|) = |η1/2α〉〈η1/2α|,
and hence the conditional probability density simply rewrites

Qη(β|α) =
1

π
exp

(

−|β − η1/2α|2
)

. (3.9)

The constraint of fixed average power at the transmitter reads

∫

d2α p(α)〈α|a†a|α〉 =

∫

d2α p(α) |α|2 = N , (3.10)
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where in the following N will generally denote the total mean photon number. We

now maximize the mutual information (3.7) over all possible normalized probability

densities p(α) that satisfy the constraint (3.10). Eq. (3.7) can be simplified as follows

I = − lnπ − 1 −
∫

d2β f(β) ln f(β) , (3.11)

where f(β) denotes the unconditioned or “a posteriori” probability, namely

f(β) =

∫

d2α p(α)Qη(β|α) . (3.12)

By transferring the (normalization and power) constraints from p(α) to f(β), we can

maximize the mutual information with respect to f(β) through a variational calculus on

Eq. (3.11). While normalization condition for p(α) simply corresponds to normalization

of f(β), the fixed-power constraint needs the following algebra

N =

∫

d2α p(α) |α|2

=

∫

d2β

η

∫

d2α p(α) |α|2 1

π
exp

(

−|β|2
η

− η|α|2 + βᾱ + β̄α

)

=
1

η

∫

d2β (|β|2 − 1)f(β) , (3.13)

where the bar denotes the complex conjugate number. Hence, the variational equation

for the mutual information writes

0 =
δ

δf

[

I − λ

∫

d2β f(β) − µ

η

∫

d2β (|β|2 − 1)f(β)

]

, (3.14)

with I given by Eq. (3.11), and with λ and µ as Lagrange multipliers to be determined.

One can easily check that Eq. (3.14) has the Gaussian solution

f(β) =
1

π(ηN + 1)
exp

(

− |β|2
ηN + 1

)

, (3.15)

and from Eqs. (3.11) and (3.15) one obtains the capacity of the heterodyne channel in

the presence of loss

C = ln(1 + ηN) . (3.16)

Hence, the channel capacity depends only on the mean photon number ηN at the

receiver. Eqs. (3.12) and (3.15) give the optimal a priori probability density

p(α) =
1

πN
exp

(

−|α|2
N

)

, (3.17)

which is manifestly independent on η, with the consequence that the optimal a priori

probability for the lossless heterodyne channel is still optimal in the presence of loss.

This result is due to the peculiar form of the master equation (3.1), which keeps coherent

states as coherent. As we will show in the following, this will no longer hold true for

the squeezed-state and the number-state channels.
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3.2.2 Homodyne channel

The homodyne channel encodes a real variable x on the quadrature-squeezed state

|x〉r = D(x)S(r)|0〉 , (3.18)

which is generated from the vacuum |0〉 through the action of the displacement operator

D(x) and of the squeezed operator S(r), which are defined as follows

D(x) = exp
[

x
(

a† − a
)]

(3.19)

S(r) = exp
[r

2

(

a†
2 − a2

)]

. (3.20)

The decoding is performed by homodyning a fixed quadrature, say X̂ ≡ (a+a†)/2. For

lossless transmission, the conditional probability density of getting the value x ′ when

the transmitted state is |x〉r writes

Q(x′|x) = |〈x′|x〉r|2 =

√

1

2π∆2
exp

[

−(x′ − x)2

2∆2

]

, (3.21)

where |x′〉 denotes the eigenstate of X̂ , and the variance is given by ∆2 = e−2r/4.

According to Shannon’s theorem[79, 85] the optimal a priori probability p(x) for the

ideal homodyne channel has the Gaussian form

p(x) =

√

1

2πσ2
exp

(

− x2

2σ2

)

, (3.22)

with variance

σ2 =
N(N + 1)

2N + 1
. (3.23)

The fixed-power constraint is given by

N =

∫

dx p(x)r〈x|a†a|x〉r =

∫

dx p(x)(x2 + sinh2 r) = σ2 + sinh2 r . (3.24)

Hence, Eq. (3.23) corresponds to fix the fraction of squeezing photons at the value

sinh2 r = N2/(2N + 1). The capacity is given by

C =

∫

dx

∫

dx′ p(x)Q(x′|x) ln
Q(x′|x)

∫

dx̃ p(x̃)Q(x′|x̃)

=
1

2
ln

(

1 +
σ2

∆2

)

= ln(1 + 2N) . (3.25)

By comparing Eq. (3.25) with Eq. (3.16), one finds that in the lossless case the capacity

of the squeezed-state channel is always greater than that of the coherent-state channel,

with one additional bit per mode for high average power (N � 1).
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In the presence of loss, by means of the relation (3.5) and the following normal-

ordered representation of the quadrature projector

|x〉〈x| = δ(X̂ − x) =

∫

dλ

2π
e−iλx e−λ2/8 eiλa†/2 eiλa/2 , (3.26)

one obtains the conditional probability density

Qη(x′|x) = 〈x′|eLΓt(|x〉rr〈x|)|x′〉 = Tr
[

eL
∨
Γ t
(

δ(X̂ − x′)
)

|x〉rr〈x|
]

= Tr

[
∫

dλ

2π
e−iλx′

e−λ2(1−η)/8 eiη
1/2λX̂ |x〉rr〈x|

]

=

√

1

2π∆2
η

exp

[

−(x′ − η1/2x)2

2∆2
η

]

, (3.27)

where

∆2
η =

1

4

[

1 − η
(

1 − e−2r
)]

. (3.28)

For Gaussian a priori probability with variance (N − sinh2 r), which satisfies the fixed-

power constraint (3.24), the mutual information is given by

I =
1

2
ln

(

1 +
4η(N − sinh2 r)

1 − η(1 − e−2r)

)

. (3.29)

Upon maximizing Eq. (3.29) with respect to ξ ≡ e−2r we obtain

I =
1

2
ln

(

1 +
4ξN − (1 − ξ)2

ξ2 + 1−η
η ξ

)

(3.30)

with

ξ =
η +

√

1 + 4η(1 − η)N

(4N + 1)η + 1
. (3.31)

The optimal number of squeezing photons is given by Nsq = (ξ + 1/ξ − 2)/4, and it is

plotted versus N in Fig. 3.1 for some values of the attenuation η. One can see that

the optimal fraction of squeezing photons rapidly decreases with attenuation. This

means that for increasing loss it is more and more unprofitable to use much power to

squeeze the quadrature of the signal, since the quantum noise of the state at the receiver

approaches that of the coherent state. These results agree with previous investigations

on the loss effects in terms of signal-to-noise ratio [80]. For the experimental techniques

to obtain tunable squeezed light see Refs. [88, 89].

Figs. 3.2 and 3.3 are optimality capacity diagrams, which compare different chan-

nels giving the regions on the loss-power plane where each channel is optimal. The

coherent-state channel is compared to the squeezed-state channel without and with
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Figure 3.1: Number of squeezing photons that optimizes the lossy homodyne channel versus the total

average number of photons, at different values of the attenuation factor η. From the top to the bottom,

the plotted lines refer to η = 1, .95, .85, .7, .5.

loss-dependent optimization in Fig. 3.2 and Fig. 3.3, respectively. One can see that

the optimization leads to a sizeable improvement of the mutual information, especially

for strong attenuation and low power (see also Fig. 3.4), making the diagram symmet-

ric around the η = 1/2 vertical axis. Notice the location of the minimum at η = .5

and N = 8 on the boundary between the optimality regions in Fig. 3.3: this means

that for mean power less than eight photons the squeezed-state channel always beats

the coherent-state one, independently on attenuation.

Through a kind of exclusion principle for the information contents of quantum

observables [87], Hall has proved an upper bound for the information that can be

achieved by a homodyne channel subjected to Gaussian noise. Following Hall’s method,

here we prove the following upper bound for any lossy channel that uses homodyne

detection

I ≤ ln(1 + 2ηN) . (3.32)

By denoting with S(Â|%̂) the entropy associated to the probability distribution 〈a|%̂|a〉
of the eigenvalue a of the observable Â when the state is %̂, namely

S(Â|%̂) = −
∫

da 〈a|%̂|a〉 ln〈a|%̂|a〉 , (3.33)

the mutual information retrieved from the measurement of the observable Â on a mem-

ber of the ensemble specified by the density matrix %̂ =
∑

i pi%̂i is given by

I(Â|%̂) = S(Â|%̂) −
∑

i

piS(Â|%̂i) . (3.34)
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Figure 3.2: Optimality capacity diagram, which represents the region where the coherent-state chan-

nel is optimal (black area) and that where the squeezed-state channel is optimal instead (green area).

Both channel are the customary ones, which were optimized for the lossless case.

A simple variational calculation gives the upper bounds

S(X̂ |%̂) ≤ 1

2
+

1

2
ln(2π〈∆X̂2〉%̂) (3.35)

S(Ŷ |%̂) ≤ 1

2
+

1

2
ln(2π〈∆Ŷ 2〉%̂) (3.36)

for the entropy associated to the conjugated quadratures X̂ = (a+ a†)/2 and Ŷ =(a−
a†)/2i, the notation 〈. . .〉%̂ representing the ensemble average with density operator %̂.

Moreover, writing %̂ as a mixture of pure states

%̂ =
∑

j

pj |ψj〉〈ψj | , (3.37)

from the concavity of entropy one has

S
(

X̂|eLΓt%̂
)

= S
(

eL
∨
Γ tX̂ |%̂

)

≥
∑

j

pjS
(

eL
∨
ΓtX̂|(|ψj〉〈ψj |)

)

≥ inf
j
S
(

eL
∨
ΓtX̂|(|ψj〉〈ψj |)

)

, (3.38)

and analogously for the other quadrature Ŷ . A derivation similar to that of Eq. (3.27)

leads to the conditional probability

p
(

x|eLΓt(|ψj〉〈ψj |)
)

= Tr

{

[

2

π(1 − η)

]1/2

exp

[

−2(η1/2X̂ − x)2

1 − η

]

|ψj〉〈ψj |
}

≡ Tr
[

G
(

η1/2X̂ − x
)

|ψj〉〈ψj |
]

, (3.39)
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Figure 3.3: Optimality capacity diagram comparing the coherent-state channel to the squeezed-state

channel in the presence of loss. Among the two channels, in the grey region the squeezed state channel

has the highest capacity, whereas in the black region the coherent state channel is the best.

where we introduced the Gaussian operator-valued measure defined as follows

G(η1/2X̂ − x) ≡
[

2

π(1 − η)

]1/2

exp

[

−2(η1/2X̂ − x)2

1 − η

]

. (3.40)

By varying over the bra 〈ψj | the following quantity

J = S
(

eL
∨
Γ tX̂ |(|ψj〉〈ψj |)

)

+ S
(

eL
∨
Γ tŶ |(|ψj〉〈ψj |)

)

− λ (〈ψj |ψj〉 − 1) , (3.41)

one obtains the variational equation

0 =
δJ

δ〈ψj |
= −

∫

dxG(η1/2X̂ − x) ln
{

Tr
[

G(η1/2X̂ − x)|ψj〉〈ψj |
]}

|ψj〉

−
∫

dy G(η1/2Ŷ − y) ln
{

Tr
[

G(η1/2Ŷ − y)|ψj〉〈ψj |
]}

|ψj〉 − (λ + 2)|ψj〉 ,(3.42)

where λ is the Lagrange multiplier for the normalization constraint relative to the state

|ψj〉. It can be easily verified that the case of vacuum state |ψj〉 ≡ |0〉 satisfies Eq.

(3.42). Then, from Eq. (3.38) along with the following relation

S
(

eL
∨
ΓtÔ|(|0〉〈0|)

)

=
1

2
− 1

2
ln

(

2

π

)

(3.43)

that holds for the quadrature operators Ô = X̂, Ŷ , one has

S
(

X̂ |eLΓt%̂
)

+ S
(

Ŷ |eLΓt%̂
)

≥ 1 + ln
(π

2

)

. (3.44)

On the other hand, from Eqs. (3.35) and (3.36) one obtains

S
(

X̂|eLΓt%̂
)

+ S
(

Ŷ |eLΓt%̂
)

≤ 1 + ln(2π) +
1

2
ln
(

〈∆X̂2〉eLΓt%̂〈∆Ŷ 2〉eLΓt%̂

)

. (3.45)
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Figure 3.4: Per cent improvement of the mutual information versus the total average number of pho-

tons N , with η-independent optimization. The plotted lines refer to different values of the attenuation

factor η. From the top to the bottom η = .15, .25, .4, .6, .9.

The product of the expectation values in Eq. (3.45) can be maximized as follows

〈∆X̂2〉eLΓt%̂〈∆Ŷ 2〉eLΓt%̂ =

[

η〈∆X̂2〉%̂ +
1

4
(1 − η)

] [

η〈∆Ŷ 2〉%̂ +
1

4
(1 − η)

]

≤ 1

4

[

η
(

〈X̂2〉%̂ + 〈Ŷ 2〉%̂
)

+
1 − η

2

]2

≤ 1

4

(

η〈a†a〉%̂ +
1

2

)2

, (3.46)

and we obtain

S
(

X̂|eLΓt%̂
)

+ S
(

Ŷ |eLΓt%̂
)

≤ 1 + ln
(π

2

)

+ ln
(

1 + 2η〈a†a〉%̂
)

. (3.47)

Finally, inequalities (3.44) and (3.47), together with Eq. (3.34) yield the information

exclusion relation

I
(

X̂|eLΓt%̂
)

+ I
(

Ŷ |eLΓt%̂
)

≤ ln (1 + 2ηN) (3.48)

where N = 〈a†a〉%̂. From Eq. (3.48) the bound (3.32) follows as a particular case.

From the above derivation we see that the bound (3.32) holds for any lossy channel

that employs homodyne detection.

The upper bound (3.32) is trivially achieved for η = 1 by a Gaussian ensemble of

squeezed states, however, in the presence of loss it is not reached by our optimized

channel. As a matter of fact, there is still room for a slight improvement of the mutual

information if one allows the squeezing r to vary as a function of the signal x in Eq.

(3.18). However, such further optimization is not achievable analytically—due to the

now non-Gaussian form of the conditional probability density—nor it can be worked

out numerically, as no viable method is at hand.
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3.2.3 Direct-detected channel

The ideal communication channel that uses direct detection of Fock states with thermal

a priori probability

pth
n =

1

1 +N

(

N

1 +N

)n

(3.49)

achieves the ultimate quantum capacity (the Holevo’s bound [90, 91]) with the con-

straint of fixed average number of photons N . The ultimate quantum capacity is given

by

C = ln (1 +N) +N ln

(

1 +
1

N

)

. (3.50)

For ideal transmission the conditional probability density is given by the Kronecker

delta δm,n. In the presence of loss this is replaced by the binomial distribution

Qm,n(η) =

(

n

m

)

ηm (1 − η)n−m , (3.51)

which represents the probability of detecting m photons when the transmitted state is

|n〉. The number-state channel is more sensitive to loss than the coherent-state and the

squeezed-state ones.

Figure 3.5: Mutual information versus attenuation for the number-state (full), the coherent-state

(dashed), and the squeezed-state (dashed-dotted) channels. The fixed average number of photons is

N = 10. The a priori probability densities are the customary ones for the lossless case [Eqs. (3.49),

(3.17) and (3.22), respectively].

In Fig. 3.5 the mutual information for the three channels is plotted versus η, at fixed

power N = 10, and with the customary a priori probabilities optimized for the lossless

case [Eqs. (3.17), (3.22) and (3.49)]. One can see that at this power level a signal atten-

uation of 0.5 dB is sufficient to degrade the number-state channel below the capacity
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of the coherent-state channel, whereas at higher power levels the effect is even more

dramatic. The optimality capacity diagram in Fig. 3.6 compares the number-state with

the coherent-state channels. One can see that in the presence of loss the number-state

channel rapidly loses off its efficiency, especially for high power and strong attenuation.

Figure 3.6: Optimality capacity diagram with η-independent optimization. Black region: the

coherent-state channel is optimal; dark grey region: the number-state channel is optimal.

Now we address the problem of optimizing the a priori probability distribution in

the presence of loss. In principle one could perform the optimization analytically by

varying the information over the infinite set of variables {pn}, however with no viable

method for constraining each pn to be nonnegative. For this reason we decided to carry

out the optimization numerically, using the recursive Blahut’s algorithm [92]. The

recursion is given by

c(r+1)
n = exp

(

∑

k

Qk,n(η) ln
Qk,n(η)

∑

m p
(r)
m Qk,m(η)

− µn

)

, (3.52)

p(r+1)
n = p(r)

n

c
(r)
n

∑

m p
(r)
m c

(r)
m

, (3.53)

where p
(r)
n is the a priori probability at the rth iteration, Qk,n(η) is the conditional

probability (3.51), and µ is the Lagrange multiplier for the average-power constraint.

The series are actually truncated to a finite dimension, corresponding to a maximum

allowed number of photons. Blahut proved that the quantity

J (r) = I(r) − µN (r) (3.54)

increases versus r, and achieves the desired bound, I (r) and N (r) denoting the mutual

information and the average photon number with the rth iterated a priori probability
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p
(r)
n . Then, for a given µ one evaluates the limit of p

(r)
n for r → ∞ under the recursion

(3.53), and determines the mutual information I and the mean photon number N for

such limiting p
(∞)
n : in this way the capacity versus power I = I(N) is obtained as

parameterized by µ.

Now we present some numerical results. Figs. 3.7 show the number probability

distribution for different values of loss and power, evaluated by means of Blahut’s re-

cursive algorithm, stopped at 105 iterations. The Hilbert space has been truncated at

dimension 200, however, truncation at 100 gives almost identical results. For stronger

loss, the optimal a priori probability departs from the thermal-like behavior, with an

enhanced vacuum probability. For loss η . .6 (see Fig. 3.7) the probability plot devel-

ops gaps of zero probability at intermediate numbers of photons. This can be intuitively

understood as the effect of a loss so strong that it becomes more convenient to use a

smaller alphabet of well-spaced letters in order to achieve a better distinguishability at

the receiver. The increase of the probability for the vacuum state comes clearly from

the constant-energy constraint. Table 3.1 provides a list of numerical results pertaining

to Figs. 3.7. It gives the per cent improvement of the mutual information after opti-

mization, along with the absolute value of the mutual information for the optimized

number-state channel, for the number-state channel with customary thermal probabil-

ity and for the coherent-state channel at given value of the loss and of the mean photon

number. Also the values of the quantities εI and εP are reported, for convergence esti-

mation of Blahut’s recursion (3.54). They are defined as the increment εI = J (r)−J (r−1)

of the quantity J (r) in Eq. (3.54), and the distance εP = maxn|p(r)
n − p

(r−1)
n | between

probability plots, both εI and εP being evaluated at the last iteration step r = 105. One

can see that, according to the small values of εI and εP , the algorithm is converging

quite fast (indeed only 10 steps are usually sufficient to get an estimate of the capac-

ity up to the second digit). With the occurrence of gaps in the a priori probability,

the relative improvement of the mutual information increases even more dramatically,

up to 70% for strong attenuation η = .15. At low power, this improvement allows

the direct-detection channel to overcome the coherent-state channel capacity [see Figs.

3.7a,c,e,g,h and their pertaining numerical values in Table 3.1]. The optimality ca-

pacity diagram in Fig. 3.8 compares the optimized number-state channel with the

coherent-state channel. Notice the difference with respect to Fig. 3.3: here the opti-

mized number-state channel beats the heterodyne channel at power much lower than

for the optimized squeezed-state channel in Fig. 3.3. As for the squeezed-state channel,

the optimization makes the diagram more symmetric around the η = 1/2 vertical axis.
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plot η N Iopt Ith Icoh % εP εI

a) .9 8.575 3.157 3.097 3.124 1.93 2·10−12 1·10−18

b) .75 2.827 1.775 1.699 1.642 4.50 4·10−13 1·10−18

c) .6 2.414 1.340 1.218 1.292 10.03 1·10−8 1·10−14

d) .6 6.930 1.935 1.745 2.367 10.90 2·10−8 6·10−14

e) .55 2.288 1.219 1.083 1.175 12.56 8·10−8 7·10−13

f) .55 6.729 1.803 1.595 2.233 13.07 1·10−7 2·10−12

g) .4 1.888 0.887 0.715 0.812 24.18 6·10−8 2·10−12

h) .15 4.040 0.720 0.416 0.684 73.08 8·10−9 2·10−13

Table 3.1: Numerical values relative to the plots a-h of Fig. 3.7. The table lists the following

quantities: attenuation factor (η); average number of photons (N); mutual information (in bits) (Iopt)

for the optimized number-state channel, (Ith) for the number-state channel with customary thermal

probability, (Icoh) for the coherent-state channel; per cent improvement (%) of the mutual information

due to the optimization; convergence parameters εP and εI (see text).

3.2.4 Summary of the results

We analyzed the detrimental effect of loss on narrow-band quantum-optical channels

based on i) heterodyne detection of coherent states, ii) homodyne detection of squeezed

states and iii) direct detection of number states. The main results are the following.

The squeezed-state channel and, even more, the number-state channel, are both easily

degraded by loss below the capacity of the coherent-state channel. Because of the

peculiar form of the master equation for the loss, the coherent-state channel does not

need optimization, and remains as the most efficient one at sufficiently high power.

The optimization of the squeezed-state channel leads to a sizeable improvement of

the mutual information (over 30% for η = .15 at low power). Correspondingly, the

optimal fraction of squeezing photons rapidly decreases with attenuation. For total

average number of photons N < 8 the squeezed-state channel is always more efficient

than the coherent-state one, independently on attenuation η. The optimization has

been performed at constant squeezing, whereas the problem of optimizing a signal-

dependent squeezing is still open.

With regard to the number-state channel, Blahut’s recursive algorithm allows to

evaluate the optimal a priori probability and the channel capacity. The improvement

of the mutual information is considerable, achieving 70% for η = .15. The optimal a

priori probability departs from the usual monotonic thermal-like distribution, and for

η . .6 it develops gaps of zero probability at intermediate number of photons. At low
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power the optimization of the number-state channel makes its capacity better than that

of the coherent-state channel.

A comprehensive view of the numerical results of this section is offered by the

optimality capacity diagram in Fig. 3.9: there one can find the regions on the loss-

power plane where the coherent-state, the optimized squeezed-state, and the optimized

number-state channels are respectively optimal.

3.3 Equivalence between squeezed-state and twin-beam

communication channels

As it was shown in the previous section, the maximum mutual information per mode

for narrow-band linear bosonic channels under the constraint of fixed average power is

achieved by the ideal number state channel with thermal input probabilities. Never-

theless, the generation of number eigenstates is quite hard (a novel method is however

suggested in the Sec. 3.4) and, above all, a concrete realization of the ideal photon

number amplifier that can assist the channel is still unknown. Hence, our interest is

turned into squeezed-state channels, which are feasible and still lead to a satisfactory

efficiency.

In this section we show a new communication scheme that is based on uncon-

ventional heterodyne detection on two-mode states—the displaced twin-beam states

introduced in Sec. 2.3—and represents an alternative way to achieve the squeezed-

state channel capacity [93]. It was already noticed the equivalence of a nondegenerate

parametric amplifier with two parallel degenerate parametric amplifiers. Such equiv-

alence has been also exploited to experimentally obtain a matched local oscillator for

the detection of quadrature squeezing [94]. As regards communication purposes, we

extend this equivalence to all the stages of the communication channel: the encoded

state, the optimal amplifier for the channel, the master equation modeling the loss, and

the output measurement scheme. The two equivalent schemes are the following.

(i) a complex number is encoded on a twin-beam state generated by parametric down-

conversion; decoding is achieved through unconventional heterodyne detection of

both the signal and image-band modes which form the correlated twin beam;

(ii) the real and the imaginary part of the complex number are independently encoded

over two uncorrelated squeezed states pertaining two different modes; the states

are decoded through ordinary homodyne detection on each mode separately.

The unitary transformation that connects the two communication schemes physically

corresponds to the 50-50 frequency conversion between the two field modes. The twin-

beam scheme is easier to obtain experimentally as compared to the squeezed-state
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scheme, and also both the encoding and the decoding stage are simpler. As encoder

one just needs parametric downconversion and coherent states, instead of squeezing.

On the other hand, as decoder one has just one heterodyne detector versus a delicate

balancing of two equal homodyne detectors. As compared to the single homodyne QS

channel, the heterodyne one, by employing two field modes, carries a double amount

of information.

3.3.1 The twin-beam communication scheme

The twin-beam communication scheme is based on unconventional heterodyne detection

of the two-modes states |z〉〉λ introduced in Sect. 2.3. We discuss the two-mode master

equation that models both the effect of losses and a linear phase-insensitive amplifica-

tion that assists the communication line. Then we derive a Fokker-Planck equation for

the unconventional-heterodyne probability to evaluate the channel capacity.

The effect of losses on the communication channel can be modeled by the following

master equation

∂t%̂ = LΓ%̂
.
= Γ

{

(na + 1)L[a] + (nb + 1)L[b] + naL[a†] + nbL[b†]
}

%̂ , (3.55)

that generalizes Eq. (3.1) for two modes. The damping rate Γ is supposed to be

equal for both modes, whereas the mean number of thermal photons na and nb at the

frequency of modes a and b can be neglected at optical frequencies. The absence of cross-

terms that correlate the two modes is a consequence of the rotating-wave approximation

assumed in the ordinary derivation of the master equation [95]. In a similar fashion,

an active medium amplifier in the linear regime can be described by the superoperator

LΛ = Λ
{

(ma + 1)L[a†] + (mb + 1)L[b†] +maL[a] +mbL[b]
}

, (3.56)

where Λ denotes the gain per unit time—i.e. the amplifier length—and ma and mb

are related to the population inversion of the lasing levels at resonance with a and b,

respectively. Finally, a parametric amplification distributed along the line with modes

a and b correlated by a classical pump is represented by the following commutator

LK = K[a†b† − ab, ·] , (3.57)

where K is the gain per unit time and is related to the intensity of the pump.

From Eq. (2.16) one obtains the following differential representation of modes

a|z〉〉 =
(z

2
− ∂z̄

)

|z〉〉 , a†|z〉〉 =
( z̄

2
+ ∂z

)

|z〉〉 ,

b|z〉〉 =
( z̄

2
− ∂z

)

|z〉〉 , b†|z〉〉 =
(z

2
+ ∂z̄

)

|z〉〉 . (3.58)

Such representation converts a two-mode master equation of the general form

L%̂t = 2
{

(A + Ca)L[a†] + (A+ Cb)L[b†] + (B + Ca)L[a] + (B + Cb)L[b]
}

%̂t

+ K[a†b† − ab, %̂t] (3.59)
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into the following Fokker-Planck equation

∂tP (z, z̄; t) =
{

Q (∂zz + ∂z̄ z̄) + 2D∂2
zz̄

}

P (z, z̄; t) , (3.60)

where P (z, z̄; t) ≡ 〈〈z|%̂t|z〉〉 denotes the (unconventional) heterodyne probability den-

sity, and the drift and diffusion terms are given by Q = B − A − K and D =

A + B + Ca + Cb. Notice that the coefficients in the master equation (3.59) are not

independent (the difference of the first two coefficients equals the difference of the last

two in the curly brackets), and this is the condition under which all the derivatives

in Eq. (3.58) gather to give the simple Fokker-Planck equation (3.60). Hence, when

considering the effect of loss in Eq. (3.55), the assumption of equal damping for the

two modes is crucial. Of course, the same argument holds true for the gain Λ in Eq.

(3.56).

The solution of the Fokker-Planck equation (3.60) for a Gaussian initial probability

density

P (z, z̄; 0) =
1

π∆2(0)
exp

(

−|z − w|2
∆2(0)

)

, (3.61)

keeps the Gaussian form all the time, and writes

P (z, z̄; t) =
1

π∆2(t)
exp

(

−|z − we−Qt|2
∆2(t)

)

, (3.62)

where the “evolved” variance at time t is given by

∆2(t) =
D

Q
(1 − e−2Qt) + ∆2(0)e−2Qt . (3.63)

For a communication scheme using the states |w〉〉λ of Sec. 2.3, one has ∆2(0) ≡ ∆2
λ =

(1 − λ)/(1 + λ), according to Eq. (2.30). From Eq. (3.7), for a priori and conditional

probability densities both Gaussian, i.e.

p(w) =
1

πσ2
exp

(

−|w|2
σ2

)

(3.64)

p(w|z) =
1

π∆2
exp

(

−|z − gw|2
∆2

)

, (3.65)

the corresponding mutual information is given by

I = ln

(

1 +
g2σ2

∆2

)

. (3.66)

The average number of photons per mode in the state |w〉〉λ of Eq. (2.34) is given by

1

2
〈a†a+ b†b〉 =

|w|2
4

+
λ2

1 − λ2
. (3.67)
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Then, the variance of the prior distribution for the twin-beam scheme under the con-

straint of fixed average power N reads

σ2 = 4

(

N − λ2

1 − λ2

)

. (3.68)

Hence, the mutual information transmitted at time t for a twin-beam channel modeled

by the Fokker-Planck equation (3.60) is given by

I = ln



1 +
4
(

N − λ2

1−λ2

)

D
Q (e2Qt − 1) + ∆2

λ



 . (3.69)

In the lossless case, the mutual information is maximized by λ = N/(N + 1) to the

value

I = 2 ln (1 + 2N) , (3.70)

namely two times the mutual information for a single-mode squeezed state channel

[compare Eq. (3.25)]. As noticed at the end of Sec. 3.2.2, here also the gain parameter

λ could be allowed to vary as a function of the “displacement signal” z. One might

achieve a little better capacity which, however, is not easy to be evaluated, because

the conditional probability would not have a Gaussian form anymore. Moreover, such

a varying parameter would be very difficult to get experimentally.

For a lossy channel with damping rate Γ and na = nb = n̄ thermal photons one has

D = Γ(2n̄ + 1)/2 and Q = Γ/2. In this case, for λ = N/(N + 1), Eq. (3.69) rewrites

I = ln

(

1 +
4N (N + 1)

1 + (2N + 1) (2n̄+ 1) (eΓt − 1)

)

. (3.71)

Indeed, one could optimize the parameter λ as a function of the damping rate Γ as in

Eqs. (3.29), (3.30) and (3.31) for the squeezed-state channel, with the correspondence

λ→ tanh r , e−Γt → η . (3.72)

The exponential erasure of information in Eq. (3.71) becomes linear using the

master equation (3.59), with K = Γ/2, namely

I = ln

(

1 +
4N (N + 1)

1 + (2N + 1) (2n̄ + 1) Γ t

)

(3.73)

This case represents an ideal distributed parametric amplification that works against

the detrimental effect of loss. Notice that, due to the energy of the pump, the condition

of fixed average power is not strictly satisfied. Indeed, after a transient, the increase of

the mean number of photons is approximately linear in time as follows

N(t) =
1

2

[

N(0) + n̄− 1

2
+

(

N(0) − n̄+
1

2

)

e−2Γt + Γ(2n̄+ 1) t

]

. (3.74)

In the following we will show the equivalence of the twin-beam channel with a commu-

nication scheme based on a couple of uncorrelated quadrature-squeezed states.
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3.3.2 Equivalence with the squeezed-state channel

Let us consider the unitary transformation that describes a 50-50 frequency conversion

device from mode a to mode b. Under suitable choice of phases, the corresponding

unitary operator Û writes

Û = exp
[π

4

(

ab† − a†b
)]

(3.75)

so that the Heisenberg evolution of modes is given in matrix form as follows

Û †
(

a

b

)

Û =
1√
2

(

1 −1

1 1

) (

a

b

)

(3.76)

The action of the operator (3.75) on a twin-beam state is more easily evaluated using

Eq. (2.25) for the twin beam with u = v = z/2. Since the vacuum state |0〉 ⊗ |0〉 is

an eigenvector of the frequency conversion operator (3.75) with eigenvalue 1, from the

identity

eAX e−A = X + [A,X] +
1

2!
[A, [A,X]] + ... (3.77)

one has

Û |z〉〉λ =

[

Da

(

i Imz√
2

)

Sa(tanh−1 λ)

]

|0〉 ⊗
[

Db

(

Rez√
2

)

Sb(−tanh−1 λ)

]

|0〉

≡ |i Imz〉λ ⊗ |Rez〉−λ , (3.78)

where Sc(r) is the squeezing operator for the mode c = a, b in Eq. (3.20), and the

squeezed state |α〉λ is defined as follows

|α〉λ = Dc(α/
√

2)Sc(tanh−1 λ)|0〉 . (3.79)

Hence, by means of frequency conversion the twin-beam state (2.25) disentangles into

two squeezed states which are still related in intensity and phase. For modes a and b at

the same frequency and different wave vectors or polarization, this “disentanglement”

can be also achieved by means of a 50-50 beam splitter [96].

With regard to the effect of frequency conversion at the output of a lossy/amplified

channel, notice that a superoperator of the form

L = αL[a] + βL[b] + γL[a†] + δL[b†] + LK (3.80)

undergoes the following transformation

ÛLÛ † =
α + β

2
(L[a] + L[b]) +

γ + δ

2

(

L[a†] + L[b†]
)

+
K

2
[a2 − a†

2
, ·]

− K

2
[b2 − b†

2
, ·] +

α− β

2
(cross-terms) +

γ − δ

2
(cross-terms) . (3.81)
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We are not interested in the cross-terms in Eq. (3.81) that act jointly on Ha ⊗ Hb,

because they vanish when na = nb and ma = mb in Eqs. (3.55) and (3.56), respectively.

In this case one has

ÛLΓÛ
† = LΓ; ÛLΛÛ

† = LΛ . (3.82)

Thus, the 50-50 conversion leaves the superoperators LΓ and LΛ invariant. This means

that the disentanglement of the twin beam occurs equivalently at whatever time during

transmission. On the contrary, a distributed amplification with pump-correlated a and

b is not invariant under the transformation (3.76). Indeed, a nondegenerate parametric

amplifier followed by frequency conversion is equivalent to a couple of independent

phase-sensitive amplifiers, as shown by the commutator terms in Eq. (3.81), namely

ÛLKÛ
† = L′

K =
K

2
[a2 − a†

2
, ·] − K

2
[b2 − b†

2
, ·] (3.83)

Notice that for K > 0 the amplified quadrature components of the fields a and b

through these commutators are Ŷa ≡ âπ/2 and X̂b ≡ b̂0, respectively, which are the

right quadratures in order to enhance the signal carried by the couple of squeezed

states (3.78). Of course, the communication scheme that encodes the information on

states (3.78) needs two independent homodyne measurements of the quadratures Ŷa

and X̂b.

We have shown the equivalence of the two channels with regard to the input states

and the evolution master equation. It remains to show that also the final detection

stage is equivalent in the two schemes. The unconventional heterodyne detection is

described by the following orthogonal resolution of the identity

dµ̂(z, z̄) = d2z δ(2)(Ẑ − z) ≡ d2z |z〉〉〈〈z| . (3.84)

The unitary operator (3.75) transforms the orthogonal resolution (3.84) as follows

Ûdµ̂(z, z̄)Û † = d2z δ(
√

2X̂b − Rez) δ(
√

2Ŷa − Imz)

= dx dy δ(X̂b − x) δ(Ŷa − y) , z =
√

2(x+ iy) . (3.85)

The last orthogonal resolution in Eq. (3.85) is just the one corresponding to two

independent homodyne measurements of quadratures X̂b and Ŷa.

In conclusion of this section, we also show the equivalence between the squeezed-

state scheme and the twin-beam scheme at the level of Fokker-Planck equations. Using

the homodyne probability density

Pa(y; t)Pb(x; t) = Tr
[

%̂t|y〉π
2

π
2
〈y| ⊗ |x〉00〈x|

]

(3.86)
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the master equation

L′%̂t = 2
{

A(L[a†] + L[b†]) +B(L[a] + L[b])
}

%̂t

+
K

2
[a2 − a†

2
, %̂t] −

K

2
[b2 − b†

2
, %̂t] (3.87)

can be written in the Fokker-Planck form

∂t {Pa(y; t)Pb(x; t)} =

{

Q (∂xx+ ∂yy) +
D

4

(

∂2
xx + ∂2

yy

)

}

Pa(y; t)Pb(x; t) (3.88)

with Q = B − A −K and D = A + B. In obtaining Eq. (3.88) we used the Wigner

rappresentation of both a and b modes given in Appendix A, and then evaluated the

marginal integration over the quadratures X̂a and Ŷb. The equivalence of the Fokker-

Planck equation (3.88) with Eq. (3.60) is evident, after the coordinate transformation

z =
√

2(x+ iy) , z̄ =
√

2(x− iy) , (3.89)

and upon renaming the product of probabilities as follows

P ′(z, z̄; t) =
1

2
Pa

(

Imz√
2

; t

)

Pb

(

Rez√
2

; t

)

. (3.90)

Of course, Eq. (3.69) is valid also for the squeezed-state scheme, with parameter λ and

variance ∆2
λ related to the squeezing parameter through Eqs. (3.78) and (2.30). The

equivalence between the two communication channels is schematized in Fig. 3.10.

3.4 Optical Fock-state synthesizer

The generation of number states is of particular interest not only for quantum commu-

nication channels, but also for fundamental tests of Quantum Mechanics [6] as well as

for relevant applications in quantum interferometry [82]. Up to now various methods

for the generation of such states have been proposed both for traveling as well as for

cavity fields. For traveling fields these methods are mainly based on highly nonlinear

interactions [97], on conditional measurements [98], or on state engineering [99]. The

experimental realizability or effectiveness of these proposals is often challenging. Less

difficulties are involved in the generation of Fock states into cavity [100], e.g. using

micromaser trapped states.

In this last section of the chapter, we address the problem of Fock state generation in

a traveling mode. We suggest an optical device, feasible with current technology, based

on a triggering photodetector and a ring cavity coupled to an external traveling wave

through a cross-Kerr medium. Remarkably, the input states of the proposed setup are

just customary coherent states. The scheme can also be used to engineer superpositions

of few Fock states, which are crucial for optical quantum computers [101], and quantum
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tomography of optical Hamiltonians [102]. As we will show, low quantum efficiency at

the photodetector has no detrimental effect on the filtering process, but only reduces

the state-synthesizing rate.

3.4.1 The experimental set-up

The schematic setup of the synthesizer is depicted in Fig. 3.11. The ring cavity is build

by high reflectivity beam splitters. Here, for simplicity, we suppose that the beam

splitters have the same transmissivity τ . The cavity is fed by a coherent state in the

mode a1, whereas the mode a2 is left unexcited. Through the cross-Kerr interaction,

the cavity mode d is coupled to an external traveling mode c1, according to the unitary

evolution [103]

ÛK = exp(−iχtc†1c1 d†d) , (3.91)

χ being the nonlinear susceptibility of the medium and t the interaction time. The

mode c1 is prepared in a coherent state, and a tunable phase shift ψ is also introduced

in the cavity mode. At the output of the cavity the field is monitored by an avalanche

photodetector. For the purpose of our scheme, we only need to verify the presence or

absence of the field, at the output port of the cavity through the triggering photodiode

D. Let us initially assume unit quantum efficiency at photodetection. The probability

operator measure (POM) Π̂n at D is the two-value operator Π̂0
.
= |0〉〈0| and Π̂1

.
=

Îb2 − |0〉〈0|, where |0〉 is the vacuum and Îb2 is the identity for mode b2. As we will

show in the following, due to the very steep dependence of the cavity transmissivity

on the total phase shift — including both cross Kerr interaction and phase ψ — the

detection of the field at photodetector D guarantees that the free mode c2 (at the

output of the Kerr medium) is reduced into a Fock state or a superposition of few Fock

states.

The mode transformations of the ring cavity are [104]

{

b1 = κ(ϕ)a1 + eiϕσ(ϕ)a2

b2 = σ(ϕ)a1 + κ(ϕ)a2

, (3.92)

where the phase-dependent cavity transmissivity σ and reflectivity κ are given by

κ(ϕ)
.
=

√
1 − τ(eiϕ − 1)

1 − [1 − τ ]eiϕ

σ(ϕ)
.
=

τ

1 − [1 − τ ]eiϕ
, (3.93)

with |κ(ϕ)|2 + |σ(ϕ)|2 = 1. The transformations (3.92) and (3.93) are rigorously ob-

tained by quantizing the e.m. field modes obtained by solving the Helmholtz equation

of the etalon, as in Ref. [104], and taking the input/output modes of the asymptotic
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free plane waves. However, a naive solution of the etalon as a loop of beam splitters

gives the same result, with the internal modes having a reduced commutator (this point

is well explained in Ref. [105]). For c1 in the Fock state |n〉, the total phase shift is

ϕ = ψ − χnt ≡ ϕn. To simplify notation, we write σn
.
= σ(ϕn) and analogously for κ.

Let us now consider the input state

%̂in = |α〉〈α| ⊗ |0〉〈0| ⊗ ν̂in , (3.94)

namely a generic state ν̂in for mode c1, a coherent state |α〉 for mode a1, and vacuum

for a2. In the Schrödinger picture the output state can be written in the form

%̂out =

∞
∑

n,m=0

νnm |κnα〉〈κmα| ⊗ |σnα〉〈σmα| ⊗ |n〉〈m| . (3.95)

The process of filtering the desired Fock state from the input state ν̂in is triggered by

the photodetector D as follows. The probabilities corresponding to the outcomes 1

(detector D on) and 0 (detector D off) are given by

P1 = Tr
[

%̂out Π̂1

]

=
∞
∑

n=0

νnn

(

1 − e−|α|2 |σn|2
)

,

P0 = Tr
[

%̂out Π̂0

]

=

∞
∑

n=0

νnn e
−|α|2 |σn|2 . (3.96)

By means of Eq. (3.93) we have

|σn|2 =

[

1 + 4
1 − τ

τ2
sin2 ψ − χnt

2

]−1

, (3.97)

which is a periodic function sharply peaked at

n =
ψ + 2πj

χt

.
= n∗ +

2π

χt
j , j ∈ Z , (3.98)

with unit maximum height and width of the same order of the beam splitter transmis-

sivity τ (typically τ ∼ 10−3 ÷ 10−6). The value n∗ in Eq. (3.98) can be adjusted to

an arbitrary integer by tuning the phase-shift ψ as a multiple of χt, whereas multiple

resonances are avoided by using small nonlinearity χt � 1, so that the values of n

satisfying Eq. (3.98) for j 6= 0 correspond to vanishing matrix elements νni ' 0 ∀i. In

this case for τ � 1 in Eq. (3.96) we have |σn|2 ' δnn∗ , and the detection probability

P1 rewrites

P1 ' νn∗n∗
(

1 − e−|α|2
)

τ � 1 . (3.99)

Notice that increasing the amplitude of α will enhance the detection probability P1.

Moreover, one can optimize also the input state ν̂in to achieve the highest νn∗n∗ . For

example, in the case of a coherent input ν̂in = |β〉〈β|, one could select |β| '
√
n∗.
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3.4.2 The output state reduction

We now evaluate the conditional state ν̂out at the output of the Kerr medium for

detector D on. One has

ν̂out =
1

P1
Tra1 a2

[

%̂out Π̂1

]

=
e−|α|2

P1

∞
∑

n,m=0

νnm e|α|
2κnκ∗

m

(

e|α|
2σnσ∗

m − 1

)

|n〉〈m| (3.100)

where the partial trace is performed over the ring cavity modes. The argument θ of

σ(θ) = |σ(θ)| exp[iθ(ϕ)] is given by

θ(ϕ) = arctan

[

sinϕ(1 − τ)

1 − (1 − τ) cosϕ

]

. (3.101)

As already noticed, for τ � 1 |σn| is nonzero only for n = n∗, and correspondingly we

have θ(ϕn) = 0. Therefore, for all practical purposes we can write σnσ
∗
m ' |σn| |σ∗m| '

δnn∗δmn∗ , and the output state (3.100) becomes

ν̂out ' |n∗〉〈n∗| , τ � 1 , (3.102)

i.e . the Fock component |n∗〉 has been filtered from the initial state ν̂in.

In Fig. 3.12 we report the number distribution of the conditional output state ν̂out,

with ψ tuned to obtain |n∗ = 4〉 for different values of the beam splitter transmissivity.

We now show how the same setup may be used to produce superpositions of Fock

states. By choosing higher nonlinearities, the quantity 2π/(χt) decreases and |σn|2
can be significantly different from zero for more than one value of n corresponding to

sizeable components of the input state ν̂in. If there are only two of these “resonant”

values n1 = n∗ and n2 = n∗+2π/χt, we have |σn| ' δnn1 +δnn2 and Eq. (3.99) rewrites

as follows

P1 ' (νn1n1 + νn2n2)
(

1 − e−|α|2
)

, τ � 1 . (3.103)

Accordingly, the conditional state after a successful photodetection becomes

ν̂out '
1

νn1n1 + νn2n2

[

νn1n1 |n1〉〈n1| + νn2n2 |n2〉〈n2|

+ νn1n2 |n1〉〈n2| + νn2n1 |n2〉〈n1|
]

τ � 1 , (3.104)

which is a pure state if and only if νn1n1νn2n2 = νn1n2νn2n1 , namely for ν̂in a coherent

state.

In Fig. 3.13 we report the density matrix of the conditional output state ν̂out, with ψ

tuned to obtain a superposition of the Fock states |n1 ≡ 10〉 and |n2 ≡ 20〉 for different

values of the beam splitter transmissivity. It is worth noting that the coefficients of

the superposition in Eq. (3.104) are selected by the input state ν̂in. Therefore, in
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order to have a superposition with equal weights starting from a coherent state |β〉, it

is sufficient to choose its amplitude in such a way that

|β|2 =

(

n1!

n2!

)
1

n1−n2

. (3.105)

Notice, however, that with this choice of β we find a small contribution due to the term

with j = 2 in Eq. (3.98).

Let us now take into account the quantum efficiency η at the photodetector. In this

case the POM Π̂n is replaced with Π̂
(η)
n , where

Π̂
(η)
0

.
=

∞
∑

k=0

(1 − η)k|k〉〈k|, Π̂
(η)
1

.
= Ib2 − Π̂

(η)
0 . (3.106)

The probability P
(η)
1 of having outcome 1 at the photodetector and the conditional

output state now are the following

P
(η)
1 = Tr[Π̂

(η)
1 %̂out] =

∞
∑

n=0

νnn

(

1 − e−η|α|2 |σn|2
)

,

ν̂
(η)
out =

e−|α|2

P
(η)
1

∞
∑

n,m=0

νnm e|α|
2[κnκ∗

m+σnσ∗
m]

(

1 − e−η|α|2σnσ∗
m

)

|n〉〈m| . (3.107)

Remarkably, low values for the quantum efficiency η can reinforce the process of filter-

ing, though at the cost of lowering the probability P
(η)
1 of photodetection. In fact, η

scales the term σpσ
∗
q in the exponential in Eq. (3.107), thus lowering the off-resonance

contributions. In Fig. 3.14a we actually purify the superposition shown in Fig. 3.13a

by lowering the quantum efficiency to the value η = 20%. The probability of obtaining

the state is correspondingly lowered from the value P1 = 0.205 to P
(η)
1 = 0.116. An

analogous argument holds for the dependence of the output state ρ̂out on the input co-

herent amplitude α. In Fig. 3.14b we report the conditional state obtained by choosing

α = 3.58, which corresponds to the same detection probability P
(α)
1 = 0.116. Obviously

the above discussion on the effect of non-unit quantum efficiency and on the intensity

of the input coherent state |α〉 holds also for the generation of a single Fock states.

3.5 Conclusion

In this chapter we have determined the optimal a priori probabilities for the squeezed-

state and the number-state channels. We showed that the optimal fraction of squeezing

photons rapidly decreases with loss, with a relative improvement of the mutual infor-

mation up to 30 % at low power for η = .15. For total mean photon number N < 8 the

optimized squeezed-state channel beats the coherent-state one at any value of the loss.

Using the recursive Blahut’s algorithm [92], we obtained an optimized a priori proba-

bility that departs from the usual monotonically-decreasing thermal-like behavior, and
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that, for attenuation η . .6, develops gaps of zero probability at intermediate numbers

of photons. The sizeable improvement of the mutual information—over 70 % for high

attenuation at low power—partially stems the detrimental effect of loss.

With regard to the feasibility of the squeezed-state channel, we showed the equiva-

lence of such a channel with a heterodyne scheme characterized by an easier implemen-

tation and based on the two-mode states we introduced in Sec. 2.3. The correspondence

between the two channels holds also in the presence of loss and optimal amplification.

Finally, we suggested an effective scheme, feasible with current technology, to gen-

erate optical photon–number eigenstates in a traveling wave mode. The scheme uses

on-off photodetection of the field mode exiting a high-Q cavity, which, in turn, is cou-

pled to the the traveling–wave by nonlinear Kerr interaction. The input fields for the

setup are customary coherent states. After a successful photodetection, the travel-

ing mode is found in a photon-number eigenstate, or, for high Kerr nonlinearity, in

a superposition of Fock states. We have shown that non–unit quantum efficiency at

photodetection improves the quality of the state synthesis, however at the expenses of

the synthesizing rate.
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Figure 3.7: A a priori probability p(n) versus n for different values of the attenuation factor η and

the average power N , optimized in the presence of loss. a) η = .9, N = 8.575, b) η = .75, N = 2.827,

c) η = .6, N = 2.414, d) η = .6, N = 6.930 e) η = .55, N = 2.288, f) η = .55, N = 6.729, g)

η = .4, N = 1.888, h) η = .15, N = 4.040 [see Table 3.1].
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Figure 3.8: Optimality capacity diagram comparing the coherent-state with the optimized number-

state channels. In the dark grey region the optimized number-state channel achieves a superior capacity,

whereas in the black region it is the coherent-state channel the optimal one.

Figure 3.9: Optimality capacity diagram. In the black region the coherent-state channel has the

highest capacity, in the light grey region the best channel is the optimized squeezed-state one. Finally,

in the dark grey region the optimal channel is the optimized number-state one.
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→

→ hom. det. Îy ∝ (a− a†)/2i

hom. det. Îx ∝ (b + b†)/2

Figure 3.10: Equivalence between the channels transmitting twin-beam states |z〉〉λ and couple of

quadrature-squeezed states |iImz〉λ ⊗ |Rez〉−λ. The decoding measurements are the unconventional-

heterodyne detection (complex photocurrent Îz) and two independent ordinary homodyne detections

(real photocurrents Îx and Îy), respectively. The superoperators LΓ, LK and L′
K model the loss in

Eq. (3.55), the phase-insensitive amplification in Eq. (3.57) and the phase-sensitive amplification in

Eq. (3.83), respectively. The equivalence between the two communication schemes is realized by the

unitary transformation (3.76), namely a 50-50 frequency conversion.

BS1 BS 2a1

2a
1b

2b

c1

c2

Cross Kerr

ψ

Figure 3.11: Schematic diagram of the setup for the generation of Fock states and superposition of

Fock states. BS1 and BS2 denote high transmissivity beam splitters, and ψ a tunable phase shift. The

cavity input modes a1 and a2 are placed in a coherent state and in the vacuum respectively. The box

denotes the cross Kerr medium that couples the cavity mode d with the traveling free mode c1 which

is initially prepared in a coherent state. After successful detection at the photodiode D, the output

mode c2 is found in a Fock state or in a superposition of few Fock states.
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Figure 3.12: The number distribution of the conditional output state ν̂out for different values of the

BS transmissivity τ , indicated on each plot. The parameters are chosen to select the number state

|n∗ ≡ 4〉, with χt = 0.01 and ψ = 0.04. The modes a1 and c1 are both excited in a coherent state with

real amplitude α = 20 and β = 2, respectively. The probabilities of obtaining the three states (i.e. the

detection probability at D) are respectively P1 = 0.99885, 0.4905, 0.1997.

(a) (b)

Figure 3.13: The density matrix of the conditional output state ν̂out for different values of the

BS transmissivity. The parameters are chosen to select the superposition 2−1/2(|10〉 + |20〉), that is

χt = π/5 and ψ = 0. The modes a1 and c1 are both excited in a coherent state with amplitude α = 8.0

and β = (20!/10!)1/20 ' 3.902, respectively. The detector has unit quantum efficiency. Notice the

small components due to the Fock state |30〉. The probabilities of synthesizing these two states are

P1 = 0.205, 0.092, respectively.
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(a) (b)

Figure 3.14: The density matrix of the conditional output state ν̂out as in Fig. 3.13a. Here we show

the matrix elements for lowered quantum efficiency η = 20% in (a), and for lowered input amplitude

α = 3.58 in (b). Notice, in both cases, the improvement over the state in Fig. 3.13a.





Chapter 4

Testing Quantum Mechanics

4.1 Introduction

This chapter is entirely devoted to some proposed experimental tests of Quantum Me-

chanics over radiation states generated by parametric processes in nonlinear media.

The following tests are presented. i) An optical scheme that realizes the standard von

Neumann measurement model, providing an indirect measurement of a quadrature of

the field with controllable Gaussian state-reduction. Such a scheme represents an op-

tical version of the measurement scheme for the position of a particle formulated in

the last chapter of von Neumann’s book [106]. ii) A novel method to generate meso-

scopic quantum superpositions by stimulated down conversion in nonlinear χ(2) media.

The scheme relies on feeding a nondegenerate parametric amplifier by a single-photon

state, in a way that makes signal and idler paths indistinguishable. The amplifica-

tion process is analyzed realistically by taking into account the effects of cavity losses,

and the appearance of mesoscopic quantum superpositions at the output is demon-

strated. iii) A homodyne detection scheme to verify Bell’s inequality on correlated

optical beams at the output of a nondegenerate parametric amplifier. The approach is

based on tomographic measurement of the joint detection probabilities, which allows

using high quantum-efficient detectors without supplementary hypotheses. iv) Finally,

a test based on homodyne tomography to check the nonclassicality of quantum states

even for rather low quantum efficiency. For single-mode states we check violations of

inequalities involving the photon-number probability. For two-mode states we recon-

struct some suitable number-operator functions. The nonclassicality test discriminates

classical states from states that invalidate the Mandel’s semiclassical formula of photon

counting [141].

85
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4.2 Optical von Neumann measurement

In the last chapter of his book [106] von Neumann formulated a measurement scheme for

the position q̂ of a particle based on a coupling with another particle. The interaction

Hamiltonian between the two particles—object and probe—is of the form ĤI = q̂P̂ ,

product of the object position q̂ with the probe momentum P̂ . It is switched on

with a very strong coupling and for a very short time, and immediately afterwards

a measurement of the probe-particle position Q̂ is performed. By shifting the probe

position Q̂ by an amount proportional to the object position q̂, the coupling correlates

the object position with the probe “pointer observable” Q̂, through which the object

position is obtained, thus leaving the particle available for a forthcoming measure.

Originally, von Neumann introduced his model in order to discuss the repeatability

hypothesis suggested by the Compton-Simons experiment. After, it remained as a

reference point for theoretical models of repeatable measurements, an ideal “gedanken

microscope” with controllable disturbance on the system (see, for example, Refs. [69]

and [107], where the von Neumann model is considered in relation to the problem of

position measurements below the standard quantum limit).

Is it possible to achieve this model experimentally? As a particle Hamiltonian, the

q̂P̂ interaction is rather artificial. However, we will show that in the domain of quantum

optics, one can achieve the von Neumann measurement (i.e. with the same probability

distribution and the same “state-reduction”) without the need of either realizing the

precise form of the von Neumann Hamiltonian, or of experimentally achieving the

impulsive limit [108]. The scheme we present is made of simple optical elements, as

laser sources, beam splitters, and phase sensitive amplifiers, along with a feedback

mechanism that uses a Pockels cell. We will employ a “pre-amplification” of the signal

state and a “pre-squeezing” of the probe state: this is the basic idea to improve the

quality of a quantum measurement [109], that has already been implemented in the

realm of back-action evading measurements [110, 111, 112, 113].

4.2.1 A feasible interaction Hamiltonian

For a single mode of the radiation field, the optical observables that correspond to

particle position q̂ and momentum p̂ are represented by any two conjugated quadratures

x̂φ, and x̂φ+π/2, with commutator [x̂φ, x̂φ+π/2] = i/2, the generic quadrature being

defined as follows

x̂φ =
1

2

(

a†eiφ + ae−iφ
)

. (4.1)

The quadrature x̂φ can be ideally measured by means of a homodyne detector, in the

limit of strong coherent local oscillator (LO), φ being the phase of the signal mode
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relative to the LO [34]. In Eq. (4.1), a and a† are the bosonic annihilation and creation

operators of the field mode of interest, with commutation [a, a†] = 1.

The standard von Neumann measurement model is based on an impulsive interac-

tion Hamiltonian q̂P̂ with the probe-particle prepared in a Gaussian wave packet. In the

framework of repeatable measurements, according to Sec. 2.4.1, such a measurement

scheme is described by the Gaussian reduction operator

Ω̂(q) =

(

1

2π∆2

)1/4

exp

[

−(q − q̂)2

4∆2

]

. (4.2)

From Eqs. (2.40) and (2.41) it follows that the experimental probability density

p(q) = Tr[%̂Ω̂†(q)Ω̂(q)] is just a Gaussian convolution of the ideal probability distri-

bution 〈q|%̂|q〉, with additional r.m.s. noise given by ∆ (for interaction time τ = κ−1

with κ the interaction strength, ∆2 is simply given by the variance of the probe-particle

Gaussian wave-packet).

Now we present the quantum-optical scheme that performs the standard von Neu-

mann measurement of the quadrature x̂φ of the radiation field in Eq. (4.1). In the

following we will consider a fixed phase φ, using the short notation x̂ = x̂φ, ŷ = x̂φ+π/2.

In a fully optical measurement scheme the simplest choice for a measuring probe is just

another mode of the field. We consistently use capital letters for the probe operators:

thus, Â and Â† will denote the annihilation and creation operators of the probe mode,

whereas X̂ and Ŷ will be used to represent any couple of conjugated quadratures of

the probe for fixed phase φ′. With this notation, the optical equivalent of the standard

von Neumann Hamiltonian (for indirectly measuring the quadrature x̂ by probing X̂)

is given by

Ĥ = x̂Ŷ . (4.3)

Notice that the choice of the phases φ and φ′ is totally free, and is ultimately related

to the definition itself of the annihilation and creation operators of the two modes.

From the definition (4.1) of x̂φ we can immediately see that, independently on the

frequency of the two field modes, the Hamiltonian (4.3) cannot be realized in the

rotating wave approximation, due to the counter-rotating terms Ââ and Â†â†. On the

other hand, an impulsive realization of this Hamiltonian, as in the original formulation

of von Neumann, again is not feasible in the optical domain, because it would require

switching the interaction faster than the optical frequency. However, as we will show

in the following, we don’t need to realize the Hamiltonian (4.3) in order to achieve the

von Neumann measurement.

Instead of the Hamiltonian (4.3) we consider the interaction of the two field modes

at a beam splitter. This is described by the unitary evolution operator

Û = exp

[

atan

√

1 − η

η

(

ab† − a†b
)

]

. (4.4)
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The unitary evolution operator (4.4) has no counter-rotating terms: in the following

we will take both modes at the same frequency, so that the operator (4.4) will retain its

time-independent form also in the interaction picture (the simple form of the operator

(4.4) holds for an appropriate choice of the modal phases, which can be achieved by

just changing optical path lengths). Expressed as a function of the field quadratures,

the unitary operator Û reads

Û = exp

[

2i atan

√

1 − η

η

(

ŷX̂ − x̂Ŷ
)

]

. (4.5)

The operator in Eq. (4.5) can be conveniently factorized into the product of elemental

unitary evolutions by exploiting the realization of the su(2) algebra Ĵ+ ≡ 2iŷX̂, Ĵ− ≡
2ix̂Ŷ , Ĵz ≡ i(X̂Ŷ − x̂ŷ), where one can easily verify the su(2) commutation relations

[Ĵ+, Ĵ−] = 2Ĵz , [Ĵz, Ĵ±] = ±Ĵ±. Using the BCH formula for the SU(2) group the

operator Û can be written as follows 1

Û = e
2i � 1−η

η
ŷX̂
ηi(x̂ŷ−X̂Ŷ )e

−2i � 1−η
η

x̂Ŷ
. (4.6)

The last factor on the right of Eq. (4.6) has the same form of the von Neumann

unitary evolution for Hamiltonian (4.3). The physical meaning of other two factors will

become clear after evaluating the reduction operator Ω̂(x) corresponding to the unitary

evolution in Eq. (4.6).

Let |ϕ〉 be the state preparation of the probe mode before the measurement, (the

state of the field mode A that enters one port of the beam splitter), and let us denote

by |x〉 the eigenvectors of the quadrature X̂ effectively measured at one output port

of the beam splitter by means of a homodyne detector. Then, Ω̂(x) can be evaluated

through the following steps

Ω̂(x) = 〈x|e2i � 1−η
η

X̂ŷ
ηi(x̂ŷ−X̂Ŷ )e

−2i � 1−η
η

x̂Ŷ |ϕ〉

= e
2i � 1−η

η
xŷ
ηix̂ŷ〈x|η−iX̂Ŷ e

−2i � 1−η
η

x̂Ŷ |ϕ〉

= e
2i � 1−η

η
xŷ
ηix̂ŷe− ln η1/2x∂xe

− � 1−η
η

x̂∂xϕ(x)

= D̂†
a

(
√

1 − η

η
x

)

Ŝ†
a

(

ln η1/2
)

η−1/4 ϕ
[

η−1/2
(

x− (1 − η)1/2x̂
)]

, (4.7)

where Ŝa(r) and D̂a(α) denote the squeezing and displacement operators of the mode

a, namely

Ŝa(r) = e−ir(x̂ŷ+ŷx̂) , D̂a(α) = eαa†−ᾱa , (4.8)

1Notice that the fact that our realization of the su(2) algebra does not preserve hermitian con-

jugation is irrelevant for the group multiplication, as in the BCH formula we are actually using the

complexification of the group.
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and we used the quadrature differential representation

〈x|f(X̂, Ŷ )|ϕ〉 = f

(

x,− i

2
∂x

)

ϕ(x) ; ϕ(x) ≡ 〈x|ϕ〉 . (4.9)

The squeezing and displacement unitary operators that appear in the last step of Eq.

(4.7) represent an additional back action from the measurement, i.e. they just change

the state-reduction by an additional unitary evolution, but they do not change the

probability operator-valued measure (POM), which for the reduction operator (4.7) is

given by

dµ̂η(x) = dx Ω̂†(x)Ω̂(x) = dx η−1/2
∣

∣

∣
ϕ
[

η−1/2
(

x− (1 − η)1/2x̂
)]∣

∣

∣

2
. (4.10)

For very high reflectivity at the beam splitter η → 0 and with the probe prepared in

the vacuum state |ϕ〉 ≡ |0〉, Eq. (4.10) would approach the Gaussian von Neumann

POM from Eqs. (2.40) and (4.2) with variance ∆ =
√
η/2. However, the reduction

operator (4.7) is still different from that in Eq. (4.2), and in order to make them equal

we need to remove the squeezing and the displacement back-action terms.

The displacement term is a unitary transformation that depends on the measure-

ment outcome, and hence it can be compensated by an appropriate feedback device.

On the other hand, the squeezing term can be balanced by an inverse squeezing trans-

formation of the mode a performed after the displacing feedback: this will be the last

transformation on the mode a, and we will refer to it as back-squeezing. For vanishing

η one would need increasingly large back-squeezing, and it may be more convenient

to compensate the vanishing η by squeezing the probe state |ϕ〉. In fact, squeezing

transforms the quadrature x̂ as follows

x̂→ Ŝ†
a(r) x̂ Ŝa(r) = erx̂ . (4.11)

Hence the factor (1−η)1/2 in the POM (4.10) can be removed by pre-squeezing the initial

state of the system with squeezing parameter r = − 1
2 ln(1 − η). Such pre-squeezing

modifies the reduction operator Ω̂(x) in Eq. (4.7) into the following one

Ω̂(x) → Ω̂(x) = η−1/4ϕ
[

η−1/2 (x− x̂)
]

, (4.12)

where now we have changed the back-squeezing as follows

Ŝ†
a(ln η1/2) −→ Ŝ†

a(ln η1/2)Ŝa[ln(1 − η)−1/2] = Ŝ†
a

[

1

2
ln(η(1 − η))

]

. (4.13)

Then, in order to get a tunable variance for the reduction operator, one can change the

state preparation |ϕ〉 of the probe. For the squeezed vacuum

|ϕ〉 = ŜA(ln σ1/2)|0〉 , (4.14)
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the reduction operator (4.12) becomes

Ω̂(x) =

(

2

πησ

)
1
4

exp

[

−(x− x̂)2

ησ

]

, (4.15)

and the operator Ω̂(x) in Eq. (4.15) is of the same form of the von Neumann one in

Eq. (4.2), with ∆ =
√
ησ/2.
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Figure 4.1: Outline of the proposed experimental setup to realize a von Neumann measurement of a

quadrature of the electromagnetic field. BS denote a beam splitter; PC(θ) denotes a Pockels cell with

transmissivity θ.

The experimental set-up to perform the optical von Neumann measurement is

sketched in Fig. 4.1. The pre-squeezing and back-squeezing transformation described

by the unitary operators

Ŝ1
a

[

−1

2
ln(1 − η)

]

, Ŝ2
a

[

1

2
ln(η(1 − η))

]

, (4.16)

are the two extremal steps of the sequence of optical operations on the system mode.

They can be accomplished by two phase-sensitive amplifiers (PSA) [114] with gains

G1 = (1 − η)−1 and G2 = η(1 − η), respectively. The PSA ideally amplifies the

quadratures of the field with a phase-dependent gain, namely x̂′
φ = G−1/2x̂φ, x̂′φ+π/2 =

G1/2x̂φ+π/2, and it can be attained through degenerate three- or four-wave mixing. In

the same way the probe state (4.14) can be achieved using a third PSA that amplifies
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an input vacuum field with gain G3 = σ. After the first squeezing, the state of the a

mode is entangled with the squeezed vacuum state (4.14) of the A mode through the

beam splitter with transmissivity
√
η, and at the reflected output beam the quadrature

X̂ is homodyne detected. The displacement D̂
(√

1−η
η x

)

is achieved by combining the

transmitted beam with a strong coherent LO |β〉 (β → ∞) in a beam splitter with a

transmissivity θ → 1, such that |β|
√

1 − θ =
√

1−η
η x, as already shown in Sec. 1.3.1.

The parametric dependence on the homodyne outcome x is carried out by driving

the LO with the homodyne photocurrent, for example by stimulating the laser that

provides the LO by the photodetection current itself. However, this method is expected

to fail for small “photocurrents” x, because it would bring the LO laser below threshold,

thus loosing the phase of β. A better way to achieve this feedback is to provide a

current-dependent transmissivity θ(x) for the beam-splitter, making use, for example,

of a Pockels cell, and working in the linearity regime θ ∝ x of the cell. A similar

feedback mechanism has been experimentally implemented in Ref. [115]. Of course,

good phase coherence between the PSA pumps and the LO may be technically difficult

to achieve. Finally, also notice that the quadrature phase φ can be changed in many

different ways by tuning any one of the relative phase-shifts between the pumps and

the LO.

4.3 Amplification of entanglement

The recent developments in quantum optics and in light manipulation of atoms and

ions have renewed the interest in the basic laws of quantum mechanics. In these frame-

works, the two features that play a major role are the superposition principle and the

existence of nonlocal correlations among separate physical systems. As a matter of

fact, the phenomenon of entanglement and the generation of Schrödinger cats are at

the heart of many crucial experiments [116, 117, 118], both in the realm of fundamen-

tals and for potential applications in modern technology. Among these, we mention

the developments in quantum computation [119], quantum cryptography [120], and

quantum teleportation [116].

Entangled photon pairs can be produced by spontaneous down-conversion [121],

and are used for many purposes, including test of Bell’s inequality and secure quantum

key distribution. The same process also allows to generate entangled states with higher

number of photons, and the corresponding photon distribution has been measured by

means of quantum homodyne tomography [122]. A number of schemes have been also

suggested with the aim of generating optical Schrödinger cats, namely superpositions

of mesoscopic distinguishable states of the radiation field [123, 117, 118].

Further interest has been found in the generation of states that gather both the

entanglement feature and the mesoscopic character of superpositions. In such direction,
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it has been suggested in Ref. [124] a scheme for the generation of mesoscopic quantum

superpositions based on quantum injection into a non-degenerate parametric amplifier

operating in an entangled configuration. The above scheme have been also analyzed in

details [125] in the case of parametric oscillations, i.e. when the nonlinear crystals are

placed into optical cavities. This latest extension leads to a large enhancement of the

number of generated photons.

In this section, we suggest a novel method to generate mesoscopic quantum super-

positions, which is based on the process of stimulated down-conversion in nonlinear

χ(2) crystal. The scheme maintains the original idea of Ref. [124], namely that of a

quantum injection into an optical amplifier, however with two main novelties. On one

hand, the dynamics of the amplifier is restricted to two modes only, which share the

entanglement on two different wave vectors. This leads to the generation of a meso-

scopic superposition that is quite robust against decoherence. On the other hand, the

seed photon is injected into the crystal in a way that makes the signal and the idler

paths indistinguishable. The subsequent amplification process preserves the path in-

distinguishability, and enhances the number of photons of the output entangled state

to mesoscopic scale. In the following we describe how to generate the quantum seed

through the reduction of a down-converted pair of photons by a triggering photode-

tector behind a polarizing filter. We then show the main features of the mesoscopic

entangled superposition that results from ideal stimulated down-conversion. A feasible

measurement to reveal such quantum superposition is also suggested. The amplification

process is finally analyzed realistically by taking into account the effects of cavity losses,

and the whole dynamics of the device is numerically studied by means of Monte Carlo

simulations. The appearance of mesoscopic entangled superpositions at the output,

and their robustness against decoherence are demonstrated.

4.3.1 Generation of the seed state

A non-degenerate optical parametric amplifier (NOPA) consists of a χ(2) nonlinear opti-

cal crystal cut for type II phase-matching. The crystal couples orthogonal polarization

modes according to the effective Hamiltonian

Ĥ = iκ
[

(a†‖b
†
⊥ − a‖b⊥) + (a†⊥b

†
‖ − a⊥b‖)

]

, (4.17)

where κ represents the effective nonlinear coupling, and a and b denotes modes with

wave vectors satisfying the phase-matching condition ka + kb = kp, kp being the wave

vector of the pump. The symbols ‖ and ⊥ denote an arbitrary pair of orthogonal

polarizations, the Hamiltonian (4.17) being invariant with respect to a global rotation

of the polarization reference.

For weak pumping and short interaction time τ , the state exiting the NOPA by
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spontaneous down conversion (SPDC) can be well approximated by

|Ψ〉 =
1

√

1 + (κτ)2

{

|0〉 +
κτ√

2

[

|1〉a‖|0〉a⊥|0〉b‖|1〉b⊥ + |0〉a‖|1〉a⊥|1〉b‖|0〉b⊥
]

}

, (4.18)

where |0〉 denotes the vacuum state and |n〉i the state with n photons in the i-th

mode. The state |Ψ〉 in Eq. (4.18) is a two-photon entangled state that shows perfect

correlations between wave-vector and polarization.
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Figure 4.2: Schematic diagram of the setup for the generation of mesoscopic entangled quantum

superpositions by the parametric amplification of of a single photon state prepared in a way that makes

signal and idler paths indistinguishable. In the first part a two-mode one-photon state is prepared by a

conditional measurement on a down converted (SPDC) Bell-type state. The reduced two modes b are

spatially separated by a polarizing beam splitter (PBS), and then redirected to the second crystal with

the proper wave vectors to satisfy phase-matching conditions. The input state for the second crystal

is thus given by |Φ〉 = 1√
2
(|1〉b‖ |0〉b⊥ + eiδ|0〉b‖ |1〉b⊥ ). This quantum injection triggers a stimulated

down-conversion process (STDC) which leads to the desired mesoscopic quantum superposition. Both

spontaneous and stimulated down conversion takes place in non-degenerate optical amplifiers (NOPA)

consisting of nonlinear χ(2) crystals cut for type II phase-matching. In the last stage of the setup the

output beams from the second crystal are mixed in polarizing beam splitter (PBS) and then detected.

The mean value of the difference photocurrent gives the second order correlation function C
(2) defined

in Eq. (4.28) of the text.

Let us now consider the conditional measurement scheme depicted in the left part

of Fig. 4.2. One of the down-converted beams passes through a polarization filter,

and then it is detected. The filter selects the polarization in a fixed direction, say

⊥, so that when a photon is revealed by detector D the state at modes b is reduced

to a single photon with the orthogonal polarization, say ‖. The same state reduction

obviously happens for any other orientation of the polarization filter. After reduction,
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the modes b enter a polarizing beam splitter (PBS) with axis oriented at 45◦ relative

to the first analyzer. According to PBS evolution, orthogonal polarization components

are spatially separated, and the resulting state can be written

|Φ〉 =
1√
2

{

|1〉b‖|0〉b⊥ + eiδ|0〉b‖|1〉b⊥
}

, (4.19)

where δ is a tunable phase-shift which results from the difference in the optical paths of

the two modes. Notice that the state in Eq. (4.19) is not an entangled state in a strict

sense [126]. Actually, it describes just a single-photon state with polarization rotated

by 45◦. However, the main point of our scheme is that the PBS scatters the photon in

two directions (depending on polarization ‖ and ⊥) with equal probability amplitude,

thus making the two possible paths of the photon indistinguishable. As we will show

in the following, such path indistinguishability plays the role of a quantum seed, which

makes the parametric amplification of the state (4.19) a novel source of mesoscopic

entangled quantum superpositions.

4.3.2 From path indistinguishability to mesoscopic entanglement

Here we analyze the parametric amplification which takes place in the second crystal

of our scheme (see Fig. 4.2). For this crystal the input signal is not the e.m. vacuum

but the single-photon state of Eq. (4.19). Therefore, we are dealing with a kind of

stimulated down-conversion process.

After the polarizing beam splitter, the two polarization modes in the state (4.19)

have been spatially separated, and can be directed to the second crystal with the

proper wave vectors in order to satisfy phase-matching conditions. In such a way,

the dynamics in the second crystal only involves modes b‖ and b⊥, according to the

following interaction Hamiltonian

ĤI = iκ(b†‖b
†
⊥ − b‖b⊥) . (4.20)

The use of the polarizing beam splitter before the second crystal is a relevant point

of our scheme. One one hand, it allows to restrict the NOPA dynamics to two modes

only, on the other hand, it is the key ingredient to make the two paths for the photon

indistinguishable, thus leading to the initial quantum seed described in Eq. (4.19).

Notice that in the original scheme of Refs. [124, 125] all the four modes of Hamiltonian

(4.17) are involved in the amplification stage. Such four-mode entanglement is in

principle very interesting, however the presence of many modes makes the effect of

losses more detrimental, thus leading to a more stringent decoherence. For this reason

we believe that our scheme should be more effective in generating mesoscopic quantum

superpositions.

The amplifier described by Hamiltonian (4.20) is characterized by the gain G, which

is given by G = cosh2(κτ), τ being the interaction time. In the case of ideal amplification
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(no losses), the state at the output writes

|ΦOUT 〉 =
1√
2G

∞
∑

n=0

(G − 1

G

)n/2 √
1 + n

{

|n+ 1〉‖|n〉⊥ + eiδ|n〉‖|n+ 1〉⊥
}

. (4.21)

The state in Eq. (4.21) describes two highly correlated and spatially separated beams.

For large enough gain it represents a kind of mesoscopic entangled quantum superpo-

sition, whose mean photon number is given by

〈ΦOUT |b†⊥b⊥ + b†‖b‖|ΦOUT 〉 = 4G − 3 . (4.22)

We now evaluate the two-mode Wigner function, which is defined as follows

W (x1, y1;x2, y2) =

∫

W dµ1

∫

W dν1

∫

W dµ2

∫

W dν2 e
2i(ν1x1−µ1y1+ν2x2−µ2y2) ×

× Tr
{

%̂D̂b⊥(µ1 + iν1)D̂b‖(µ2 + iν2)
}

. (4.23)

In Eq. (4.23) the variables (x1, y1) and (x2, y2) pertain to modes b⊥ and b‖ respectively,

and D̂bj
(z) = exp[zb†j − z̄bj] denotes the displacement operator for mode bj, j =‖,⊥.

For %̂ = |ΦOUT 〉〈ΦOUT | one obtains

Wτ (x1, y1;x2, y2) =

8

π2
exp

[

− (4G − 2) (x2
1 + x2

2 + y2
1 + y2

2) − 8
√

G(G − 1) (X1x2 + Y1y2)
]

×
[

e−2κτ (X1 − x2)2 + e−2κτ (Y1 − y2)2 − 1

2

]

, (4.24)

where
{

X1 = x1 cos δ + y1 sin δ

Y1 = −x1 sin δ + y1 cos δ
(4.25)

As it can be easily checked, the Wigner function in Eq. (4.24) shows negative values

in a sizeable region of the phase space, thus revealing the genuine nonclassical nature

of the state resulting from stimulated down-conversion.

The high degree of entanglement of |ΦOUT 〉 is easily revealed also by the two-mode

photon number distribution, which, for any value of the phase-shift δ, reads as follows

P (n,m) =
∣

∣‖〈n|⊥〈m|ΦOUT 〉
∣

∣

2

=
1

2G2

(G − 1

G

)n−1 [

n δm,n−1 + (n+ 1)
G − 1

G δm,n+1

]

, (4.26)

where δkl denotes Kronecker delta. The two-mode number probability P (n,m) is re-

ported in Fig. 4.3 for two different values of the gain G. The high degree of correlations

in P (n,m) is apparent. Notice that the location of the peaks linearly increases with

the gain G.
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Figure 4.3: The two-mode photon distribution P (n,m) for two different values of the gain G, G = 2

on the left and G = 5 on the right.

It should be emphasized that the distributions in Fig. 4.3 are very different from

the corresponding distribution of the so-called twin-beam state

|ΦTWB〉 =
1√
G

∞
∑

n=0

(G − 1

G

)n/2

|n〉‖|n〉⊥ , (4.27)

which results from spontaneous down-conversion. In the case of twin-beam the pho-

ton number probability P (n,m) is just a two-mode thermal distribution P (n,m) =

δm,n G−1−n(G − 1)n, and the quantum correlation involves only the photon number

fluctuations, which are amplified by down-conversion process. Actually, the Wigner

function of the twin-beam (i.e. the output state without the quantum injection) is

positive over the whole phase space.

As a feasible measurement to check the generation of the mesoscopic superposition

|ΦOUT 〉 we suggest the detection of the second order correlation function

C
(2) = Tr

{

%̂
(

b†‖b⊥ + b‖b
†
⊥

)}

. (4.28)

which can be accomplished by the following interference experiment. The output beams

from the amplifier should be mixed in a further polarizing beam splitter, and then the

difference photocurrent is detected, as in customary homodyne detection scheme (see

Fig. 4.2). Using Eq. (4.21) it results

〈ΦOUT |b†‖b⊥ + b‖b
†
⊥|ΦOUT 〉 =

1

2
(8 G − 5) cos δ , (4.29)

that is, one has interference fringes with amplitude and modulation that depend on

the amplification gain and on the optical paths of the input beams, respectively. It

is worth noticing that without quantum injection, i.e. for the twin-beam there is no

interference effect, we have

〈ΦTWB|b†‖b⊥ + b‖b
†
⊥|ΦTWB〉 = 0 . (4.30)

We also point out that the measurement of C(2) is not a kind of coincidence detection.

The effect of nonunit quantum efficiency of the photodetectors is simply a rescaling

and no post-selection strategy is involved.
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4.3.3 Dynamics of the stimulated down-conversion process

We have analyzed the stimulated down-conversion process in the ideal case of perfect

amplification, namely without taking into account the effects of losses. Here, we con-

sider a more realistic situation and study whether the state |ΦOUT 〉 of Eq. (4.21) can

be actually approached when losses unavoidably introduce decoherence effects.

The realistic amplification process is described in terms of the two-mode Master

equation

d%̂t

dt
≡ L%̂t = −i[ĤI , %̂t] + Γ(L[b⊥]%̂t + L[b‖]%̂t) , (4.31)

where %̂t ≡ %̂(t), ĤI is the interaction Hamiltonian given in Eq. (4.20), Γ denotes the

damping rate of the optical cavity, and L[Ô] is the Lindblad superoperator

L[Ô]%̂t = Ô%̂tÔ
† − 1

2
Ô†Ô%̂t −

1

2
%̂tÔ

†Ô ,

which describes cavity losses.

The Hamiltonian ĤI in the Master equation (4.31) strongly correlates the two modes.

Thus, in principle, we are in presence of a quite complicated dynamics. However, notice

that the unitary transformation

V̂ = exp
{π

4

(

b†⊥b‖ − b⊥b
†
‖

)}

(4.32)

“disentangles” the Hamiltonian ĤI in two squeezing Hamiltonians for the two modes

respectively, in formula

V̂ ĤI V̂
† =

iκ

2

(

b†2⊥ − b2⊥
)

− iκ

2

(

b†2‖ − b2‖
)

. (4.33)

At the same time, the sum of the Lindblad terms is left unchanged by the transformation

(4.32), namely

V̂
{

L[b⊥] + L[b‖]
}

V̂ † = L

[

b⊥ − b‖√
2

]

+ L

[

b‖ + b⊥√
2

]

= L[b⊥] + L[b‖] . (4.34)

Therefore, the solution %̂t of Eq. (4.31) can be written as

%̂t = V̂ †%̂′V̂ , (4.35)

%̂′t being the solution of the “disentangled” Master equation

d%̂′t
dt

=
(

Lb⊥ + Lb‖

)

%̂′t =
κ

2
[b†2⊥ − b2⊥, %̂

′
t] + ΓL[b⊥]%̂′t −

κ

2
[b†2‖ − b2‖, %̂

′
t] + ΓL[b‖]%̂

′
t .(4.36)

The master equation (4.36) can be transformed into a Fokker-Planck equation for the

two-mode Wigner function W ′
t (x1, y1;x2, y2). Using the differential representation of
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the superoperators in (4.36) the corresponding Fokker-Planck equation reads as follows

∂τW
′
τ (x1, y1;x2, y2) =

[

1

8

(

∂2
x1x1

+ ∂2
y1y1

+ ∂2
x2x2

+ ∂2
y2y2

)

+ (4.37)

+ γ+ (∂x1x1 + ∂y2y2) + γ− (∂x2x2 + ∂y1y1)

]

W ′
τ (x1, y1;x2, y2) ,

where τ denotes the rescaled time τ = Γt, and the drift terms γ+ and γ− are given by

γ+ =
1

2

(

1 +
2κ

Γ

)

, γ− =
1

2

(

1 − 2κ

Γ

)

. (4.38)

The solution of Eq. (4.37) can be written as

W ′
τ (x1, y1;x2, y2) =

∫

W dx′1
∫

W dx′2
∫

W dy′1
∫

W dy′2 W ′
0(x′1, y

′
1;x′2, y

′
2) ×

× Gτ (x1|x′1) Gτ (x2|x′2) Gτ (y1|y′1)Gτ (y2|y′2) , (4.39)

where W ′
0(x1, y1;x2, y2) is the Wigner function at τ = 0, and the Green functions

Gτ (xj |x′j) are given by

Gτ (xj |x′j) =
1

√

2πσ2
j

exp

[

−
(xj − x′je

− 1
2
γjτ )2

2σ2
j

]

, σ2
j =

1

4γj
(1 − e−γjτ ) . (4.40)

Remarkably, the diffusion coefficients σ2
j remains positive for all times, both below

(2κ < Γ) and above (2κ > Γ) threshold. However, from the physical point of view,

Eq. (4.37) provides a good description of the amplifier above threshold only for short

times, namely when saturation effects can be neglected.

Of course, Eq. (4.37) admits a stationary solution only below threshold: such a solution

can be easily derived from Eqs. (4.38-4.39) and, independently on the initial state, has

the Gaussian form

W ′
stat(x1, y1;x2, y2) =

16γ+γ−
π

exp

[

− 4γ+(x2
1 + y2

2) − 4γ−(x2
2 + y2

1)

]

, (4.41)

corresponding to the (factorized) squeezed thermal density matrix given by

%̂′stat =
[

S⊥(r)ν̂⊥N̄S
†
⊥(r)

]

⊗
[

S‖(−r)ν̂‖N̄S†
‖(−r)

]

. (4.42)

In Eq. (4.42) Ŝj(r) = exp[ r
2(b†2j − b2j )] denotes the squeezing operator for mode bj,

j =‖,⊥, whereas ν̂jN̄ is the density matrix of a thermal state with N̄ thermal photons

ν̂jN̄ =
1

1 + N̄

(

N̄

1 + N̄

)b†jbj

. (4.43)
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Both the squeezing parameter r and the thermal photon number N̄ in Eq. (4.42) only

depend on the ratio between 2κ and Γ, in formula

r =
1

4
log

γ+

γ−
2N̄ + 1 =

1

2

1√
γ+γ−

. (4.44)

The stationary solution %̂stat for the original Master equation (4.31) can be obtained

through Eq. (4.33), and it is given by

%̂stat = exp
[

2r(b†⊥b
†
‖ − b⊥b‖)

] [

ν̂⊥N̄ ⊗ ν̂‖N̄
]

exp
[

−2r(b†⊥b
†
‖ − b⊥b‖)

]

. (4.45)

Let us now consider the more interesting case of amplification above threshold. The

Wigner function Wτ (x1, y1;x2, y2) corresponding to the evolved density matrix %̂τ can

be obtained from W ′
τ (x1, y1;x2, y2) by noticing that the unitary transformation V̂ in

(4.32) just corresponds, at all times, to a rotation in the four-dimensional space for the

Wigner function, more explicitly

Wτ (x1, y1;x2, y2) = W ′
τ

(

x1 + x2√
2

,
y1 + y2√

2
;
x2 − x1√

2
,
y2 − y1√

2

)

. (4.46)

The recipe to solve the dynamics of the amplifier is thus the following: starting from the

Wigner function W0(x1, y1;x2, y2) of the initial state one evaluates W ′
0(x1, y1;x2, y2) by

the inverse rotation of that of Eq. (4.46), namely

W ′
0(x1, y1;x2, y2) = W0

(

x1 − x2√
2

,
y1 − y2√

2
;
x2 + x1√

2
,
y2 + y1√

2

)

. (4.47)

Then, one makes W ′
0(x1, y1;x2, y2) evolve according to Eq. (4.39), and finally recovers

Wτ (x1, y1;x2, y2) by means of Eq. (4.46). Following this recipe we have numerically

simulated the whole evolution, starting from the Wigner function of the state (4.19),

namely

W0(x1, y1;x2, y2) =
8

π2
exp

[

−2(x2
1 + x2

2 + y2
1 + y2

2)
]

(4.48)

×
[

(x1 cos δ + y1 sin δ − x2)2 + (y1 cos δ − x1 sin δ − y2)2 − 1

2

]

.

The input state is nonclassical and exhibits negative values in the Wigner function.

Anyhow, the Green evolution can be performed by standard Monte Carlo techniques,

by evolving separately the positive and negative parts of the Wigner function, which

are not mixed by the Fokker-Planck equation (4.37).

In Fig. 4.4 we report the two-mode number probability P (n,m) for two different

values of the ratio between gain and loss parameters 2κ/Γ and for δ = 0. Both plots

refer to amplification above threshold, where the effectiveness of the process is apparent.

We have chosen short interaction times, in order to make saturation effects negligible.

Notice that the main effect of losses is the appearance of further subdiagonal terms,
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Figure 4.4: The two-mode photon distribution P (n,m) for δ = 0 and for 2κ/Γ = 30 (top) and

2κ/Γ = 50 (bottom). The corresponding interaction time is given by τ = 0.1 and τ = 0.06 respectively.

We report two views for each distribution. Though the effective gain 2κ
Γ
τ is the same for both cases

the amplification process is more effective well above threshold. In comparison with the ideal case of

Fig. 4.3 the main effect of losses is the appearance of subdiagonal terms, however without affecting the

high correlation between the modes.

however without affecting the high correlation between the modes. On the other hand,

the amplification below threshold cannot stem the detrimental effect of losses, and the

field state rapidly approaches the thermal-squeezed state of Eq. (4.42).

By varying the optical path of the input beams, namely the value of δ we have also

evaluated the correlation function C(2) defined in Eq. (4.28). In Fig. 4.5 we report C(2)

for different values of the effective gain 2κ
Γ τ . By inspecting the dependence of C(2) on

the phase-shift δ in Fig. 4.5 one immediately argues that in a wide range of working

regimes the effects of losses does not wash out interference fringes.

Figure 4.5: The correlation function C
(2) as a function of the ratio 2κτ/Γ and the phase-shift δ.

Compare Eq. (4.29) for the lossless case.
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4.4 Tomographic test of Bell’s inequality

In 1935 Einstein, Podolsky and Rosen [127] proved the incompatibility among three hy-

potheses: 1) quantum mechanics is correct; 2) quantum mechanics is complete; 3) the

following criterion of local reality holds: “If, without in any way disturbing a system, we

can predict with certainty [...] the value of a physical quantity, then there exists an ele-

ment of physical reality corresponding to this quantity.” The paper opened a long and

as yet unsettled debate about which one of the three hypotheses should be discarded.

While Einstein suggested to abandon the completeness of quantum mechanics, Bohr

[128] refused the criterion of reality. The most important step forward in this debate

was Bell’s theorem of 1965 [129], which proved that there is an intrinsic incompatibility

between the assumptions 1) and 3), namely the correctness of quantum mechanics and

Einstein’s “criterion of reality”. In Bell’s approach, a source produces a pair of corre-

lated particles, which travel along opposite directions and impinge into two detectors.

The two detectors measure two dichotomic observables A(α) and B(β) respectively,

α and β denoting experimental parameters which can be varied over different trials,

typically the polarization/spin angle of detection at each apparatus. Assuming that

each measurement outcome is determined by the experimental parameters α and β

and by an “element of reality” or “hidden variable” λ, Bell proved an inequality which

holds for any theory that satisfies Einstein’s “criterion of reality”, while it is violated

by quantum mechanics. Such a fundamental inequality, which allows an experimen-

tal discrimination between local hidden–variable theories and quantum mechanics, has

been the focus of interest in a number of experimental works [130].

Unfortunately, Bell’s proof is based on two conditions which are difficult to achieve

experimentally. The first is the feasibility of an experimental configuration yielding

perfect correlation; the second is the possibility of approaching an ideal measurement,

which itself does not add randomness to the outcome. Since 1969, attention was focused

on improving the correlation of the source on one hand, and, on the other, on deriving

more general inequalities that take into account detection quantum efficiency or circum-

vent the problem, however, at the cost of introducing supplementary hypotheses (see

Refs. [131]), as the well known “fair sampling” assumption. Anyhow it was clear also

to the authors of the same Refs. [131] that these assumptions are questionable, and,

as a matter of fact, it was proved [132] that in all performed experimental checks the

results can be reproduced in the context of Einstein’s assumptions if quantum efficiency

of detectors is less than 82.3%.

In a typical experiment the source emits a pair of correlated photons and two detec-

tors separately check the presence of the two photons after polarizing filters at angles

α and β, respectively. Alternatively, one can use four photodetectors with polarizing

beam splitters in front, with the advantage of checking through coincidence counts
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that photons come in pairs. Let us denote by pα,β the joint probability of finding one

photon at each detector with polarization angle α and β, respectively. In terms of the

correlation function

C(α, β) = pα,β + pᾱ,β̄ − pᾱ,β − pα,β̄ , (4.49)

Bell’s inequality [129] writes as follows

B(α, β, α′, β′)
.
= |C(α, β) − C(α, β ′)| + |C(α′, β′) + C(α′, β)| ≤ 2 , (4.50)

ᾱ and β̄ being the polarization angles orthogonal to α and β respectively. In this

section we propose a new kind of test for Bell’s inequality based on quantum homodyne

tomography [133, 134] (for a review see Ref. [135]). In our set-up the photodetectors

are replaced by homodyne detectors, which along with the tomographic technique can

be regarded as a black box for measuring the joint probabilities pα,β [136, 137]. The

main advantage of the tomographic test is that it allows using linear photodiodes with

quantum efficiency η higher than 90% [138]. On the other hand, the method works

effectively even with η as low as 70%, without the need of a “fair sampling” assumption,

since all data are collected in a single experimental run. With respect to the customary

homodyne technique, which in the present case would need many beam splitters and

local oscillators (LO) that are coherent with each other, the set-up is greatly simplified

by using the recent self-homodyne technique [122].

4.4.1 The experimental set-up

The apparatus for generating the correlated beams is a χ(2) nonlinear crystal, cut

for Type-II phase–matching, acting as a nondegenerate optical parametric amplifier

(NOPA), as already introduced in the previous section. The NOPA is injected with

excited coherent states (see Fig. 4.6) in modes c↔, cl, d↔, dl all with equal intensities

and at the same frequency ω0, c and d denoting mode operators for the two different

wave-vector directions, and l and ↔ representing vertical and horizontal polarization,

respectively. The NOPA is pumped at the second harmonic 2ω0.

At the output of the amplifier four photodetectors separately measure the intensi-

ties Îal , Îb↔ , Îa↔ , Îbl of the mutual orthogonal polarization components of the fields

propagating at different wave vectors. A narrow band of the photocurrent is selected,

centered around frequency Ω � ω0 (typically ω0 is optical/infrared, whereas Ω is a

radio frequency). In the process of direct detection, the central modes cl,↔ and dl,↔
beat with ω0 ± Ω sidebands, thus playing the role of the local oscillator of homodyne

detectors. The four photocurrents Îal , Îb↔ , Îa↔ , Îbl yield the value of the quadratures

of the four modes [122]

sπ =
1√
2

(

aπ(+) + aπ(−)
)

, s = {a, b} , π = {↔, l} , (4.51)
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Figure 4.6: Experimental set-up for the tomographic test of Bell’s inequality. PBS and BS denote

‘polarizing beam splitter’ and ‘conventional beam splitter’ respectively. Input radiation modes al, b↔,

a↔ and bl are in the vacuum state, while modes cl, c↔, dl, d↔ (at laser frequency ω0) are in a coherent

state. At the output of the nondegenerate parametric amplifier (NOPA) the four photocurrents Î at

radiofrequency Ω are measured, yielding the value of quadratures of the field modes al, b↔, a↔ and bl.

The outcome quadratures are then used to reconstruct the probabilities of interest through quantum

tomography.

where aπ(±) and bπ(±) denote the sideband modes at frequency ω0 ± Ω, which are in

the vacuum state at the input of the NOPA. The quadrature is defined by the operator

x̂φ
.
= 1

2(ae−iφ + a†eiφ), where φ is the relative phase between the signal and the local

oscillator. The value of the quadratures is used as input data for the tomographic

measurement of the correlation function C(α, β).

The direction of polarizers (α, β) in the experimental set-up does not need to be

varied over different trials, because, as we will show in the following, such direction can

be changed tomographically.

We will now enter into details on the state at the output of the NOPA and on

the tomographic detection. In terms of the field modes in Eq. (4.51) the spontaneous

down-conversion at the NOPA is described by the unitary evolution operator

Û(ξ) = exp
[

ξ
(

a†lb
†
↔ + eiϕa†↔b

†
l

)

− h. c.
]

, (4.52)

where ξ = χ(2)γL/c is the rescaled interaction time written in terms of the nonlinear

susceptibility χ(2) of the medium, the crystal length L, the pump amplitude γ and the

speed c of light in the medium, whereas ϕ represents the relative phase between the

orthogonal polarization components of the pump field. The state at the output of the

NOPA writes as follows

|ψ〉 = (1 − |Λ|2)
∞
∑

n=0

∞
∑

m=0

Λn+meiϕm|n, n,m,m〉 ≡ |ψ1,2〉 ⊗ |ψ3,4〉 , (4.53)
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where Λ = ξ/|ξ| tanh |ξ| and |i, l,m, n〉 represents the common eigenvector of the

number operators of modes al, b↔, a↔, bl, with eigenvalues i, l,m and n, respectively.

The average photon number per mode is given by N = |Λ|2/(1 − |Λ|2). The four-mode

state vector in Eq. (4.53) factorizes into a couple of twin beams |ψ1,2〉 and |ψ3,4〉, each

one entangling a couple of spatially divergent modes (al, b↔ and a↔, bl, respectively).

Notice that conventional experiments, concerning a two-photon polarization-entangled

state generated by spontaneous down-conversion, consider a four-mode entangled state

which corresponds to keeping only the first-order terms of the sums in Eq. (4.53), and

to ignoring the vacuum component, as only intensity correlations are usually measured.

Here, on the contrary, we measure the joint probabilities on the state (4.53) to test Bell’s

inequality through homodyne tomography, which yields the value of B(α, β, α ′, β′) in

Eq. (4.50).

4.4.2 Homodyning Bell’s inequality

The tomographic technique is a kind of universal detector, which can measure any

observable Ô of the field, by averaging a suitable “pattern” function R[Ô](x, φ) over

homodyne data x at random phase φ, namely

〈Ô〉 = AV{R[Ô](x, φ)} . (4.54)

The “pattern” function is obtained through the trace-rule [139]

R[Ô](x, φ) = Tr
[

ÔKη(x− x̂φ)
]

, (4.55)

where Kη(x) is the distribution

Kη(x) =
1

2
Re

∫ +∞

0
dr r exp

(

1 − η

8η
r2 + irx

)

(4.56)

which is derived in Ref. [140]. For factorized many-mode operators Ô = Ô1⊗ Ô2⊗ ...⊗
Ôn the pattern function is just the product of those corresponding to each single-mode

operator Ô1, ..., Ôn labeled by variables (x1, φ1), ..., (xn, φn). By linearity the pattern

function is extended to generic many-mode operators.

Now we consider which observables are involved in testing Bell’s inequality (4.50).

Let us denote by pα,β(i, l,m, n) the probability of having i, l,m, n photons in modes

al, b↔, a↔, bl for the “rotated” state

|ψ〉α,β ≡ Û1,3(α)Û2,4(β)|ψ〉 , (4.57)

Û1,3(α) and Û2,4(β) being the unitary operators

Û1,3(α) = exp
[

α
(

a†la↔ − ala
†
↔
)]

, (4.58)

Û2,4(β) = exp
[

β
(

b†lb↔ − blb
†
↔
)]

. (4.59)
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The probabilities in Eq. (4.49) can be written as pα,β = pα,β(1, 1), pᾱ,β̄ = pα,β(0, 0),

pᾱ,β = pα,β(0, 1), and pα,β̄ = pα,β(1, 0), with

pα,β(n,m) =
pα,β(n, 1 −m, 1 − n,m)

P (1, 1)
, (4.60)

and {n,m = 0, 1}. The denominator P (1, 1) in Eq. (4.60) represents the absolute

probability of having at the output of the NOPA one photon in modes al, a↔ and one

photon in modes bl, b↔, independently on the polarization, namely

P (1, 1) =
∑

n=0,1

∑

m=0,1

pα,β(n, 1 −m, 1 − n,m) . (4.61)

Notice that our procedure does not need a fair sampling assumption, since we measure

in only one run, both the numerator and the denominator of Eq. (4.60), namely we do

not have to collect auxiliary data to normalize probabilities. On the other hand, since

we can exploit quantum efficiencies as high as η = 90% or more, and the tomographic

pattern functions already take into account η, we do not need supplementary hypothesis

for it.

The observables that correspond to probabilities pα,β(i, l,m, n) in Eqs. (4.60) and

(4.61) are the projectors

| i, l,m, n〉α,β α,β〈 i, l,m, n|
= Û †

1,3(α) Û †
2,4(β) | i, l,m, n〉〈 i, l,m, n| Û2,4(β) Û1,3(α) . (4.62)

After a straightforward calculation using Eqs. (4.60), (4.61) and (4.62), one obtains

that P (1, 1) is measured through the following average AV of homodyne data

P (1, 1) = AV
{(

K1
1 K

3
0 +K1

0 K
3
1

) (

K2
1 K

4
0 +K2

0 K
4
1

)}

, (4.63)

where Kj
n denotes the diagonal (n = 0, 1) tomographic kernel function for mode j,

namely

Kj
n ≡ 〈n|Kη(x− x̂φj

)|n〉 . (4.64)

The probabilities in the numerator of Eq. (4.60) are given by the average of a lengthy

expression, which depends on both the diagonal terms (4.64) and the following off-

diagonal terms

Kj
+ ≡ 〈0|Kη(x− x̂φj

)|1〉 , Kj
− ≡ 〈1|Kη(x− x̂φj

)|0〉 = (Kj
+)∗ . (4.65)

Here we report the final expression for C(α, β) of Eq. (4.49)

C(α, β) =
1

P (1, 1)
× (4.66)

AV
{

[ cos(2α)
(

K1
1 K

3
0 −K1

0 K
3
1

)

+ sin(2α)
(

K1
+K

3
− +K1

−K
3
+

)

] ×

[ cos(2β)
(

K2
0 K

4
1 −K2

1 K
4
0

)

+ sin(2β)
(

K2
+K

4
− +K2

−K
4
+

)

]
}

.
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Caution must be taken in the estimation of the statistical error, because C(α, β)—

and thus B(α, β, α′, β′) in Eq. (4.50)—are non linear averages (they are ratios of

averages). The error is obtained from the variance calculated upon dividing the set

of data into large statistical blocks. However, since the nonlinearity of B introduces

a systematic error which is vanishingly small for increasingly larger sets of data, the

estimated mean value of B is obtained from the full set of data, instead of averaging

the mean value of blocks.

4.4.3 Numerical results

We now present some numerical results obtained from Monte–Carlo simulations of the

proposed experiment.

Figure 4.7: Plot of B(α, β, α′, β′) vs the phase ϕ in the state of Eq. (4.53) for a simulated experiment.

The shaded area represents the classical region for B. The parameters of the simulation are: α = 0; β =
3
8
π; α′ = π

4
; β′ = π

8
; quantum efficiency η = 85%; average photon number per mode N = .5. A total

number of 106 homodyne data (divided into 20 statistical blocks) has been used.

For the simulation we use the theoretical homodyne probability pertaining to the

state |ψ〉 in Eq. (4.53) which, for each factor |ψi,j〉, is given by

pη(xi, xj ;φi, φj)=

2 exp

[

− (xi+xj)2

d2
zij

+4∆2
η
− (xi−xj)2

d2
−zij

+4∆2
η

]

π
√

(d2
zij

+ 4∆2
η)(d2

−zij
+ 4∆2

η)
, (4.67)

where xi (i = 1, 2, 3, 4) is the outcome of the homodyne measurement for quadrature

of the i-th mode at phase φi, and

zij = e−i(φi+φj)Λ , d2
±zij

=
|1 ± zij |2
1 − |zij |2

, ∆2
η =

1 − η

4η
. (4.68)

In Fig. 4.7 we present the simulation results for B in Eq. (4.50) vs the phase ϕ in

the state of Eq. (4.53). The full line represents the value of B in Eq. (4.50) with the
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quantum theoretical value C(α, β) given by

C(α, β) = cosϕ sin 2α sin 2β − cos 2α cos 2β . (4.69)

Quantum efficiency η = 85% has been used, nonetheless notice that for ϕ = π (corre-

sponding to a maximum violation with respect to the classical bound 2), the obtained

value is over 10 σ distant from the bound. By increasing the number of homodyne

data, it is possible to obtain good results also for lower quantum efficiency. In fact, by

increasing the number of data to 8 · 108, a value of B(0, 3
8π,

π
4 ,

π
8 ) = 2.834 ± 0.268 has

been obtained for N = .5, ϕ = π, and η as low as 65%. This result is to be compared

with the quantum theoretical value of 2
√

2.

Figure 4.8: Plot of B(α, β, α′, β′) vs the quantum efficiency of the detectors for a series of simulated

experiments. The shaded area represents the classical region for B. The parameters of the simulations

are: α = 0; β = 3
8
π; α′ = π

4
; β′ = π

8
; ϕ = π; N = .5. A total number of 6 · 107 homodyne data (in 20

statistical blocks) has been used for each simulation.

For an order of magnitude of the data acquisition rate in a real experiment, one

can consider that in a typical set-up with a NOPA pumped by a 2nd harmonic of a

Q-switched mode-locked Nd:YAG the pulse repetition rate is 80 MHz, with a 7 ps pulse

duration, the effective number of data depending on the speed of the boxcar integrator.

In Fig. 4.8 the results of the measurement of B, for different simulated experiments

using the same number of data, are presented for different detector efficiencies η. Notice

how the error bars decrease versus η.

The numerical results based on Monte–Carlo simulations confirm the feasibility

of the experiment, showing violations of Bell’s inequality for over 10 σ with detector

quantum efficiency η = 85%.
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4.5 Tomographic measurement of the nonclassicality of

radiation states

In the previous section we used homodyne tomography to check a particular kind of

nonclassical feature of quantum states, namely the quantum nonlocal correlations. As

we will show in this section, homodyne tomography allows to test more generally the

nonclassicality of radiation states, even when quantum efficiency at homodyne detectors

is rather low.

The concept of nonclassical states of light has drawn much attention in quantum

optics [141, 142, 143, 35, 5, 144, 145, 146, 147, 6, 148]. The customary definition of

nonclassicality is given in terms of the Glauber-Sudarshan P function: a nonclassical

state does not admit a regular positive P -function representation, namely, it cannot be

written as a statistical mixture of coherent states. Such states produce effects that have

no classical analogue. These kinds of states are of fundamental relevance not only for the

demonstration of the inadequacy of classical description, but also for applications, e.g.,

in the realms of information transmission and interferometric measurements [5, 144, 6].

Here we are interested in testing the nonclassicality of radiation states by means

of an operational criterion, which is based on a set of quantities that can be measured

experimentally with some given level of confidence, even in the presence of loss, noise,

and less-than-unity quantum efficiency [149]. The positivity of the P function itself

cannot be adopted as a test, since there is no method available to measure it. The

P function is a Fourier transform on the complex plane of the generating function for

the normal-ordered moments (see Appendix A). In principle, it could be recovered by

measuring all the quadrature components of the field, and subsequently performing

an (deconvolved) inverse Radon transform [150]. Currently, there is a well-established

quantitative method for such a universal homodyne measurement, and it is usually

referred to as quantum homodyne tomography (see Ref. [135] for a review). However,

as proven in Ref. [139], only the generalized Wigner functions of order s < 1− η−1 can

be measured, η being the quantum efficiency of homodyne detection. Hence, through

this technique, all functions from s = 1 to s = 0 cannot be recovered, i.e., we cannot

obtain the P function and all its smoothed convolutions up to the customary Wigner

function. For the same reason, the nonclassicality parameter proposed by Lee [146],

namely, the maximum s-parameter that provides a positive distribution, cannot be

experimentally measured.

Among the many manifestations of nonclassical effects, one finds squeezing, anti-

bunching, even-odd oscillations in the photon-number probability, and negativity of

the Wigner function [142, 143, 35, 5, 6, 3, 4, 26]. Any of these features alone, however,

does not represent the univocal criterion we are looking for. Neither squeezing nor anti-

bunching provides a necessary condition for nonclassicality [145]. The negativity of the
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Wigner function, which is well exhibited by the Fock states and the Schrödinger-cat-like

states, is absent for the squeezed states. As for the oscillations in the photon-number

probability, some even-odd oscillations can be simply obtained by using a statistical

mixture of coherent states [151].

Many authors [145, 147, 148] have adopted the nonpositivity of the phase-averaged

P function

F (I) =
1

2π

∫ 2π

0
dφP (I1/2eiφ) (4.70)

as the definition for a nonclassical state, since F (I) < 0 invalidates Mandel’s semiclas-

sical formula [141] of photon counting, i.e., it does not allow a classical description in

terms of a stochastic intensity. Of course, some states can exhibit a “weak” nonclas-

sicality [148], namely, a positive F (I), but with a non-positive P function (a relevant

example being a coherent state undergoing Kerr-type self-phase modulation). How-

ever, from the point of view of the detection theory, such “weak” nonclassical states

still admit a classical description in terms of having the intensity probability F (I) > 0.

For this reason, we adopt nonpositivity of F (I) as the definition of nonclassicality.

4.5.1 Single-mode nonclassicality

The authors of Refs. [145, 147, 148] have recognized relations between F (I) and gener-

alized moments of the photon distribution, which, in turn, can be used to test the non-

classicality. The problem is reduced to an infinite set of inequalities that provide both

necessary and sufficient conditions for nonclassicality [147]. In terms of the photon-

number probability p(n) = 〈n|%̂|n〉 of the state with density matrix %̂, the simplest

sufficient condition involves the following three-point relation for p(n) [147, 148]

B(n) ≡ (n+ 2)p(n)p(n + 2) − (n+ 1)[p(n + 1)]2 < 0 . (4.71)

Higher-order sufficient conditions involve five-, seven-, . . . , (2k + 1)-point relations,

always for adjacent values of n. It is sufficient that just one of these inequalities be

satisfied in order to assure the negativity of F (I). Notice that for a coherent state

B(n) = 0 identically for all n.

The relation in Eq. (4.71) can be easily obtained by considering the expression for

the number probability p(n) in terms of F (I)

p(n) = π

∫

dI F (I)
e−I In

n!
, (4.72)

and noticing that for a classical state with F (I) ≥ 0 the average of the polynomial

In(I − x)2 is nonnegative for any real value of x.

In the following we show that quantum tomography can be used as a powerful

tool for performing the nonclassicality test in Eq. (4.71). For less-than-unity quantum
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efficiency (η < 1), we rely on the concept of a “noisy state” %̂η, wherein the effect of

quantum efficiency is ascribed to the quantum state itself rather than to the detector.

In this model, the effect of quantum efficiency is treated in a Schrödinger-like picture,

with the state evolving from %̂ to %̂η, and with η playing the role of a time parameter.

Such lossy evolution is described by the master equation

∂t%̂(t) = ΓL[a]%̂(t) ≡ Γ

2

{

2a%̂(t)a† − a†a%̂(t) − %̂(t)a†a
}

, (4.73)

wherein %̂(t) ≡ %̂η with t = − ln η/Γ.

For the nonclassicality test, reconstruction in terms of the noisy state has many

advantages over the true-state reconstruction. In fact, for nonunit quantum efficiency

η < 1 the tomographic method introduces errors for p(n) which are increasingly large

versus n, with the additional limitation that quantum efficiency must be greater than

the minimum value η = 0.5 [140, 152]. On the other hand, the reconstruction of the

noisy-state probabilities pη(n) = 〈n|%̂η |n〉 does not suffer such limitations, and even

though all quantum features are certainly diminished in the noisy-state description,

nevertheless the effect of nonunit quantum efficiency does not change the sign of the P

function, but only rescales it as follows

P (z) → Pη(z) =
1

η
P (z/η1/2) . (4.74)

Hence, the inequality (4.71) still represents a sufficient condition for nonclassicality

when the original probabilities p(n) = 〈n|%̂|n〉 are replaced with the noisy-state proba-

bilities pη(n) = 〈n|%̂η|n〉, the latter being given by the Bernoulli convolution

pη(n) =

∞
∑

k=n

(

k

n

)

ηn(1 − η)k−np(k) . (4.75)

Hence, when referred to the noisy-state probabilities pη(n), the inequality in Eq. (4.71)

keeps its form and simply rewrites as follows

Bη(n) ≡ (n + 2)pη(n)pη(n+ 2) − (n+ 1)[pη(n+ 1)]2 < 0 . (4.76)

According to Eq. (4.76), the quantity Bη(n) is nonlinear in the density matrix. This

means that Bη(n) cannot be measured by averaging a suitable kernel function over the

homodyne data, as for any other observable [139]. Hence, in the evaluation of Bη(n)

one needs to reconstruct tomographically the photon-number probabilities, using the

kernel functions of Eq. (4.64) which are given explicitly by

K(n)
η (x) = 2κ2 e−κ2x2

n
∑

ν=0

(−)ν

ν!

(

n

n− ν

)

(2ν + 1)!κ2νRe {D−(2ν+2)(−2iκx)} , (4.77)
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Figure 4.9: Tomographic measurement of B(n) (dashed trace) with the respective error bars (su-

perimposed in grey-shade) along with the theoretical values (solid trace) for a Schrödinger-cat state

with average photon number n̄ = 5. The quantum efficiency is η = 0.8 and the number of simulated

experimental data used for the reconstruction is 107.

where Dσ(z) denotes the parabolic cylinder function and κ =
√

η/(2η − 1). The deriva-

tion of Eq. (4.77) can be found in Ref. [140]. The true-state probabilities p(n) are

obtained by averaging the kernel function in Eq. (4.77) over the homodyne data. On

the other hand, the noisy-state probabilities pη(n) are obtained by using the kernel

function in Eq. (4.77) for η = 1, namely without recovering the convolution effect of

nonunit quantum efficiency. Notice that the expression (4.77) does not depend on the

phase of the quadrature. Hence, the knowledge of the phase of the local oscillator in

the homodyne detector is not needed for the tomographic reconstruction, and it can be

left fluctuating in a real experiment.

Regarding the estimation of statistical errors, they are generally obtained by dividing

the set of homodyne data into blocks. However, as in the case of the Sec. 4.4, the

nonlinear dependence on the photon number probability introduces a systematic error

that is vanishingly small for increasingly larger sets of data. Therefore, the estimated

value of B(n) has been obtained from the full set of data, instead of averaging the mean

value of the different statistical blocks.

In Figs. 4.9–4.15 we present some numerical results that are obtained by a Monte–

Carlo simulation of a quantum tomography experiment. The nonclassicality criterion

is tested either on a Schrödinger-cat state |ψ(α)〉 ∝ (|α〉 + | − α〉) or on a squeezed

state |α, r〉 ≡ D(α)S(r)|0〉, wherein |α〉, D(α), and S(r) denote a coherent state with

amplitude α, the displacement operator D(α) = eαâ†−ᾱâ, and the squeezing operator

S(r) = er(â†2−â2)/2, respectively. Figs. 4.9–4.11 show tomographically-obtained values

of B(n), with the respective error bars superimposed, along with the theoretical values

for a Schrödinger-cat state, for a phase-squeezed state (r > 0), and for an amplitude-

squeezed state (r < 0), respectively. For the same set of states the results for Bη(n) [cf.
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Figure 4.10: Tomographic measurement of B(n) (dashed trace) with the respective error bars (super-

imposed in grey-shade) along with the theoretical values (solid trace) for a phase-squeezed state with

n̄ = 5 and n̄sq = sinh2 r = 3 squeezing photons. The quantum efficiency is η = 0.8 and 107 simulated

experimental data have been used for the reconstruction.

Eq. (4.76)] obtained by tomographic reconstruction of the noisy state are reported in

Figs. 4.12–4.14. Let us compare the statistical errors that affect the two measurements,

namely, those of B(n) and Bη(n) on the original and the noisy states, respectively.

In the first case (Figs. 4.9–4.11) the error increases with n, whereas in the second

(Figs. 4.12–4.14) it remains nearly constant, albeit with less marked oscillations in

Bη(n) than those in B(n). Fig. 4.15 shows tomographically-obtained values of Bη(n)

for the phase-squeezed state (cf. Fig. 4.13), but for a lower quantum efficiency η = 0.4.

Notice that, in spite of the low quantum efficiency, the nonclassicality of such a state is

still experimentally verifiable, as Bη(0) < 0 by more than five standard deviations. In

contrast, for coherent states one obtains small statistical fluctuations around zero for

all n. We remark that the simpler test of checking for antibunching or oscillations in

the photon-number probability in the case of the phase-squeezed state considered here

(Figs. 4.10, 4.13, and 4.15) would not reveal the nonclassical features of such a state.

4.5.2 Two-mode nonclassicality

Quantum homodyne tomography can also be employed to test the nonclassicality of

two-mode states. For a two-mode state nonclassicality is defined in terms of nonposi-

tivity of the following phase-averaged two-mode P -function [148]

F (I1, I2, φ) =
1

2π

∫ 2π

0
dφ1 P (I

1/2
1 eiφ1 , I

1/2
2 ei(φ1+φ)) . (4.78)

A sufficient condition for nonclassicality is found in Ref. [148] as the following

C = 〈(n̂1 − n̂2)2〉 − (〈n̂1 − n̂2〉)2 − 〈n̂1 + n̂2〉 < 0 , (4.79)
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Figure 4.11: Same as in Fig. 4.10, but for an amplitude-squeezed state.

Figure 4.12: Tomographic measurement of Bη(n) for a Schrödinger-cat state with n̄ = 5, degraded

by a quantum efficiency η = 0.8. The number of simulated experimental data is 107.

where n̂1 and n̂2 are the photon-number operators of the two modes.

A tomographic test of the inequality in Eq. (4.79) can be performed by averaging

the kernel functions for the operators in the ensemble averages in Eq. (4.79) over the

two-mode homodyne data. For the normal-ordered field operators one can use the

Richter formula in Ref. [153], namely

R[a†nam](x, φ) = ei(m−n)φ Hn+m(
√

2ηx)
√

(2η)n+m
(

n+m
n

) , (4.80)

Hn(x) denoting the Hermite polynomial and φ being the phase of the fields with respect

to the local oscillator of the homodyne detector. Again, as for the kernel function in

Eq. (4.77), the value η = 1 is used to reconstruct the ensemble averages of the noisy

state %̂η. Notice that for n = m Eq. (4.80) is independent on the phase φ, and hence no

phase knowledge is needed to reconstruct the ensemble averages in Eq. (4.79). As an
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Figure 4.13: Tomographic measurement of Bη(n) (dashed trace) with the respective error bars

(superimposed in grey-shade) along with the theoretical values (solid trace) for a phase-squeezed state,

which has n̄ = 5 and n̄sq = sinh2 r = 3 squeezing photons, and which has been degraded by a quantum

efficiency η = 0.8. For the reconstruction a sample of 107 simulated experimental data have been used.

example, we consider the twin-beam state at the output of a nondegenerate parametric

amplifier

|χ〉 ≡ (1 − |λ|2)

∞
∑

n=0

λn|n〉 ⊗ |n〉 , (4.81)

where |n〉⊗ |n〉 denotes the joint eigenvector of the number operators of the two modes

with equal eigenvalue n, and the parameter λ is related to the gain G of the amplifier

by the relation |λ|2 = 1 − G−1. The theoretical value of C for the state in Eq. (4.81)

is C = −2|λ|2/(1 − |λ|2) < 0. A tomographic reconstruction of the twin-beam state in

Eq. (4.81) is particularly facilitated by the self-homodyning scheme described in Sec.

4.4.1. With regard to the effect of quantum efficiency η < 1, the same argument still

holds as for the single-mode case: one can evaluate Cη for the twin-beam state that has

been degraded by the effect of loss. In this case, the theoretical value of Cη is simply

rescaled to Cη = −2η2|λ|2/(1 − |λ|2).

In Fig. 4.16 we report Cη vs. 1 − η, η ranging from 1 to 0.3 in steps of 0.05, for

the twin-beam state in Eq. (4.81) with |λ|2 = 0.5, corresponding to the total average

photon number equal to 2. The values of Cη result from a Monte–Carlo simulation of a

homodyne tomography experiment with a sample of 4× 105 data, using the theoretical

joint homodyne probability of the state |χ〉, namely the probability pη(x1, x2, φ1, φ2)

given by Eq. (4.67), φ1 and φ2 denoting the phases of the two modes relative to the

respective local oscillator. Notice that the nonclassicality test in terms of the noisy

state gives values of Cη that are increasingly near the classically positive region for

decreasing quantum efficiency η. However, the statistical error remains constant and is

sufficiently small to allow recognition of the nonclassicality of the twin-beam state in
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Figure 4.14: Same as in Fig. 4.13, but for an amplitude-squeezed state.

Figure 4.15: Same as in Fig. 4.13, but here for a quantum efficiency of η = 0.4, and a sample of

5 × 107 simulated experimental data.

Eq. (4.81) up to η = 0.3. As in the single-mode test, the tomographic reconstruction

does not need the knowledge of the phase of the local oscillator. We conclude that the

proposed nonclassicality test should be easy to perform experimentally.

4.6 Conclusion

In this chapter we have proposed several experimental set-ups in the realm of the

quantum theory of measurement.

We presented a quantum-optical scheme that realizes the standard von Neumann

model, a model for repeatable quantum measurements with controlled state-reduction.

Our scheme uses simple optical elements, like beam-splitters and squeezers. We have

seen that, contrarily to the customary modeling of repeatable measurements, there is
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Figure 4.16: Tomographic measurement of Cη as defined in Eq. (4.79) and modified by the quantum

efficiency for the twin-beam state in Eq. (4.81). The respective error bars are shown in the grey shade

and |λ|2 = 0.5 corresponding to an average of 2 total photons. The results are shown for various values

of the quantum efficiency η (in steps of 0.05) and for each value of η the number of simulated data is

4 × 105.

no need of working in a ultra-short pulsed regime. We have also shown how the precise

form of the state reduction can be engineered by means of a feedback mechanism that

uses a Pockels cell: we think that this method can be of use in more general situations,

for controlling the back-action of a quantum measurement.

Then we suggested a novel method to generate mesoscopic entangled superposition

of quantum states by stimulated down conversion. Our scheme has been inspired by

the quantum injection concept suggested in Ref. [124]. The setup relies on feeding a

non-degenerate parametric amplifier by a single-photon state, however making signal

and idler paths indistinguishable. We analyzed the full amplification process taking into

account the effects of cavity losses. The main result is the appearance of mesoscopic

quantum superpositions for the amplifier working well above threshold and with a short

interaction time. The entanglement is shared by a couple of spatially separated field

modes. The resulting superposition turns out to be robust against decoherence and

can be revealed by a simple interference measurement.

The last two experimental set-ups are based on quantum homodyne tomography.

We proposed a test of Bell’s inequality, based on self–homodyne tomography. The

rather simple experimental apparatus is mainly composed of a nondegenerate opti-

cal parametric amplifier and four photodiodes. The experimental data are collected

through a self–homodyne scheme and processed by quantum tomography. No supple-

mentary hypotheses are introduced, a quantum efficiency η as high as 90% is currently

available, and, anyway, η as low as 70% is tolerated for 106 ÷ 107 experimental data.

The numerical results based on Monte–Carlo simulations confirm the feasibility of the

experiment, showing violations of Bell’s inequality for over 10 σ with detector quantum
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efficiency η = 85%. More generally, quantum homodyne tomography allows one to

perform nonclassicality tests that invalidate Mandel’s semiclassical formula of photon

counting for various single- and two-mode radiation states, even when the quantum

efficiency of homodyne detection is rather low. The method involves reconstruction

of the photon-number probability or of some suitable function of the number opera-

tors pertaining to the noisy state, namely, the state degraded by the less-than-unity

quantum efficiency. The noisy-state reconstruction is affected by the statistical errors;

however, they are sufficiently small that the nonclassicality of the state can be tested

even for low values of η. For the cases considered in this chapter, we have shown that

the nonclassicality of the states can be proven (deviation from classicality by many

error bars) with 105–107 homodyne data.





Conclusions

In this thesis we have shown many different applications of the parametric amplifi-

cation of light through nonlinear media in the realm of quantum communication and

measurement. The very wide spectrum of such applications proves that it is worth

making many efforts to improve the effectiveness of parametric processes and the effi-

ciency of quantum measurements. In fact, the generation of states of light with tunable

nonclassical features is a crucial requirement to improve both the sensitivity in inter-

ferometric devices and the capacity in optical communication channels, with respect to

the classical performances.

The theoretical treatment of parametric processes in nonlinear media is usually

drawn within the parametric approximation by replacing one or more bosonic modes

with c-numbers representing classical undepleted pumps. We discussed thoroughly the

validity of such approximation in Chap. 1. We showed that the regime of validity

of the parametric approximation is very large, including also the case of weak pump

with 1÷ 10 mean photon number. We found that the degree of coherence of the pump

after the interaction rather than its undepletion discriminates the working regimes of

parametric amplifiers. In terms of the pump Fano factor we found that a deviation from

the coherent level smaller than 10% guarantees an overlap larger than 99% between

the states predicted within the parametric approximation and those evaluated by the

exact Hamiltonian.

As shown in Chap. 2, the parametric amplification of light is effective in generat-

ing radiation states with good phase properties for interferometric and communication

purposes. We found an interaction scheme to generate the phase-coherent states by

nonlinear χ(2) media. The scheme is based on spontaneous parametric downconversion

followed by upconversion of the resulting twin beam. Among the single-mode radia-

tion states, the phase-coherent states are optimal phase states for both the Süssmann

and the reciprocal peak likelihood measure of phase uncertainty. Moreover, they main-

tain phase coherence under phase amplification such that they are privileged states for

phase-based communication channels. The second proposal of Chap. 2 is an experi-

mental scheme for the generation of two-mode states that approach the eigenstates of
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the heterodyne detector. These states are essentially generated by parametric down-

conversion of coherent sources, and are shown to achieve the ideal phase sensitivity

(inversely proportional to the mean photon number). We addressed more generally the

problem of the phase measurement in the realm of estimation theory, along with the

derivation of the optimal positive operator-valued measure and the optimal input state.

The application of parametric processes for quantum optical communication chan-

nel has been the subject of Chap. 3. First of all we considered the effect of loss on the

communication channels based on heterodyne detection of coherent states, on homo-

dyne detection of squeezed states and on direct detection of Fock states, and optimized

the a priori probability in the presence of loss. Then, with regard to the generation

of the squeezed states and the number states involved in the nonclassical channels, we

suggested the following solution. One one hand, we showed the equivalence between

a couple of customary squeezed-state channels and a more easily achievable commu-

nication channel based on the two-mode heterodyne states we introduced in Chap. 1.

On the other hand, we presented an experimental scheme to synthesize number states

(and also superpositions of number states) through a ring cavity coupled to a coherent

traveling wave by a cross-Kerr medium.

Parametric interactions deserve some attention also for their promising possibili-

ties to allow a number of fundamental tests of Quantum Mechanics. We proposed the

following experimental tests in Chap. 4. An optical scheme that realizes von Neu-

mann’s measurement model for the position of a particle, with tunable Gaussian state

reduction. A method to generate mesoscopic quantum superpositions by parametric

amplification of the path indistinguishability of a single-photon state. A tomographic

test of Bell’s inequality on correlated optical beams at the output of a nondegenerate

parametric amplifier. Finally, a nonclassicality test based on homodyne tomography

that discriminates classical radiation from states that invalidates Mandel’s semiclassical

formula of photon counting.



Appendix A

Trace formula for generalized

Wigner functions

A.1 Introduction

In this appendix we derive simple formulas connecting the generalized Wigner functions

for s-ordering with the density matrix, and vice-versa. These formulas proved very

useful for quantum mechanical applications, as, for example, for connecting master

equations with Fokker-Planck equations, or for evaluating the quantum state from

Monte Carlo simulations of Fokker-Planck equations, and finally for studying positivity

of the generalized Wigner functions in the complex plane [154].

Since Wigner’s pioneering work [155], generalized phase-space techniques have prov-

ed very useful in various branches of physics [156]. As a method for expressing the

density operator in terms of c-number functions, the Wigner functions often lead to

considerable simplification of the quantum equations of motion, as for example, trans-

forming operator master equations into more amenable Fokker-Planck differential equa-

tions (see, for example, Ref. [95]). By the Wigner function one can express quantum-

mechanical expectation values in form of averages over the complex plane (the classical

phase-space), the Wigner function playing the role of a c-number quasi-probability

distribution, which generally can also have negative values. More precisely, the orig-

inal Wigner function allows to easily evaluate expectations of symmetrically ordered

products of the field operators, corresponding to the Weyl’s quantization procedure

[157]. However, with a slight change of the original definition, one defines generalized

s-ordered Wigner function Ws(α, α), as follows [158]

Ws(α, α)
.
=

∫

d2λ

π2
eαλ−αλ+ s

2
|λ|2Tr[D(λ)%̂] (A.1)

where the integral is performed on the complex plane with measure d2λ = dReλ dImλ,

D(α) = eαa†−αa denotes the displacement operator, and a and a† ([a, a†] = 1) are
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the annihilation and creation operators of the field mode of interest. Then, using the

Wigner function in Eq. (A.1) one can evaluate s-ordered expectation values of the field

operators through the following relation

Tr[:(a†)nam:s%̂] =

∫

d2αWs(α, α)αnαm . (A.2)

It is easy to show that the particular cases s = −1, 0, 1 lead to antinormal, symmetri-

cal, and normal ordering, respectively, in which cases the generalized Wigner function

Ws(α, α) historically was denoted with the following symbols and names

Ws(α, α) =











1
πQ(α, α) for s=-1 “Q function”

W (α, α) for s=0 (usual Wigner function)

P (α, α) for s=1 “P function”

(A.3)

For the normal (s = 1) and antinormal (s = −1) orderings, the following two simple

relations between the generalized Wigner function and the density matrix are well

known

Q(α, α) ≡ 〈α|%̂|α〉 , (A.4)

%̂ =

∫

d2αP (α, α) |α〉〈α| , (A.5)

where |α〉 denotes the customary coherent state |α〉 = D(α)|0〉, |0〉 being the vacuum

state of the field. Among the three particular representations (A.3), it is also well

known that the Q function is positively definite and infinitely differentiable (it actually

represents the probability distribution for ideal joint measurements of position and

momentum of the harmonic oscillator: see, for example, Ref. [34]). On the other hand,

the P function is known to be possibly highly singular, and the only pure states for

which it is positive are the coherent states [159]. Finally, the usual Wigner function has

the remarkable property of providing the probability distributions of the quadratures

of the field in form of marginal distributions, namely
∫

dImαW (αeiφ, αe−iφ) = φ〈Reα|%̂|Reα〉φ , (A.6)

where |x〉φ stands for the eigenstates of the field quadrature X̂φ = (a†eiφ + h.c.)/2 (any

couple of conjugated quadratures X̂φ, X̂φ+π/2, with [X̂φ, X̂φ+π/2] = i/2, are equivalent

to the position and momentum of a harmonic oscillator). Usually, negative values of

the Wigner function are viewed as signature of a nonclassical state (one of the more

eloquent examples is given by the Schrödinger-cat states [70] whose Wigner function is

characterized by rapid oscillations around the origin of the complex plane). From Eq.

(A.1) one can see that all s-ordered Wigner functions are related to each other through

the convolution relation

Ws(α, α) =

∫

d2βWs′(β, β)
2

π(s′ − s)
exp

(

− 2

s′ − s
|α− β|2

)

(A.7)



A.2 Three equivalent trace forms 123

= exp

(

s′ − s

2

∂2

∂α∂α

)

Ws′(α, α) , (s′ > s) . (A.8)

Equation (A.7) shows the positiveness of the generalized Wigner function for s < −1,

as a consequence of the positiveness of the Q function. From a qualitative point of

view, the maximum value of s keeping the generalized Wigner functions as positive can

be considered as an indication of the classical nature of the physical state.

A.2 Three equivalent trace forms

In the following we derive three equivalent trace forms that connect s-ordered Wigner

functions with the density matrix, namely the identities

Ws(α, α) =
2

π(1 − s)
e−

2
1−s

|α|2Tr

[

(

s+ 1

s− 1

)a†a

e
2

1−s
αa%̂e

2
1−s

αa†
]

, (A.9)

=
2

π(1 − s)
e

2
1+s

|α|2Tr

[

(

s+ 1

s− 1

)a†a

e−
2

1+s
αa†

%̂e−
2

1+s
αa

]

, (A.10)

=
2

π(1 − s)
e
− 2s

1−s2
|α|2

Tr

[

(

s+ 1

1 − s

) 1
2
a†a

D

(

2α√
1 − s2

)(

s+ 1

1 − s

) 1
2
a†a

(−)a†a%̂

]

. (A.11)

Equations (A.9-A.10) can be compared with the Cahill-Glauber formula [158]

Ws(α, α) =
2

π(1 − s)
Tr

{

: exp

[

− 2

1 − s
(α − a†)(α− a)

]

:%̂

}

, (A.12)

where the colons denote the usual normal ordering; Eq. (A.11) represents a generaliza-

tion of the formula [160]

W (α, α) =
2

π
Tr
[

%̂D(2α) exp(iπa†a)
]

. (A.13)

Vice versa, the density matrix can be recovered from the generalized Wigner func-

tions using the following expression

%̂=
2

1 + s

∫

d2αWs(α, α)e−
2

1+s
|α|2 exp

(

2α

1 + s
a†
)(

s− 1

s+ 1

)a†a

exp

(

2α

1 + s
a

)

. (A.14)

The proof of our statements requires the following identity

ea
†∂α |0〉〈0|ea∂α

∣

∣

∣

∣

∣

α=α=0

e|α|
2+αλ−αλ− 1

2
|λ|2 = D(λ) , (A.15)

which is proved at the end of this section. Then, through the following steps:

Ws(α, α) =

∫

d2λ

π2
eαλ−αλ+ s

2
|λ|2Tr[D(λ)%̂]
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=

∫

d2λ

π2
eαλ−αλTr

[

ea
†∂β |0〉〈0|ea∂β %̂

]

∣

∣

∣

∣

∣

β=β=0

e|β|
2+βλ−βλ+ 1

2
(s−1)|λ|2

=
2

π(1 − s)
Tr
[

ea
†∂β |0〉〈0|ea∂β %̂

]

∣

∣

∣

∣

∣

β=β=0

e−
1+s
1−s

|β|2− 2
1−s

(|α|2−αβ−αβ)

=
2

π(1 − s)
e−

2
1−s

|α|2Tr

[

e
2

1−s
αa†
(

−1 + s

1 − s

)a†a

e
2

1−s
αa%̂

]

,

one proves Eq. (A.9). Continuing from the last result we have

Ws(α, α) =
2

π(1 − s)
e−

2
1−s

|α|2 ×

Tr

[

(

1 + s

1 − s

) 1
2
a†a(1 − s

1 + s

) 1
2
a†a

e
2

1−s
αa†
(

−1 + s

1 − s

)a†a

e
2

1−s
αa

(

1 − s

1 + s

) 1
2
a†a(1 + s

1 − s

) 1
2
a†a

%̂

]

=
2

π(1 − s)
e−

2
1−s

|α|2Tr

[

(

1 + s

1 − s

)
1
2
a†a

e
2√

1−s2
αa†

(−)a†ae
2√

1−s2
αa
(

1 + s

1 − s

)
1
2
a†a

%̂

]

=
2

π(1 − s)
e
− 2s

1−s2
|α|2

Tr

[

(

1 + s

1 − s

) 1
2
a†a

D

(

2α√
1 − s2

)(

1 + s

1 − s

) 1
2
a†a

(−)a†a%̂

]

,

which proves Eq. (A.11). Equation (A.10) is derived from the following identities

e
2α
1−s

a†
(

s+ 1

s− 1

)a†a

e
2α
1−s

a =

(

s+ 1

s− 1

)a†a

e−
2α
1+s

a†
e

2α
1−s

a ,

e
4|α|2
1−s2

(

s+ 1

s− 1

)a†a

e
2α
1−s

ae−
2α
1+s

a†
= e

4|α|2
1−s2 e−

2α
1+s

a

(

s+ 1

s− 1

)a†a

e−
2α
1+s

a†
.

As a check, from Eqs. (A.9-A.11) one can easily recover the usual definition of the

Wigner function (A.1) for s = 0, and Eq. (A.4) for the Q function (s = −1), namely

W−1(α, α) =
1

π
e−|α|2Tr

[

(−O+)a†aeαa%̂eαa†
]

=
1

π
e−|α|2Tr

[

|0〉〈0|eαa%̂eαa†
]

=
1

π
Q(α, α) .

The inversion formula (A.14) is obtained using Eq. (A.11) and the following formula

[158]

Ô =

∫

d2α

π
Tr[ÔD(α)]D†(α) , (A.16)

that holds true for any Hilbert-Schmidt operator Ô, and hence for a (trace-class) density

matrix. One has

(

s+ 1

1 − s

)
1
2
a†a

(−)a†a%̂

(

s+ 1

1 − s

)
1
2
a†a
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=

∫

d2α

π
Tr

[

D(α)

(

s+ 1

1 − s

)
1
2
a†a

(−)a†a%̂

(

s+ 1

1 − s

)
1
2
a†a
]

D†(α)

=
4

1 − s2

∫

d2α

π
Ws(α, α)

π(1 − s)

2
e

2s
1−s2

|α|2
D†
(

2α√
1 − s2

)

. (A.17)

Hence,

%̂ =
2

1 + s

∫

d2αWs(α, α)e
2s

1−s2
|α|2
(

1 − s

1 + s

)
1
2
a†a

(−)a†aD†
(

2α√
1 − s2

)(

1 − s

1 + s

)
1
2
a†a

=
2

1 + s

∫

d2αWs(α, α)e−
2

1+s
|α|2
(

1 − s

1 + s

) 1
2
a†a

e
2α√
1−s2

a†
(−)a†ae

2α√
1−s2

a
(

1 − s

1 + s

) 1
2
a†a

,

and then the result follows easily. In particular, for s = 0 one has the inverse of the

Glauber formula

%̂ = 2

∫

d2αW (α, α)D(2α)(−)a†a , (A.18)

whereas for s = 1 one recovers the relation (A.5) that defines the P function.

The trace form of Eqs.(A.9-A.10-A.11) can be used for an analysis of positivity

of the Wigner function, usually a quite difficult task, as confirmed in Ref. [161]. In

particular, from Eq. (A.9) one can immediately see that for s < 1 (namely, with the only

exception of the P function) the s-Wigner function can become negative, because the

operator e
2

1−s
αa%̂e

2
1−s

αa†
is positive-definite, whereas the preceding factor

(

s+1
s−1

)a†a
is

negative for s < 1, and positivity is guaranteed only for products of positive operators.

On the other hand, from Eq. (A.11) one can easily see that there is always a state

(the eigenstate of a†a with odd eigenvalue) that makes the s-Wigner function at α = 0

negative for s < 0.

A.3 Differential Wigner representations

The representations (A.9,A.10) for the generalized Wigner functions also provide the

easiest way to derive differential representations for boson operators acting on a density

matrix. By defining, analogously to Eq. (A.1), the generalized Wigner symbol for any

operator Ô,

Ws(α, α|Ô)
.
=

∫

d2λ

π2
eαλ−αλ+ s

2
|λ|2Tr[D(λ)Ô] , (A.19)

from Eqs. (A.9,A.10) one immediately derives the relations

Ws(α, α|a%̂) = e−
2

1−s
|α|2 1 − s

2
∂α e

2
1−s

|α|2Ws(α, α) ,

=

(

α +
1 − s

2
∂α

)

Ws(α, α) (A.20)
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Ws(α, α|a†%̂) = e
2

1+s
|α|2
(

−1 + s

2
∂α

)

e−
2

1+s
|α|2Ws(α, α)

=

(

α− 1 + s

2
∂α

)

Ws(α, α) , (A.21)

and analogous relations for right multiplication by the boson operator. More generally,

one can write a differential representation for any super-operator—i.e. right or left

multiplication by an operator Ô—namely

Ws(α, α|Ô%̂)
.
= Fs[Ô·]Ws(α, α) , Ws(α, α|%̂Ô)

.
= Fs[·Ô]Ws(α, α) , (A.22)

where Ô· and ·Ô denote left and right multiplication by the operator Ô, respectively,

and Fs are differential forms functions of α, α, ∂α and ∂α with the following properties

Fs[Ô1Ô2·] = Fs[Ô1·]Fs[Ô2·] , (A.23)

Fs[·Ô1Ô2] = Fs[·Ô2]Fs[·Ô1] . (A.24)

[Fs[·Ô1], Fs[Ô2·]] = 0 , (A.25)

Fs[·Ô] = F s[Ô†·] . (A.26)

The functional forms of the basic super-operators are summarized in Table A.1. The

representations of ·a† and ·a can be easily obtained from those of a· and a†· using

identities (A.26). Eq. (A.25) is just the obvious statement that “left multiplication

commutes with right multiplication” (for a and a† this corresponds to the identity

[∂α + κα, ∂α + κα] = 0). Then, the differential representation of higher-order super-

Super-operator Fs

a· α+ 1−s
2 ∂α

a†· α− 1+s
2 ∂α

·a α− 1+s
2 ∂α

·a† α+ 1−s
2 ∂α

a · a† |α|2 + 1−s
2 (1 + α∂α + α∂α) +

(

1−s
2

)2
∂αα

a† · a |α|2 − 1+s
2 (1 + α∂α + α∂α) +

(

1+s
2

)2
∂αα

a†a· |α|2 + 1
2 [(1 − s)α∂α − (1 + s)α∂α − (1 + s) − 1

2(1 − s2)∂αα]

·a†a |α|2 + 1
2 [(1 − s)α∂α − (1 + s)α∂α − (1 + s) − 1

2(1 − s2)∂αα]

Table A.1: Differential Wigner representation of some super-operators

operators is easily obtained from the composition rules (A.23) and (A.24).

Using the differential representation for Bose super-operators, one can convert mas-

ter equations into (possibly high order) Fokker-Planck equations. For example, the
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master equation of the damped harmonic oscillator (damping coefficient γ and thermal

photons n̄)

∂t%̂ = −γ
2

(n̄+ 1)(a†a%̂+ %̂a†a− 2a%̂a†) − γ

2
n̄(aa†%̂+ %̂aa† − 2a†%̂a) , (A.27)

can be converted into the equivalent Fokker-Planck equation for the s-ordered Wigner

function

∂tWs(α, α) =
γ

2
[∂αα + ∂αα + (2n̄+ 1 − s)∂αα]Ws(α, α) . (A.28)

In order to solve Fokker-Planck equations, one can use very efficient Monte-Carlo Green-

function simulation methods (see, for example, Ref. [162]), choosing the parameter s

such that both the Wigner function and the diffusion coefficient remain positive during

the evolution. Then, from the inversion Eq. (A.14) one can recover the matrix elements

〈n|%̂|m〉 of the operator %̂ in form of Monte-Carlo integrals of Laguerre polynomials.

In conclusion, we have presented simple trace formulas that connect the generalized

Wigner functions with the density matrix, and vice-versa, and we have shown how

they can be practically used for: i) studying positivity of the generalized Wigner func-

tions; ii) connecting master equations with Fokker-Planck equations; iii) evaluating the

quantum state in Monte Carlo simulations of Fokker-Planck equations.

Proof of identity (A.15)

From the relation

∂n
α∂

m
α

∣

∣

∣

∣

∣

α=α=0

e|α|
2

= δnmn! , (A.29)

one has

ea
†∂α |0〉〈0|ea∂α

∣

∣

∣

∣

∣

α=α=0

e|α|
2

=

∞
∑

n,m=0

(a†)n|0〉〈0|am ∂
n
α∂

m
α

n!m!

∣

∣

∣

∣

∣

α=α=0

e|α|
2

=
∞
∑

n=0

(a†)n|0〉〈0|an 1

n!
=

∞
∑

n=0

|n〉〈n| = 1̂ . (A.30)

Hence, using the identities

ea
†∂αeαλ = eλ(a†+α)ea

†∂α , ea∂αe−αλ = e−λ(a+α)ea∂α , (A.31)

one obtains

ea
†∂α |0〉〈0|ea∂α

∣

∣

∣

∣

∣

α=α=0

e|α|
2+αλ−αλ− 1

2
|λ|2

= e−
1
2
|λ|2eαλ−αλea

†λea
†∂α |0〉〈0|ea∂α

∣

∣

∣

∣

∣

α=α=0

e|α|
2
e−λa

= e−
1
2
|λ|2ea

†λe−aλ = D(λ) . (A.32)





Appendix B

On the correspondence between

classical and quantum

measurements

B.1 Introduction

In the standard formulation of Quantum Mechanics an abstract concept of physical

observable is formulated in terms of real eigenvalues and sharp probability distributions,

which leads to the well known correspondence between observables and self-adjoint

operators on the Hilbert space [106]. A natural extension of this formulation is based on

the general concept of positive operator-valued measure (POM) [163, 47], which allows

the description of joint measurements of non-commuting observables, with generally

complex eigenvalues and probability distributions that are not sharp for any quantum

state. From an operational point of view, however, we have no prescription on how

to achieve the ideal quantum measurement (i.e. with minimum noise) of a generic

operator, and the problem of finding a universal detector is still an open one. Quantum

homodyne tomography—the only known method for measuring the state itself of the

field—can also be regarded as a kind of universal detection [139], however it is far from

being ideal, due to the occurrence of statistical measurement errors that are intrinsic

of the method.

In this appendix we study the possibility of achieving the ideal measurement of an

observable Ô = Ô(a, a†) of one mode of the electromagnetic field by means of a fixed

detection scheme—the heterodyne detector—after ideal preamplification Ô → gÔ of

the observable Ô, g denoting the amplifier gain, seeking a connection between the

problem of measuring Ô and that of amplifying Ô ideally. As heterodyne detection

corresponds to the ideal joint measurement of the canonical pair q̂ = 1
2(a† + a) and

p̂ = i
2(a† − a) of a harmonic oscillator in the phase space, in this way we also try to set

129
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a link between classical and quantum measurements. We will give a necessary and suf-

ficient condition that establishes when the preamplified-heterodyne detection scheme

approaches the ideal quantum measurement of Ô in the limit of infinite gain. We show

that such condition is satisfied for the photon number operator a†a—corresponding to

the function f(α, ᾱ) = |α|2 of the heterodyne outcome α ∈ C—and for the quadrature

operator X̂φ = (a† eiφ +a e−iφ)/2—corresponding to the function f(α, ᾱ) = Re(αe−iφ).

For the photon number operator a†a the amplification scheme also achieves the tran-

sition from the continuous spectrum |α|2 ∈ R to the discrete spectrum Sa†a ≡ N of

a†a. Moreover, for both operators a†a and X̂φ the method is also robust to nonunit

quantum efficiency of the heterodyne detector. On the other hand, we will see that the

preamplified-heterodyne scheme does not work for arbitrary observable of the field. As

a counterexample, we show that, unexpectedly, the simple quadratic function of the

field K̂ = i(a†2 − a2)/2 has no corresponding polynomial function f(α, ᾱ)—including

the obvious choice f = Im(α2)—which allows the measurement of K̂ through the

preamplified-heterodyne measurement scheme.

B.2 Heterodyne detection

In the following we derive the POM of the heterodyne measurement of a function f of

the field, for generally nonunit quantum efficiency.

Heterodyne detection corresponds to measuring the complex field Ẑ = a + b†, a

and b denoting the signal and the image-band modes of the detector, respectively.

The measurement is an exact joint measurement of the commuting observables Re Ẑ

and Im Ẑ, but can also be regarded as the joint measurement of the non commuting

operators Rea and Ima, by considering the image-band mode in the vacuum state. In

this way the vacuum fluctuations of b introduce an additional 3dB noise, which can be

proved to be the minimum added noise in an ideal joint measurement of a conjugated

pair of non commuting observables [66].

The probability density in the complex plane p(α, ᾱ) for heterodyne detection is

given by the Fourier transform of the generating function of the moments of Ẑ, namely

p(α, ᾱ) =

∫

d2λ

π2
〈eλẐ†−λ̄Ẑ〉 eλ̄α−λᾱ .

= 〈δ(2)(α− Ẑ)〉 , (B.1)

where the overbar denotes the complex conjugate, d2λ = dReλ dImλ, 〈. . .〉 represents

the ensemble quantum average on both signal and image-band modes, and δ (2)(α) is

the Dirac delta-function in the complex plane. The partial trace over the image-band

mode in Eq. (B.1) can be evaluated as follows

〈eλẐ†−λ̄Ẑ〉 = Tra

[

%̂D̂a(λ)
]

b〈0|D̂b(−λ̄)|0〉b = Tra

[

%̂D̂a(λ)
]

e−
1
2
|λ|2

.
= Tra

[

%̂:D̂a(λ):A

]

, (B.2)
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where D̂(α) = exp(αa† − ᾱa) denotes the displacement operator (D̂a for mode a and

D̂b for mode b), |0〉b represents the vacuum for mode b only, %̂ is the density matrix for

the signal mode, and : :A denotes anti-normal ordering. The probability density vs the

outcome α is given by

d2αp(α, ᾱ) = Tr [%̂ dµ̂(α, ᾱ)] , (B.3)

where POM dµ̂(α, ᾱ) can be written as follows

dµ̂(α, ᾱ) = d2α

∫

d2λ

π2
eλ̄α−λᾱ :D̂(λ):A

= d2α

∫

d2β

π

∫

d2λ

π2
eλ̄(α−β)−λ(ᾱ−β̄) |β〉〈β|

=
d2α

π
|α〉〈α| .= d2α :δ(2)(α− a):A , (B.4)

using the resolution of the identity in terms of coherent states 1̂ =
∫ d2β

π |β〉〈β|.
In a “classical” measurement of the function w = f(α, ᾱ) on the phase space, one

evaluates the function f of the outcome α of the complex photocurrent Ẑ. Correspond-

ingly, the probability distribution of w is given by the marginal probability density

p(w) =

∫

d2αp(α, ᾱ) δ(w − f(α, ᾱ)) . (B.5)

The POM dĤf (w) that provides such probability density is the marginal POM of

dµ̂(α, ᾱ), and can be written as follows

dĤf (w) = dw

∫

dµ̂(α, ᾱ) δ(w − f(α, ᾱ)) = dw :δ(w − f(a, a†)):A . (B.6)

In this way one has a correspondence rule between POM’s dĤf (w) and classical ob-

servables w = f(α, ᾱ) on the phase space α ∈ C.

The quantum efficiency η of the heterodyne detector can be taken into account

by introducing auxiliary vacuum field modes for both the signal and the idler, and

by rescaling the output photocurrent by an additional factor η1/2. The overall effect

resorts to a Gaussian convolution of the ideal POM with variance ∆2
η = (1 − η)/η.

Then, the POM in Eq. (B.6) rewrites

dĤf (w) = dw Γ 1−η
η

[

:δ(w − f(a, a†)):A
]

, (B.7)

where Γσ2 denotes the completely positive (CP) map that describes the effect of addi-

tional Gaussian noise of variance σ2, namely

Γσ2 [Â] =

∫

d2β

πσ2
e−

|β|2
σ2 D̂(β)ÂD̂†(β) , (B.8)

for any operator Â. We do not know a priori if the measurement described by the

POM in Eq. (B.6) or (B.7) corresponds to an approximate quantum measurement of
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some observable of the field. We can argue that, for example, for f(α, ᾱ) = |α|2 the

measurement would approximate the ideal detection of the number of photons a†a.

In the following we give a necessary and sufficient condition to establish when the

heterodyne POM dĤf (w) approaches the ideal quantum measurement of an observable

Ô by preamplifying the heterodyne through an ideal amplifier of Ô in the limit of

infinite amplifier gain. In the following section we introduce the general concept of

ideal amplification of an observable, and prove that it can be always achieved by a

unitary transformation.

B.3 Ideal amplification of quantum observables

For a given selfadjoint operator Ŵ , the ideal amplifier of Ŵ is a device that achieves

the transformation

A(Ŵ )
g (Ŵ ) = gŴ , (B.9)

where g > 1 denotes the gain of the amplifier. The transformation (B.9) is to be

regarded as the Heisenberg-picture evolution of the field throughout the device when

the transformation is applied to Ŵ . If the spectrum SŴ of Ŵ is SŴ = R or SŴ = R
+,

the evolution A(Ŵ )
g can be written as follows

A(Ŵ )
g (|w〉〈w|) = g−1|g−1w〉〈g−1w| , (B.10)

where |w〉 denotes the eigenvector of Ŵ pertaining to the eigenvalue w ∈ SŴ . The

corresponding Schrödinger-picture of the evolution (B.10) is given by the dual map

A∨(Ŵ )
g (|w〉〈w|) = g|gw〉〈gw| , (B.11)

where |w〉 now has to be regarded as a (Dirac-sense) normalized state vector. For

integer spectrum SŴ = N or SŴ = Z Eq. (B.10) rewrites as follows

A(Ŵ )
g (|n〉〈n|) = |g−1n〉〈g−1n|χ � (g−1n) , (B.12)

where χ � (x) is the characteristic function on integers, namely χ � (x) = 1 for x ∈ Z,

χ � (x) = 0 otherwise. It is easy to check that both Eq. (B.10) and (B.12) imply Eq.

(B.9). In the following we will consider only the cases of spectra SŴ = R, R
+, N, Z, as

these are the only ones that are left invariant under amplification, i.e. gSŴ ⊂ SŴ (this

will exclude, for example, the case of phase amplification). Moreover, for the sake of

notation, if not explicitly written, we will assume SŴ = R.

Among all possible extensions of the amplification map (B.11) to all state vectors,

the following ones are physically meaningful

A∨(Ŵ )
g (|w〉〈w′|) = g|gw〉〈gw′ | , (B.13)

A∨(Ŵ )
g (|w〉〈w′|) = g|gw〉〈gw′ |δ(w − w′) . (B.14)



B.3 Ideal amplification of quantum observables 133

In fact, both maps in Eqs. (B.13) and (B.14) are linear normal completely positive

(CP) maps, and hence they can be realized through a unitary transformations on an

extended Hilbert space [164]. The proof runs as follows. The map A is completely

positive normal if and only if one has

n
∑

i,j=1

〈ξi|A∨(|ηi〉〈ηj |)|ξj〉 ≥ 0 (B.15)

for all finite sequence of vectors {|ηi〉} and {|ξi〉}. Upon expanding |ηi〉 and |ξi〉 on the

orthonormal basis {|w〉}, for the map (B.13) one has

n
∑

i,j=1

〈ξi|A∨(Ŵ )
g (|ηi〉〈ηj |)|ξj〉

= g

∫

dw1 dw2 dw3 dw4 〈w1|gw2〉〈gw3|w4〉
n
∑

i,j=1

ξ̄i(w1)ηi(w2)η̄j(w3)ξj(w4)

= g

∣

∣

∣

∣

∣

n
∑

i=1

∫

dw dw′〈w|gw′〉ξ̄i(w)ηi(w
′)

∣

∣

∣

∣

∣

2

≥ 0 , (B.16)

whereas for the map (B.14) one has

n
∑

i,j=1

〈ξi|A∨(Ŵ )
g (|ηi〉〈ηj |)|ξj〉

= g

∫ +∞

−∞

dλ

2π

∣

∣

∣

∣

∣

n
∑

i=1

∫

dw dw′〈w|gw′〉ξ̄i(w)ηi(w
′)eiλw′

∣

∣

∣

∣

∣

2

≥ 0 . (B.17)

In the Schrödinger picture the two maps (B.13) and (B.14) are achieved by the

following unitary transformations in an extended Hilbert space

Ûg|w〉 ⊗ |ψ〉 = g
1
2 |gw〉 ⊗ |ψ′〉 (B.18)

Ûg|w〉 ⊗ |ψ〉 = g
1
2 |gw〉 ⊗ |ψ′(w)〉 . (B.19)

with 〈ψ′(w1)|ψ′(w2)〉 = δ(w1−w2). Eqs. (B.13) and (B.14) are obtained by Eqs. (B.18)

and (B.19) when the evolution is viewed as restricted to the signal mode only, namely

A∨(Ŵ )
g (%̂) = 〈ψ|Ûg%̂⊗ 1Û †

g |ψ〉 . (B.20)

We name the device corresponding to Eq. (B.18) an ideal coherence-preserving quantum

amplifier of Ŵ , because it achieves the ideal amplification of Ŵ without measuring

Ŵ (ψ′ does not depend on w; for ψ′ = ψ the device is “passive”). On the other

hand, the transformation (B.19) achieves the ideal amplification of Ŵ by measuring

Ŵ , then performing the processing w → gw, and finally preparing the state |gw〉. The

measurement stage is the one which is responsible for the vanishing of all off-diagonal
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elements in Eq. (B.14). (Eq. (B.20) together with Eq. (B.18) and (B.19) imply Eqs.

(B.13) and (B.14) also for a nonorthogonal set {|w〉}, however, generally not when

〈ψ′
A(w2)|ψ′

A(w1)〉 6= 0 for w1 6= w2). Since we want to exploit the ideal amplification

of Ŵ in order to achieve its ideal quantum measurement, we will consider only the

coherence-preserving quantum amplification in Eq. (B.13) or (B.18), since the other

kind of amplifier needs by itself the ideal measurement of Ŵ .

B.4 Approaching ideal quantum measurements by pream-

plified heterodyning

Let dĤf (u) be the POM pertaining to the heterodyne measurement of the function

f(α, ᾱ) of the field, and let consider a preamplified-heterodyne detection scheme corre-

sponding to the following procedure:

1. the signal mode of the field is amplified by an ideal amplifier for Ŵ with gain g;

2. the field is heterodyne detected and the function f is evaluated;

3. the final result is rescaled by a factor g.

The above procedure corresponds to the following transformation

dĤf (u) −→ A(Ŵ )
g [dĤf (gu)] . (B.21)

We say that the preamplified heterodyne detection of the function f of the field ap-

proaches the ideal quantum measurement of the observable Ŵ in the limit of infinite

gain g if

lim
g→∞

A(Ŵ )
g [dĤf (gu)] = du δ(u − Ŵ ) , (B.22)

where the limit is to be regarded in the weak sense (i.e. for matrix elements) and the

operator Dirac delta explicitly writes as follows

δ(u − Ŵ ) =

∫

i
Ŵ

dw|w〉〈w|δ(u − w) , (B.23)

and the integral is to be understood as a sum for discrete spectrum SŴ . A necessary

and sufficient condition for validity of Eq. (B.22) is the following

lim
g→∞

∫

A(Ŵ )
g [dĤf (gu)]ul = Ŵ l , l = 0, 1, 2, . . . , (B.24)

where again the limit holds for expectations on any state. One can prove that condition

(B.24) is necessary—i.e. Eq. (B.22) implies Eq. (B.24)—by simply substituting Eq.
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(B.22) into Eq. (B.24), and exchanging the integral with the limit. On the other hand

Eq. (B.24) implies

lim
g→∞

∫

A(Ŵ )
g [dĤf (gu)] exp(iku) = exp(ikŴ ) , (B.25)

and taking the Fourier transform of both sides of the last identity one finds Eq. (B.22),

proving that Eq. (B.24) is also a sufficient condition. Another sufficient condition in a

form more convenient than Eq. (B.24) is the following
∫

dĤf (u)ul = Ŵ l + o(Ŵ l) , (B.26)

where o(g(x)) is an asymptotic notation equivalent to the vanishing of the limit [165]

lim
x→∞

o(g(x))/g(x) = 0 ,

whereas, for an operator V̂ , by o(V̂ ) we mean

lim
κ→∞

κ−1o(κV̂ ) = 0

in the weak sense. In fact, by amplifying both sides of Eq. (B.26) and rescaling the

variable u by the gain g one obtains
∫

A(Ŵ )
g [dĤf (gu)]ul = Ŵ l + g−lo(glŴ l) , (B.27)

which implies Eq. (B.24).

B.5 Two examples

In this section we show that condition (B.24) holds for both the photon number

Ŵ = a†a and the quadrature W = Re(a e−iφ), corresponding to the functions of the

field f(α, ᾱ) = |α|2 and f(α, ᾱ) = Re(α e−iφ) respectively. This means that both the

quadrature and the photon number operators can be ideally measured through the

preamplified-heterodyne detection scheme in the limit of infinite gain. We also show

that in both cases the detection scheme is robust to nonunit quantum efficiency of the

heterodyne detector.

B.5.1 Measurement of the quadrature

The POM dĤ(x) that corresponds to the function f(α, ᾱ) = Re(α e−iφ) of the field is

given by

dĤf (x) = dx :δ

(

x− 1

2
(a† eiφ + a e−iφ)

)

:A = dx

∫

du

2π
eiu(x−X̂φ) e−

1
8
u2

= dx

√

2

π
e−2(X̂φ−x)2 . (B.28)
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Nonunit quantum efficiency introduces additive Gaussian noise and replaces the POM

(B.28) with the following one

dĤf (x) = dx

√

2η

π(2 − η)
e
− 2η

2−η
(X̂φ−x)2

. (B.29)

We can see that the POM in Eq. (B.29) satisfies the sufficient condition (B.26) for

approaching the ideal quantum measurement of X̂φ. In fact, the moments of the POM

(B.29) are given by

∫

dĤf (x)xl =

∫ +∞

−∞
dx

√

2η

π(2 − η)
e
− 2η

2−η
x2

(X̂φ + x)l = X̂ l
φ +O(X̂ l−2

φ ) , (B.30)

where O(g(x)) is the customary asymptotic notation equivalent to the condition [165]

lim
x→∞

O(g(x))/g(x) <∞ ,

implying that O(X̂ l−2) ≡ o(X̂ l). On the other hand, one can directly verify the limit

in Eq. (B.22) as follows

AX̂φ
g [dĤf (gx)] = dx

√

2g2η

π(2 − η)
e
− 2g2η

2−η
(X̂φ−x)2 g→∞−→ dx δ(X̂φ − x) . (B.31)

The ideal amplification of the quadrature operator X̂φ is achieved by means of a

phase-sensitive amplifier [166] which rescales the couple of conjugated quadratures as

follows

X̂φ → 1

g
X̂φ , X̂φ+ π

2
→ gX̂φ+ π

2
, (B.32)

g being the gain at the amplifier. The Heisenberg transformations in Eq. (B.32) are

achieved by the unitary operator

Ûg = exp[−i log g(X̂φX̂φ+ π
2
− X̂φ+ π

2
X̂φ)] . (B.33)

B.5.2 Measurement of the photon number

The case of the ideal measurement of the photon number a†a through preamplified-

heterodyning is more interesting than the case of the quadrature X̂φ, because here

the amplification not only removes the excess noise due to the quantum measurement,

but also changes the spectrum, from continuous to discrete. We consider the POM

that corresponds to heterodyning the function f(α, ᾱ) = |α|2 of the field. This can be

written as follows

dĤf (h) = dh :δ(h − a†a)):A = dh

∫

du

2π
e−iuh

∞
∑

n=0

(iu)n ana†n
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= dh

∫

du

2π
e−iuh

∞
∑

n=0

(iu)n

(

a†a+ n

n

)

= dh

∫

du

2π
e−iuh (1 − iu)−a†a−1

= dh e−h ha†a

(a†a)!
. (B.34)

The POM in Eq. (B.34) satisfies the sufficient condition (B.26). In fact, one has

∫

dh e−h h
a†a+l

(a†a)!
=

(a†a+ l)!

(a†a)!
= (−)l

l
∑

k=0

s
(k+1)
l+1 (−a†a)k = (a†a)l +O[(a†a)l−1] ,(B.35)

where s
(k)
l denotes a Stirling number of the first kind. Hence, if the field is amplified

through an ideal photon number amplifier [167, 168, 114] and then heterodyne detected,

in the limit of infinite gain the scheme achieves ideal photon number detection. Indeed,

using the ideal photon number amplification map [169, 51]

a†a −→ V̂ † a†a V̂ = g a†a , (B.36)

with the isometry V̂ given by

V̂ =

∞
∑

n=0

|gn〉〈n| , (B.37)

one obtains the preamplified POM

Aa†a
g [dĤf (gh)] = V̂ † dĤf (gh) V̂ = dh g e−gh

∞
∑

n=0

(gh)gn

(gn)!
|n〉〈n| . (B.38)

In the limit of infinite gain g → ∞ the POM in Eq. (B.38) achieves the ideal POM

for the photon-number operator measurement. This can be shown as follows. Upon

writing the POM (B.38) in the form

Aa†a
g [dĤf (gh)] = dh

∞
∑

n=0

p(g)
n (h)|n〉〈n| , (B.39)

we need to show that the function

p(g)
n (h) = g e−gh (gh)gn

(gn)!
, (B.40)

approaches a Dirac delta-comb over integer values h ∈ N. Using the Stirling’s inequality

√
2πn

(n

e

)n
< n! <

√
2πn

(n

e

)n
(

1 +
1

12n− 1

)

, (B.41)

one obtains

γ(g)
n (h)

(

1 +
1

12gn− 1

)−1

< p(g)
n (h) < γ(g)

n (h) , (B.42)
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where

γ(g)
n (h) =

1
√

2πg−1n
exp

[

gn

(

1 − h

n
+ log

h

n

)]

. (B.43)

From the inequality log x ≤ x− 1 (with equality iff x = 1) it follows that

lim
g→∞

γ(g)
n (h) =

{

0 h 6= n

+∞ h = n
, (B.44)

and hence, from Eq. (B.42), one has

lim
g→∞

p(g)
n (h) =

{

0 h 6= n

+∞ h = n
. (B.45)

Moreover, from the expansion for h near to n

1 − h

n
+ log

h

n
= −1

2

(

1 − h

n

)2

+O

(

(

1 − h

n

)3
)

, (B.46)

one has the Gaussian asymptotic approximation for g → ∞

p(g)
n (h) ' 1

√

2πg−1n
exp

[

−(h− n)2

2g−1n

]

g→∞−→ δ(h − n) , (B.47)

which proves the statement.

Figure B.1: Probability density p(h) for a coherent state with mean photon number 〈a†a〉 = 12

obtained through heterodyne detection of f(α, ᾱ) = |α|2, preamplified by an ideal photon number

amplifier. Different line-style denote different value of the gain g at the amplifier: the dashed line

corresponds to g = 1 (no amplification); the thick line corresponds to g = 102; the thin line to g = 103.

In Fig. B.1 we show the probability distribution of the outcome h = |α|2 form

preamplified-heterodyne detection of a coherent state, for different values of the am-

plifier gain g. Notice the emergence of a discrete spectrum from a continuous one for

increasingly large gains, in agreement with Eq. (B.47).
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It is easy to show that the preamplified-heterodyne detection scheme is robust to

nonunit quantum efficiency also in the present case of measuring a†a. In fact, the

sufficient condition (B.26) is still satisfied for nonunit quantum efficiency, as one can

check through Eqs. (B.8) and (B.35) as follows

∫

d2β

π

η

1 − η
e
− η

1−η
|β|2

D̂(β)
{

(a†a)l +O[(a†a)l−1]
}

D̂†(β)

=

∫

d2β

π

η

1 − η
e−

η
1−η

|β|2
{

[(a† − β)(a− β)]l +O[((a† − β)(a− β))l−1]
}

= (a†a)l +O[(a†a)l−1] . (B.48)

B.6 A counterexample

The necessary and sufficient condition (B.24) establishes when a self-adjoint operator Ŵ

is approximated by the classical observable f using a preamplified-heterodyne scheme.

One could now address the inverse problem, namely: Given a self-adjoint operator

Ŵ is it possible to find a function of the field such that the preamplified-heterodyne

measurement approximates the measurement of Ŵ ? As we have shown in the previous

section, this is certainly true for X̂φ and a†a. For a generic observable Ŵ , the problem

becomes very difficult. However, on the basis of a counterexample, we will prove that

the inverse problem has no solution for some operator Ŵ , namely there are observables

which cannot be measured through the preamplified-heterodyne detection scheme.

Consider the operator

K̂ ≡ − i

2
(a2 − a†2) = X̂Ŷ + Ŷ X̂ , (B.49)

where X̂ and Ŷ are the conjugated quadratures X̂ ≡ X̂0 and Ŷ = X̂π/2. We show that

there is no polynomial function of the field that satisfies either the necessary condition

(B.24).

In order to construct the CP amplification map for K̂, one has to find the eigenstates

of K̂. These are given in Ref. [170], and here we report them. One has

K̂|ψµ
±〉 = µ|ψµ

±〉 , (B.50)

with

ψµ
±(x)

.
= 〈x|ψµ

±〉 =
1√
2π

|x|iµ− 1
2 θ(±x) , (B.51)

where |x〉 denotes the eigenvector of the quadrature X̂, and θ(x) is the customary step-

function (θ(x) = 1 for x > 0, θ(x) = 1/2 for x = 0, θ(x) = 0 for for x < 0). The vectors

|ψµ
s 〉 form a complete orthonormal set

〈ψµ
r |ψν

s 〉 = δrsδ(µ− ν) . (B.52)
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The amplification of K̂ is achieved by the unitary operator Ûg satisfying the relations

Û †
g K̂Ûg = gK̂ , Ûg|ψµ

s 〉 = g
1
2 |ψgµ

s 〉 . (B.53)

In terms of the eigenvectors of K̂ the unitary operator Ûg has the form

Ûg =
∑

s=±

∫ +∞

−∞
dµ g

1
2 |ψgµ

s 〉〈ψµ
s | = g

1
2

∫ +∞

−∞
dx |x| 12 (g−1)|x〉〈x∗g| , (B.54)

where in the last identity in Eq. (B.54) we have written Ûg in terms of the eigenstates

|x〉 of the quadrature X̂, upon introducing the notation

x∗g ≡ x|x|g−1 = sgn(x)|x|g , (B.55)

where sgn(x) denotes the customary sign function. The analytic form (B.54) of Ûg is

derived as follows

Ûg = g
1
2

∑

s=±

∫ +∞

−∞
dµ |ψgµ

s 〉〈ψµ
s |

= g
1
2

∫ +∞

−∞
dx

∫ +∞

−∞
dx′|x′〉〈x|

∑

s=±

∫ +∞

−∞
dµψgµ

s (x′)ψ̄µ
s (x)

= g
1
2

∫ +∞

−∞
dx

∫ +∞

−∞
dx′|x′〉〈x| |x′| 12 (g−1)

∑

s=±

∫ +∞

−∞
dµψµ

s (x′∗g)ψ̄µ
s (x)

= g
1
2

∫ +∞

−∞
dx |x| 12 (g−1)|x〉〈x∗g| . (B.56)

The Heisenberg evolution of the conjugated quadratures X̂ and Ŷ by the amplification

Ûg can be evaluated through the following steps

Û †
gX̂Ûg = g

∫ +∞

−∞
dx

∫ +∞

−∞
dx′ x|xx′| 12 (g−1)|x∗g〉〈x|x′〉〈x′∗g|

= g

∫ +∞

−∞
dxx∗g|x∗g〉〈x∗g| = X̂∗ 1

g ; (B.57)

Û †
g Ŷ Ûg = Û †

g

∫ +∞

−∞
dx |x〉

(

− i

2
∂x

)

〈x|Ûg

= g

∫ +∞

−∞
dx |x| 12 (g−1)|x∗g〉

(

− i

2
∂x

)

〈x∗g||x| 12 (g−1)

= − i

4
(g − 1)X̂

∗(− 1
g
)

+

∫ +∞

−∞
du |u〉

(

− i

2
|u|1−

1
g ∂u

)

〈u|

= − i

4
(g − 1)X̂

∗(− 1
g
)

+ gX̂
∗(− 1

g
)
X̂Ŷ

= X̂
∗(− 1

g
)
(

1

2
gK̂ +

i

4

)

=

(

1

2
gK̂ − i

4

)

X̂
∗(− 1

g
)
. (B.58)
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For what follows we also need to evaluate the Heisenberg evolution of the operator

X̂2 + Ŷ 2 = a†a+ 1
2 . From Eqs. (B.57-B.58) one has

Û †
g

(

a†a+
1

2

)

Ûg = |X̂ |
2
g +

1

4

(

gK̂ − i

2

)

|X̂ |(−
2
g
)
(

gK̂ +
i

2

)

= |X̂ |
2
g +

1

4
X̂

∗(− 1
g
)
(

g2K̂2 +
1

4

)

X̂
∗(− 1

g
)
. (B.59)

Now, let us consider a quadratic function of the field f(α, ᾱ) = −i(α2 − ᾱ2 + ic|α|2)/2,

c an arbitrary constant, and let us evaluate the corresponding POM dĤf (u) pertaining

to heterodyne detection of the function f of the field. From Eq. (B.6) one has

dĤf (u) = du : δ(u − f(a, a†)):A

= du

∫ +∞

−∞

dλ

2π
e−iλu eλ

a2

2 :eiλ
c
2
a†a:A e

−λ a†2
2

= du

∫ +∞

−∞

dλ

2π
e−iλu eλ

a2

2

(

1 − iλ
c

2

)−(a†a+ 1
2
)
e−λ a†2

2

(

1 − iλ
c

2

)− 1
2
, (B.60)

where we used the relation

: eza†a:A =
∞
∑

n=0

zn

n!
ana†n =

∞
∑

n=0

zn

(

a†a+ n

n

)

= (1 − z)−a†a−1 . (B.61)

The product of operators in the last equality of Eq. (B.60) can be recast in the form

of a single exponential function using the Baker-Campbell-Hausdorff (BCH) formula

for the su(1,1) algebra [see the note at the end of the appendix]. According to the

prescription in Eq. (B.21), we need to evaluate the preamplified POM

A(K̂)
g [dĤf (gu)] ≡ g Û †

g (dĤf (gu)) Ûg , (B.62)

in the limit of infinite gain g → ∞. As shown in the Appendix, for the leading term in

g one has

A(K̂)
g [dĤf (gu)] = du

∫

dλ

2π
exp

(

−iλu+ iλK̂ +
1

8
iλcgK̂2

)

× exp

[

−1

8
λ2

(

1 +
c2

4

)

K̂2

]

, g � 1 . (B.63)

The preamplified POM in the limit of infinite gain writes as follows

A(K̂)
g [dĤf (gu)]

g→∞−→ du

∫

dλ

2π
exp

(

−iλu+ iλK̂ +
i

8
λgcK̂2

)

exp

(

−1

8
λ2K̂2

)

= du

√

2

πK̂2
exp

(

−2(K̂ + 1
8gcK̂

2 − u)2

K̂2

)

. (B.64)
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The POM in Eq. (B.64) satisfies the necessary condition (B.24) for l = 0, 1 upon

choosing c = 0. However, the same condition for l = 2 is not satisfied, because one has

∫

duu2

√

2

πK̂2
exp

(

−2(K̂ − u)2

K̂2

)

=
5

4
K̂2 . (B.65)

Therefore, there is no quadratic function f(α, ᾱ) of the field that allows to approximate

the ideal quantum measurement of the operator K̂ = −i(a2 − a†2)/2. It is clear that

also higher-degree polynomial functions of the field cannot satisfy condition (B.24),

since in such case higher powers in a† and a will appear in Eq. (B.60) and the BCH

formula will have no longer closed form. In conclusion of this section we notice that

Eq. (B.64) for c = 0 can also be easily obtained by the following formal asymptotic

analysis

dĤf (gu) = du

∫ +∞

−∞

dλ

2π
e−iλu eg

−1λ a2

2 eg
−1−λ a†2

2

= du

∫ +∞

−∞
e−iλu exp

{

ig−1λ
1

2
(a2 − a†2) − 1

8
g−2λ2[a2, a†2] +O(g−3)

}

= du

∫ +∞

−∞
e−iλu exp

{

ig−1λK̂ − 1

2
g−2λ2

(

a†a +
1

2

)

+O(g−3)

}

. (B.66)

By amplifying the first and last members of Eq. (B.66) and using Eq. (B.59) one has

A(K̂)
g [dĤf (gu)]

= du

∫ +∞

−∞
e−iλu exp

{

iλK̂ − 1

8
λ2X̂

∗(− 1
g
)
(

K̂2 +
1

4g2

)

X̂
∗(− 1

g
)

+O(g−3)

}

= du

∫ +∞

−∞
e−iλu exp

{

iλK̂ − 1

8
λ2K̂2 +O(g−1)

}

, (B.67)

namely Eq. (B.64).

B.7 Conclusions

One may think that the heterodyne detector could be regarded as a universal detector,

as it achieves the ideal measurement of the field operator a, and hence, in principle, it

should achieve the measurement of any operator Ô = Ô(a, a†) of the field. However,

due to the fact that the measurement of a corresponds to a joint measurement of two

noncommuting conjugated observables, an intrinsic unavoidable 3dB noise is added

to the measurement, even in the ideal case. We have considered the possibility of

reducing such noise by means of a suitable ideal preamplification of Ô, which we have

shown to be feasible through a unitary transformation. We have shown that in the

limit of infinite gain such preamplified-heterodyne detection scheme can achieve the

ideal measurement of a†a and X̂φ, even for nonunit quantum efficiency, also realizing
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the transition from continuous to discrete spectrum in the case of the operator a†a.

However, the scheme does not work for arbitrary operator, and, as a counterexample,

we proved that the ideal measurement cannot be achieved even for the simple quadratic

form K̂ = i(a†2−a2)/2, apparently with no simple physical explanation other than the

algebraic nature of the operator K̂ itself and its ideal amplification map. In the present

study we have seen some of the problems which are faced in order to built a universal

detecting machine, and we hope that this work will shed new light on the route for

achieving such a challenging task.

Note on the BCH formula

Upon defining k+ = 1
2a

†2, k− = 1
2a

2, and k3 = 1
2(a†a+ 1

2), one recognizes the following

commutation rules for the su(1,1) algebra

[k̂+, k̂−] = −2k̂3 , [k̂3, k̂±] = ±k̂± . (B.68)

One needs the analytic form of the coefficients B±, B3 and A±, A3 in the following

identity

exp
(

A−k̂−
)

exp
(

2A3k̂3

)

exp
(

A+k̂+

)

= exp
(

2B3k̂3 +B+k̂+ +B−k̂−
)

. (B.69)

By using the faithful representation of the su(1, 1) algebra in terms of the Pauli matrices

with iσ̂± ≡ k̂±, σ̂3 ≡ 2k̂3 , Eq. (B.69) can be rewritten as follows
(

1 0

iA− 1

)(

eA3 0

0 e−A3

)(

1 iA+

0 1

)

=

cosh Γ

(

1 0

0 1

)

+
sinh Γ

Γ

(

B3 iB+

iB− −B3

)

, (B.70)

where Γ = (B2
3 −B+B−)1/2. From Eq. (B.70) one obtains the relation

B3 =
1

2

Γ

sinh Γ

[

(1 +A+A−) eA3 − e−A3
]

, (B.71)

sinh Γ =

{

[

(1 +A+A−) eA3 + e−A3

2

]2

− 1

} 1
2

, (B.72)

B± =
2A±e±A3

(1 −A+A−)eA3 − e−A3
B3 . (B.73)

For our purposes, we are just interested in the asymptotic expression of the POM

A(K̂)
g [dĤf (gu)] in Eq. (B.62) for g → ∞. By comparing Eqs. (B.69) and (B.60) one

has A± = ∓g−1λ and A3 = − ln(1 − ig−1λ c
2 ). From Eqs. (B.71-B.73) one obtains the

asymptotic values of B± and B3 for g → ∞, namely

B± ' ∓g−1λ , B3 ' 1

2
ig−1λc− 1

2
g−2λ2

(

1 +
c2

4

)

. (B.74)
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Hence, from Eq. (B.60) it follows

gdĤf (gu)
g�1−→ du

∫

dλ

2π
(1 + iλg−1 c

4
) e−iλu (B.75)

× exp

{

ig−1λK̂ +
1

2

[

iλg−1c− g−2λ2

(

1 +
c2

4

)](

a†a +
1

2

)}

.

By applying the amplification map to the POM dĤf (gu) through Eqs. (B.53) and

(B.59), one obtains A(K̂)
g [dĤf (gu)] in Eq. (B.63).
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(Kluwer, Dordrecht 1997) pp. 139-174.

[35] W. Schleich and J. A. Wheeler, Nature 326, 574 (1987).

[36] C. O. Alley and Y. H. Shih, Phys. Rev. Lett. 61, 2921 (1988).

[37] Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).



BIBLIOGRAPHY 147

[38] J. G. Rarity and P. B. Tapster, Phys. Rev. Lett. 64, 2495 (1990).

[39] G. M. D’Ariano and M. F. Sacchi, Phys. Rev. A 52, R4309 (1995).

[40] G. M. D’Ariano and M. F. Sacchi, Repeatable two-mode phase measurement in

Ref. [6], pp. 307-313.

[41] D. Boschi, F. De Martini and G. Di Giuseppe, in Ref. [6], pp. 135-143.

[42] D. N. Klyshko, Phys. Lett. A 132, 299 (1988).

[43] M. A. Horne, A. Shimony and A. Zeilinger, Phys. Rev. Lett. 62, 2209 (1989).

[44] C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).

[45] G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A 49, 3022 (1994)

[46] Physica Scripta T48 (1993) (special issue on Quantum Phase and Phase Depen-

dent measurements).

[47] C. W. Helstrom, Quantum Detection and Estimation Theory, (Academic Press,

New York, 1976).

[48] J. H. Shapiro and S. R. Shepard, Phys. Rev. A 43, 3795 (1991).

[49] I. Bialynicki-Birula, M. Freyberger and W. P. Schleich, Phys. Scripta T48 113

(1993).

[50] B. Daeubler, Ch. Miller, H. Risken and L. Schoendorff, Phys. Scripta T48 119

(1993).

[51] G. M. D’Ariano, C. Macchiavello, N. Sterpi and H. P. Yuen, Phys. Rev. A 54,

4712 (1996).

[52] A. S. Holevo. Probabilistic and statistical aspects of quantum theory, (North-

Holland, Amsterdam, 1982).

[53] M. Ban, Phys. Rev. A 50, 2785 (1994).

[54] J. H. Shapiro, Physica Scripta T 48, 105 (1993).

[55] A. Luis and L. L. Sánches-Soto, Phys. Rev. A 48, 4702 (1993).

[56] G. M. D’Ariano, M. G. A. Paris and M. F. Sacchi, Phys. Rev. A 57, 4894 (1998).

[57] V. Buzek, C. H. Keitel and P. L. Knight, Phys. Rev. A 51, 2575 (1995); Phys.

Rev. A 51, 2594 (1995).



148 BIBLIOGRAPHY

[58] K. Wodkiewicz, Phys. Rev. Lett. 52, 1064 (1984); Phys. Lett. A 115, 304 (1986);

Phys. Lett. A 129, 1 (1988).

[59] M. G. A. Paris, A. V. Chizhov and O. Steuernagel, Opt. Comm. 134 117 (1997).

[60] G. M. D’Ariano and C. Macchiavello, Phys. Rev. A 48, 3947 (1993).

[61] G. M. D’Ariano, C. Macchiavello and M. G. A. Paris, in Second International

Workshop on Squeezed States and Uncertainty Relations, D. Han et al. Eds.

(NASA Conf. Public. 3219, Washington DC, 1992), p. 71.

[62] J. Huang and P. Kumar, Phys. Rev. Lett. 68, 2153 (1992).

[63] P. Kumar, Opt. Lett. 15, 1476 (1990).

[64] J. H. Shapiro and S. S. Wagner, IEEE J. Quantum Electron. QE 20, 803 (1984).

[65] G. M. D’Ariano and M. F. Sacchi, Phys. Rev. A 52, R4309 (1995).

[66] H. P. Yuen and J. H. Shapiro, IEEE Trans. Inform. Theory IT 26, 78 (1980).

[67] H. Cramér, Mathematical Methods of Statistics, (Princeton Univ. Press, Prince-

ton, NJ, 1951), pp. 489-506.

[68] G. M. D’Ariano and M. F. Sacchi, in Ref. [6], pp. 307-313.

[69] M. Ozawa, in Ref. [144], p. 263.

[70] G. M. D’Ariano, M. Fortunato and P. Tombesi, Nuovo Cimento B 110, 1127

(1995).

[71] M. Ozawa, J. Math. Phys. 27, 759 (1986).

[72] M. Ban, J. Opt. Soc. Am. B 9, 1189 (1992).

[73] G. M. D’Ariano, C. Macchiavello and M. F. Sacchi, Phys. Lett. A 248, 103 (1998).

[74] W. van Dam, G. M. D’Ariano, A. Ekert, C. Macchiavello, and M. Mosca, unpub-

lished.

[75] G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A 55, 2267 (1997).

[76] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).

[77] R. Jackiw, J. Math. Phys. 9, 339 (1968).

[78] A. Bandilla, H. Paul, and H-H Ritze, Quantum Opt. 3, 267 (1991).

[79] C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66, 481 (1994).



BIBLIOGRAPHY 149

[80] K. Yamazaki, O. Hirota and M. Nakagawa, Trans. IEICE, E71, 8, 775 (1988).

[81] M. J. W. Hall, Phys. Rev. A 50, 3295 (1994).

[82] M. J. Holland, K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).

[83] G. M. D’Ariano and M. F. Sacchi, in ‘5th Int. Conf. on Squeezed States and

Uncertainty Relations’ (NASA Conf. Publ., Washington DC, 1997), pp. 467-472.

[84] G. M. D’Ariano and M. F. Sacchi, Opt. Comm. 149, 152 (1998).

[85] R. G. Gallagher, Information Theory and Reliable Communication (Wiley, New

York, 1968).

[86] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[87] M. J. W. Hall, Phys. Rev. Lett. 74, 3307 (1995).

[88] C. Kim and P. Kumar, Phys. Rev. A 5, 5237 (1992).

[89] C. Kim and P. Kumar, Opt. Lett. 16, 755 (1991).

[90] A. S. Holevo, Probl. Inf. Trans. 9, 177 (1973).

[91] H. P. Yuen and M. Ozawa, Phys. Rev. Lett. 70, 363 (1993).

[92] R. E. Blahut, IEEE Trans. Inform. Theory, IT-18, 460 (1972).

[93] G. M. D’Ariano and M. F. Sacchi, Mod. Phys. Lett. B. 11, 1263 (1997).

[94] C. Kim and P. Kumar, in OSA Annual Meeting, 1992 Technical Digest Series,

Vol. 23 (Optical Society of America, Washington, D.C. 1992), p. 193.

[95] C. W. Gardiner, Quantum noise, (Springer-Verlag, Berlin, 1991).

[96] M. G. A. Paris, Phys. Lett. A 225, 28 (1997).

[97] S. Y. Kilin and D. B. Horosko, Phys. Rev. Lett. 74, 5206 (1995); W. Leonski, S.

Dyrting, and R. Tanas, J. Mod. Opt. 44, 2105 (1997); A. Vidiella-Barranco, and

J. A. Roversi, Phys. Rev. A 58, 3349 (1998).

[98] M. G. A. Paris, Int. J. Mod. Phys. B 11, 1913 (1997); M. Dakna, T. Hanput, T.

Opatrny, L. Knoll, and D. G. Welsch, Phys. Rev. A 55, 3184 (1997); M. Dakna,

L. Knoll, and D. G. Welsch, Opt. Comm. 145, 309 (1998).

[99] K. Vogel, V. M. Akulin, and W. P. Scheich, Phys. Rev. Lett. 71, 1816 (1993).



150 BIBLIOGRAPHY

[100] J. Krause, M. O. Scully, T. Walther, and H. Walther, Phys. Rev. A 39, 1915

(1989); M. Kozierowski, and S. M. Chumakov, Phys. Rev. A 52, 4194 (1995); P.

Domokos, M. Brune, J. M. Raimond, and S. Haroche, Europ. Phys. J. D 1, 1

(1998).

[101] C. H. Bennett and B. P. Di Vincenzo, Nature 377, 389 (1995).

[102] G. M. D’Ariano and L. Maccone, Phys. Rev. Lett. 80, 5465 (1998).

[103] N. Imoto, H. A. Haus, and Y. Yamamoto, Phys. Rev. A 32, 2287 (1985).

[104] M. Ley and R. Loudon, J. Mod. Opt. 34, 227 (1987).

[105] S. M. Barnett, C. R. Gilson, B. Huttner, and N. Imoto, Phys. Rev. Lett. 77, 1739

(1997).

[106] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton

Univ. Press, Princeton, NJ, 1955), pp. 442-445.

[107] G. M. D’Ariano, M. F. Sacchi and R. Seno, 1998, submitted to Nuovo Cimento

B.

[108] G. M. D’Ariano and M. F. Sacchi, Phys. Lett. A 231, 325 (1997).

[109] J. H. Shapiro, Opt. Lett 20, 1059 (1995).

[110] A. La Porta, R. E. Slusher, and B. Yurke, Phys. Rev. Lett. 62, 28 (1989).

[111] Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Phys. Rev. Lett. 70, 3239 (1993).

[112] S. F. Pereira, Z. Y. Ou, and H. J. Kimble, Phys. Rev. Lett. 72, 214 (1994).

[113] K. Bencheikh, J. A. Levenson, Ph. Grangier, and O. Lopez, Phys. Rev. Lett. 75,

3422 (1995).

[114] H. P. Yuen, Phys. Lett. A 113, 405 (1986); Opt. Lett. 12, 789 (1987).

[115] F. De Martini, L. De Dominicis, E. Del Re, and F. Truc, in Ref. [6], p.210.
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