N. | Data | Ora | Argomenti |
---|---|---|---|
1 | Ma 2/10 | 16-18 | Introduzione al corso. Ripasso di Meccanica Quantistica mediante la sua struttura assiomatica: 1) postulato stati e osservabili. Matrice densita’. Operazione di traccia e sue proprieta’. Rappresentazione. 2) Postulato dei sistemi composti (stati). Prodotto tensore. |
2 | Me
3/10 |
16-18 | 2) Postulato dei sistemi composti (osservabili). Traccia parziale. Def. astratta di entanglement. Postulato di evoluzione per sistemi isolati: equazione di Schroedinger per stati e matrici densita’; postulato misura. Born statistical formula. Definizione di apparato e sua descrizione in termini di POVM e strumento. Definizioni formali di POVM. Relazioni che intercorrono tra Born statistical formula, osservabile e POVM. |
3 | Me 10/10 | 16-18 | Enunciato teorema di Naimark. Stato di un sottosistema. Strumento in termini del modello a misura indiretta o della sua forma di Kraus. POVM dallo strumento. Evoluzione di sistemi non isolati. Purificazione. Relazioni che intercorrono tra Born statistical formula, osservabile, apparato, POVM e strumento. |
4 | Ma 16/10 | 16-18 | Pitture di Schroedinger, di Heisenberg e di interazione (Dirac). Principio di indeterminazione (measurement uncertainty). Relazioni di indeterminazione di Heisenberg (preparation uncertainty). Derivazione relazioni Heisenberg-Robertson. Complementarita’ quantistica. Teorema di Bell: enunciato. Nonlocalita’ Einsteiniana. Nonlocalita’ quantistica. Cenni a interpretazioni (Copenhagen, Bohm, Relative state). |
5 | Me 17/10 | 16-18 | Dimostrazione teorema di Bell: disuguaglianza e violazione quantistica. Ripasso di elettromagnetismo classico: equazioni di Maxwell, forza di Lorentz. Potenziali scalare e vettore. Liberta’ di Gauge. Gauge di Lorentz e di Coulomb. Equazioni di Maxwell in termini dei potenziali. Liberta’ di Gauge. Gauge di Lorentz e di Coulomb. Equazioni di Maxwell in termini dei potenziali: equazioni d’onda. Ripasso quantizzazione dell’oscillatore armonico: Hamiltoniana oscillatore armonico, autostati, operatore numero. |
6 | Lu 22/10 | 9-11 | Operatori di creazione e distruzione. Quantizzazione del campo elettromagnetico libero: modi normali; equazione di Helmoltz. Hamiltoniana in termini di modi normali (cenni). Quantizzazione canonica. Spazio di Hilbert della radiazione elettromagnetica. Definizioni di vuoto e fotone, operatore numero di fotoni. Quantizzazione nel continuo (cenni). |
7 | Ma 23/10 | 16-18 | Cambio di modi della radiazione elettromagnetica. Interazione radiazione materia: Hamiltoniana di accoppiamento minimale dall’invarianza per trasformazioni di Gauge U(1). Hamiltoniane di interazione radiazione-materia in approssimazione di dipolo: forma A scalar p e forma E scalar r. Hamiltoniana di accoppiamento con atomo a due livelli e operatori di Pauli. |
8 | Lu 29/10 | 9-11 | Hamiltoniana di Jaynes-Cummings in pittura di Schroedinger e di interazione. Hamiltoniana di Jaynes-Cummings con campo classico. Oscillazione di Rabi con campo quantizzato. Emissione spontanea. |
9 | Ma 30/10 | 16-18 | Cenni di ottica non lineare e derivazione dell’Hamiltoniana di interazione per nonlinearita’ chi2. Conversione di frequenza. Conversione parametrica spontanea del vuoto (SPDC). Generazione di stati squeezed. Definizioni relative all’algebra di Lie. Algebre di Weyl-Heisenberg (wh), di su(2) e di su(1,1). Definizioni relative ai gruppi. Enunciato del Th. di Lie. Algebra dell’operatore esponenziale. Lemma Baker-Campbell-Hausdorff (BCH) (argomento facoltativo). Teorema BCH (argomento facoltativo). |
10 | Lu 5/11 | 9-11 | Dimostrazione del teorema di Lie. Formula di BCH per operatori che commutano con il loro commutatore (algebra wh). BCH per il momento angolare, su(2). BCH per su(1,1). Stati coerenti: definizione, normalizzazione. |
11 | Ma 6/11 | 16-18 | Proprieta’ dei coerenti (continuazione): probabilita’ del numero di fotoni. Operatori di displacement; Over-completezza dei coerenti e formula per la traccia. Funzioni di Wigner: funzione di Husimi (rappresentazione Q della matrice densita’); funzione di Glauber-Sudarshan (rappresentazione P della matrice densita’). |
12 | Lu 12/11 | 9-11 | Trasformate di Fourier in campo complesso e delta di Dirac complessa. Funzione di Wigner generalizzata e funzione di Wigner. Funzione di Wigner nello spazio delle fasi pq. Rappresentazione di Wigner di operatori. Relazione biunivoca tra Wigner e stati e operatori. Identita’ tomografica (operatori di displacement sono una base ortonormale per lo spazio degli operatori). |
13 | Ma 13/11 | 16-18 | Valori di aspettazione in termini di funzioni di Wigner. Forma differenziale di mappe operatoriali per l’oscillatore armonico. Stati quantistici della radiazione: proprieta’ e funzioni di Wigner. Wigner di stati coerenti. Stati di Fock, proprieta’ della funzione di Wigner. Stati squeezed: squeezed coherent e displaced squeezed. Vuoto squeezed e valor medio dell’energia. |
14 | Lu 19/11 | 9-11 | Quadrature dello stato squeezed. Stato squeezed e’ a minima indeterminazione. Evoluzione della quadratura (campo elettrico) e fluttuazioni del campo. Autostato della quadratura. Stato twin beam e sua generazione. Hyperentanglement. Stato termico. |
15 | Ma 20/11 | 16-18 | Funzione di Wigner dello stato termico. Stato di gatto di Schroedinger e discussione dell’esperimento concettuale di Schroedinger. Beam splitter. BCH del Beam splitter. Evoluzione del coerente, del singolo fotone e del bifotone. Interferometro di Hong-Ou-Mandel. |
16 | Lu 26/11 | 9-11 | Interferometro di Hong-Ou-Mandel. Interferometro di Mach-Zehnder. Interferometro di Michelson-Morley. Effetto “quantum seeing in the dark”. Dualismo onda-corpuscolo. Complementarieta’ di Bohr. Esperimento delayed choice. Disuguaglianza di Greenberger-Yasin. Esperimento di complementarieta’ (quantum eraser) di Scully-Englert-Walther. |
17 | Ma 27/11 | 16-18 | Quantum eraser con il Mach-Zehnder. Sistemi quantistici aperti. 1) Tempo discreto: formalismo delle quantum operations; mappe CP; teorema di rappresentazione di Kraus; teorema di rappresentazione unitaria.2) Tempo continuo: formalismo del quantum dynamical semigroup. |
18 | Lu 3/12 | 9-11 | 2) Master equation; Master equation nella forma di Lindblad a partire dal quantum dynamical semigroup. Master equation in approssimazione di Born-Markov. Riduzione alla forma di Kossakowski della Master equation fenomenologica. Master equation in pittura di Heisenberg. |
19 | Ma 4/12 | 16-18 | Evoluzione (Master equation) di atomo a due livelli in interazione con radiazione termica. Master equation della cavita’ di Fabry-Perot. Liouvilliano per amplificatore e attenuatore. Equazione di Fokker-Planck e interpretazione dei termini. Soluzione equazione FP. Cenni a metodi Monte-Carlo. |
20 | Lu 10/12 | 9-11 | Algoritmo del quantum jump. Principali apparati ottici e simboli usati negli schemi sperimentali. Misurazione della radiazione. Tipi di rivelatori (rivelatore ideale, tubi fotomoltiplicatori, fotodiodi, fotodiodi a valanga, microcalorimetri, TEM, fotorivelatori ideali). Caratteristiche dei rivelatori (dark counts, efficienza quantica, dead time). Efficienza quantica. |
21 | Ma 11/12 | 16-18 | Mappa CP del rivelatore non ideale. POVM detector inefficiente. Equivalenza tra formula di Mandel-Kelley-Kleiner e rivelatore ideale preceduto da beam splitter. Omodina bilanciato: descrizione e valore di aspettazione. |
22 | Lu 17/12 | 9-10 | POVM omodina. Tomografia omodina dall’identita’ tomografica. |
23 | Ma 17/12 | 16-18 | Apparato Eterodina. POVM dell’eterodina. Eterodina interpretata come misura congiunta di due osservabili non-commutanti. Rumore aggiunto rispetto a quanto determinato dalle relazioni di Heisenberg-Robertson. Conclusioni. |